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Abstract: Recently, the development of Perovskite-based solar cells has emerged as a technological 
alternative to photovoltaic generation with a higher efficiency/cost ratio. Many contributions have 
been made in recent years, as evidenced by many academic publications with worldwide experimental 
results in this area. Machine learning as a tool can support the development of this technology by 
predicting new materials and discovering novel solar cell configurations. However, the 
implementation of these methods implies the selection of suitable descriptors. In the present work, we 
analyze the statistical relationship between the thickness of the absorber layer and solar cell 
performance parameters. We evaluated the use of the absorber layer thickness as a descriptor in a 
linear regression model using a database of 221 literature records containing information on the 
bandgap, the ∆HOMO (Perovskite-HTL), and ∆LUMO (Perovskite-ETL) of different Perovskite cells, 
together with the thickness of the absorber layer. By building two multiple linear regression models, 
including or not the thickness of the absorber layer, a reduction in the root means square error of 4.4% 
and 2.8% was found in the prediction of the Jsc and PCE, respectively. By applying a linear regression 
model, an improvement in the prediction of Jsc can be seen due to the inclusion of thickness as a 
descriptor, which is in line with the high value of the mutual information measure we found between 
the thickness and Jsc. 
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1. Introduction 
 

Photovoltaic devices are one of the most important 
technologies for renewable, clean, and low-cost energy 
generation. Perovskite-based cells have emerged as a 
promising, low-cost alternative with higher efficiencies among 
the different photovoltaic device technologies. In the last 
decade, Perovskite solar cells have attracted the attention of 
materials science researchers, and significant advances in 
terms of efficiency have been observed. In 2009, Perovskite 
cells reported efficiencies of around 3.8%; since then, this has 
grown to 25.5% (Best Research-Cell Efficiency Chart, n.d.), 
surpassing even the performance of consolidated 
photovoltaic technologies such as those based on CdTe, CIG, 
and even polycrystalline silicon. These crucial advances 
suggest a role for Perovskite cells in the future of the PV 
industry. Despite the significant advances in this area, 
numerous contributions are still being made. They are 
reflected in many publications per year, which contain 
valuable information and data that can be used to develop 
new materials or structures of Perovskite-based solar cells. As 
researchers in this area generate data, new approaches are 
open for discovering and designing materials with improved 
properties using data-driven methods for knowledge 
discovery (machine learning) (Odabaşı et al., 2019; Yılmaz & 
Yıldırım, 2021; Zhou et al., 2019).  

Machine learning is an increasingly explored alternative in 
materials science for developing Perovskite-based solar cells. 
But exploiting this wealth of latest information requires 
collecting data for training and evaluating the proposed 
models. These data may come from experimental results or 
theoretical calculations. The generation of theoretical data 
does not consider experimental factors inherent to the 
synthesis processes of thin films; therefore, experimental 
information can be considered the most convenient source of 
data for the generation of models. Previous studies using 
machine learning to predict the performance of solar cells 
have used data from theoretical calculations (Balachandran, 
Kowalski, et al., 2018; Gladkikh et al., 2020; Takahashi et al., 
2018) and from experimental studies (Lu et al., 2018, 2019; 
Odabaşı et al., 2019; Stanley & Gagliardi, 2019; Wu & Wang, 
2019; Yu et al., 2019). However, collecting experimental data is 
costly unless we take such data from information available in 
academic literature.    

Recently, machine learning tools have been used to 
estimate and predict the bandgap of the absorber layer 
(Chaube et al., 2020; Gladkikh et al., 2020); to search for new 
photovoltaic Perovskites (Balachandran, Emery et al., 2018; Lu 
et al., 2019; Pilania et al., 2016; Takahashi et al., 2018; Zhang et 
al., 2020); and, to find trends in the way different cell layer 
composites are grouped concerning the efficiency value (Li et 
al., 2019; Odabaşı et al., 2019; Xu et al., 2018). In these reported 

works, descriptors such as the types of compounds used in the 
different layers of the cell, the different methods used for the 
synthesis of the layers, and the annealing times and 
temperatures have been used. Another descriptor that can be 
particularly useful in prediction models corresponds to the 
thickness of the absorbing layer, which, having an inverse 
relationship with the absorption coefficient, determines to a 
significant extent, the capacity of a material to absorb photons 
and generate electrons. However, in previous works, the 
thickness of the absorbing layer as an input parameter has yet 
to be reported (Balachandran, Emery et al., 2018; Chaube et 
al., 2020; Gladkikh et al., 2020; Li et al., 2019; Lu et al., 2019; 
Odabaşı et al., 2019; Pilania et al., 2016; Takahashi et al., 2018; 
Velez Sanchez et al., 2022; Zhang et al., 2020).  

The present work analyses (from a statistical point of view) 
the relationship between the thickness of the absorber layer 
and the main performance characteristics of Perovskite solar 
cells. In particular, the mutual information measure is 
employed to quantify the degree of nonlinear statistical 
relationship between the descriptors and the performance 
values of the cell. Then, we quantify the degree of contribution 
of the thickness in the decrease of the estimation error for 
predicting the electrical characteristics of Perovskite solar cells. 
 
2. Method 

 
Through the method described below, the impact of the 
thickness of the absorber layer on the estimation of the main 
electrical characteristics of Perovskite cells is analyzed. For this 
purpose, the automatic learning approach uses mutual 
information and multiple linear regression statistical analysis 
tools. The multiple linear regression was performed using cross-
validation, for which the data were divided as follows: 90% of 
the data was for training and the remaining 10% for validation. 
The validation was performed successively until all the data 
were considered for training and validation, giving ten iterations 
for the multiple linear regression with different input data. 

 
2.1. Data 
In this work, we take the data reported and used in the 
supplementary information of (Li et al., 2019) as a source of 
information, whose database consists of 333 records of values 
taken from research articles. The descriptors used are the 
composition of the absorbing layer, the bandgap, the difference 
between the highest energy-occupied molecular orbitals 
(HOMO) of the HTL layer and the absorbing layer (∆HOMO), and 
the difference between the lowest energy-unoccupied 
molecular orbitals (LUMO) of the absorbing layer and the ETL 
layer (∆LUMO). Also, electrical characteristics are included, the 
open-circuit voltage Voc, the short-circuit current density Jsc 
and the fill factor FF. To analyze the relevance of thickness, this 
value was manually extracted from each scientific article. In 
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those cases where this value was not reported, the authors were 
contacted directly via e-mail. In total, 221 thicknesses were 
obtained, so our dataset is limited to this number. This dataset 
is published in (Velez Sanchez et al., 2022). 

 
2.2. Descriptors 
Selecting descriptors is a task of significant importance when 
applying automatic learning methods. Descriptors must have 
an implicit meaning and be available, which requires that they 
be easily reportable and universally reported by authors in 
scientific papers to be considered. Ideally, the number of 
descriptors should be reduced to avoid over-fitting problems; 
and not contain redundant information. However, 
guaranteeing full compliance with the above conditions is 
difficult. Recent work has used variables such as bandgap, 
∆HOMO, and ∆LUMO to represent the information from which 
cell characteristics could be predicted (Li et al., 2019; Odabaşı 
et al., 2019). In addition, in works such as those presented by 
Gladkikh et al. (2020), Pilania et al. (2016), Takahashi et al. 
(2018), Zhang et al. (2020), characteristics such as 
electronegativity, the number of atomic orbitals, the 
Goldschmidt tolerance factor of the elements that make up 
the absorbing layer are used to perform prediction or 
classification tasks in machine learning algorithms. However, 
no works were found in which the thickness of the absorbing 
layer is included as a descriptor. In the present work, in 
addition to the variables already mentioned in previous works, 
it is desired to use the thickness of the absorbing layer as an 
input characteristic of the model in charge of estimating the 
performance in the prediction of output electrical variables 
such as the short circuit voltage Voc, short circuit current Jsc, 
the filling factor FF and PCE. In addition to the inclusion of the 
thickness, a modification was made to the database used, 
which consisted of changing the coding for the compounds 
that form the Perovskite, which went from 8 to three variables 
that were as follows: 𝐴𝐴 =  𝑀𝑀𝐴𝐴 –  𝐹𝐹𝐴𝐴 −  𝐶𝐶𝐶𝐶, which groups the 
compounds used in the Perovskite cation 𝐴𝐴, 𝐵𝐵 =  𝑃𝑃𝑃𝑃 −  𝑆𝑆𝑆𝑆 
and 𝑋𝑋 =  𝐼𝐼 –  𝐵𝐵𝐵𝐵 −  𝐶𝐶𝐶𝐶. This modification was made to make 
the models used in the linear regression more flexible, thus 
lowering the complexity of the final model and reducing the 
effects of over-fitting on the results obtained.  

 
2.3. Mutual information as a measure of nonlinear 
statistical association 
The mutual information ́on between two random variables 
𝑥𝑥, 𝑦𝑦, denoted as 𝐼𝐼(𝑥𝑥, 𝑦𝑦), measures the mutual dependence 
between the two variables; that is, it quantifies the amount of 
information obtained from one random variable through the 
observation of the other random variable (Bishop, 2006). 

 
 
 

𝐼𝐼(𝑥𝑥, 𝑦𝑦) = −∫∫𝑝𝑝(𝑥𝑥, 𝑦𝑦) 𝐶𝐶𝑙𝑙𝑙𝑙 �𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)
𝑝𝑝(𝑥𝑥,𝑦𝑦)

�𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦                     (1) 

 
Where 𝐼𝐼(,𝑦𝑦) ≥ 0; and 𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 0 for the case where 𝑥𝑥, 𝑦𝑦 

are independent variables. The units in which this measure is 
expressed depend on the type of logarithm; in particular, if the 
logarithm is in base two, the mutual information is in units of 
bits. There are several methods for estimating 𝐼𝐼(−,−); 
however, in the present work, the k-neighbors-based method, 
reported in (Kraskov et al., 2004; Ross, 2014), is used. 𝐼𝐼(−,−) 
is calculated between each descriptor 
(𝐴𝐴,𝐵𝐵,𝑋𝑋,𝐸𝐸𝑙𝑙,∆𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻,∆𝐿𝐿𝐿𝐿𝑀𝑀𝐻𝐻, 𝛿𝛿) and each electric variable 
of the solar cell (𝑉𝑉𝑙𝑙𝑉𝑉, 𝐽𝐽𝐶𝐶𝑉𝑉, 𝐹𝐹𝐹𝐹, 𝑃𝑃𝐶𝐶𝐸𝐸). Those descriptors that 
offer a low value of mutual information are discarded. 

 
2.4. Multiple linear regression 
The regression function is assumed to be linear for the inputs 
in multiple linear regression. In our case for 
𝐴𝐴,𝐵𝐵,𝑋𝑋,𝐸𝐸𝑙𝑙,∆𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻,∆𝐿𝐿𝐿𝐿𝑀𝑀𝐻𝐻, and 𝑓𝑓(𝛿𝛿). To include the 
possibility of a nonlinear relationship 𝑓𝑓(−), in the present 
work, we evaluated several options with the help of δ vs 
outputs plots of the collected data. We can obtain nonlinear 
models with a proper transformation of inputs or output. 
Although linear regression models are simple, they can 
sometimes give similar or better results than nonlinear 
models. Especially in models with a small number of training 
data (Hastie et al., 2009). Two prediction models are proposed 
for each 𝑘𝑘 = 1, … ,4 performance measure 
(𝑉𝑉𝑙𝑙𝑉𝑉, 𝐽𝐽𝐶𝐶𝑉𝑉,𝐹𝐹𝐹𝐹, 𝑎𝑎𝑆𝑆𝑑𝑑 𝑃𝑃𝐶𝐶𝐸𝐸). In the first one, thickness is not 
considered, 

 
𝑦𝑦(𝑘𝑘) = 𝛼𝛼0𝑘𝑘 + 𝛼𝛼1𝑘𝑘𝐴𝐴 + 𝛼𝛼2𝑘𝑘𝑋𝑋 + 𝛼𝛼3𝑘𝑘𝐸𝐸𝑙𝑙 + 𝛼𝛼4𝑘𝑘∆𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻

+ 𝛼𝛼5𝑘𝑘∆𝐿𝐿𝐿𝐿𝑀𝑀𝐻𝐻 + 𝜀𝜀 
= 𝑍𝑍 − 𝛼𝛼(𝑘𝑘) + 𝜀𝜀                                                                                (2) 

 
Furthermore, in a second model, if the thickness is 

included. 
 

𝑦𝑦𝛿𝛿
(𝑘𝑘) = 𝛽𝛽0𝑘𝑘 + 𝛽𝛽1𝑘𝑘𝐴𝐴 + 𝛽𝛽2𝑘𝑘𝑋𝑋 + 𝛽𝛽3𝑘𝑘𝐸𝐸𝑙𝑙 + 𝛽𝛽4𝑘𝑘∆𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻

+ 𝛽𝛽5𝑘𝑘∆𝐿𝐿𝐿𝐿𝑀𝑀𝐻𝐻 + 𝛽𝛽6𝑘𝑘𝑓𝑓(𝛿𝛿) + 𝜀𝜀𝛿𝛿  
= 𝑍𝑍𝛿𝛿 − 𝛽𝛽(𝑘𝑘) + 𝜀𝜀𝛿𝛿                                                                            (3) 
 
Where 𝑍𝑍 =  [1 𝐴𝐴 𝑋𝑋 𝐸𝐸𝑙𝑙 ∆𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻 ∆𝐿𝐿𝐿𝐿𝑀𝑀𝐻𝐻]; 𝑍𝑍𝛿𝛿 =

 [1 𝐴𝐴 𝑋𝑋 𝐸𝐸𝑙𝑙 ∆𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻 ∆𝐿𝐿𝐿𝐿𝑀𝑀𝐻𝐻 𝑓𝑓(𝛿𝛿)];  𝑓𝑓(−) is some nonlinear 
transformation ́on of the descriptor 𝛿𝛿, and 𝜀𝜀 − 𝜀𝜀𝛿𝛿  are prediction 
errors ́on. To estimate the degree of contribution of the variable 
𝛿𝛿, we compare the performance of the above two models 
𝑦𝑦(𝑘𝑘)and 𝑦𝑦𝛿𝛿

(𝑘𝑘) for each kth electrical property. The parameters 
α(𝑘𝑘)and β(𝑘𝑘) are found using the least-squares criterion 
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3. Results 
 

3.1. Estimation of the degree of statistical-linear 
association of descriptors 
Table (1) reports the estimated bitwise values of the statistical 
association 𝐼𝐼(−,−) for different pairs of descriptors vs 
electrical characteristics. This value was calculated for each 
pair of variables and 20 different subsets of 177 samples out of 
221 (80% of the total), where samples were randomly selected 
without replacement. Each value reported in Table (1) results 
from the average of the 20 values obtained for each of the 20 
subsets. This strategy allowed us to estimate the standard error 
associated with each of the estimates and thus develop a t-
student hypothesis test to determine whether the estimated 
values are statistically different from zero.       That is, to 
determine if statistically there is an association. As a result, it is 
obtained that all except 2 are statistically different from zero. 
The results show that the absorbing layer's thickness helps 
explain the behaviour of the Jsc inside the cell. They also allow 
us to infer that the results obtained for B, formed by 𝐵𝐵 = 𝑃𝑃𝑃𝑃 −
𝐶𝐶𝐶𝐶, are a product of a large amount of data in which B is lead. 
Because of this, the metric used cannot perceive the 
importance of B within the linear regression models. 

 
Table 1. The rows correspond to film descriptors,  

and the columns to performance indices.  
The six most significant values (≥ 0.200) are shown in bold. 

 
 PCE Voc Jsc FF 

A 0.241  0.327 0.172 0.016 
B 0.0 0.042 0.038 0.0 
X 0.340  0.262 0.157 0.060 

𝐸𝐸𝑔𝑔 0.071 0.238 0.157 0.069 
∆𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻 0.054 0.160 0.066 0.052 
∆𝐿𝐿𝐿𝐿𝑀𝑀𝐻𝐻 0.081 0.051 0.111 0.022 

Thickness 0.067 0.139 0.264 0.026 
 
From the results obtained and summarized in Table (1), the 

following behaviors are observed, among others: i) thickness as 
a descriptor plays a significant role in describing the behavior 
of Jsc, being this the descriptor with the most significant 
contribution to this electrical characteristic. ii) Under this same 
working model, descriptors A, X and Eg are the ones that have 
the most significant contribution to Voc. iii) A comparable 
situation is found for efficiency (PCE), which presents a 
contribution from descriptors A and X. These results are 
consistent with the physical explanation of the phenomenon of 
photoconversion of radiation into electrical energy in a 
photovoltaic device. The thickness of the Perovskite layer, play- 
 
 

ing an indispensable role in photogeneration, influences the 
generation rate G described in the models reported in the 
literature (Le Corre et al., 2019). Similarly, the thickness of this 
absorbing layer affects the transport process of 
photogenerated carriers to the selective transport layers (ETL 
and HTL). Hence, as a parameter, it influences the carrier 
recombination rate (Le Corre et al., 2019). Likewise, Voc and 
PCE as electrical characteristics are strongly affected by the Eg 
of the absorber layer (Jarosz et al., 2020), which in turn depends 
strongly on the chemical composition of the Perovskite, which 
is described by A, B, and X (Kato et al., 2017). 

 
3.2. Estimation of the performance values 
Figure (1) shows the comparison graphs of the descriptor 𝛿𝛿 
versus the main electrical characteristics of the devices. Figure 
(1c) shows the nonlinear relationship between the thickness 𝛿𝛿 
and Jsc. This nonlinear relationship between thickness and 
parameters such as Jsc or PCE has been previously described 
in theoretical reports on this type of device (Le Corre et al., 
2019; Sha et al., 2015). When calculating the linear correlation 
value (Pearson's correlation) between δ and Jsc, 0.28 is 
obtained; however, when applying the transformation of the 
form 𝑓𝑓(𝛿𝛿)  = √𝛿𝛿, this linear correlation value becomes 0.35. 
Therefore, in the present work, it is preferred to use the 
transformed variable √𝛿𝛿 as input. 

The Jsc, Voc, FF, and PCE characteristics were estimated 
using multiple linear regression. For each electrical variable to 
be estimated, two models were applied by selecting those 
described in equations 2 and 3 belonging to the Z and 𝑍𝑍𝛿𝛿 sets, 
respectively. Due to its low level of nonlinear correlation 
reported in Table 1, Descriptor B was not considered in any of 
these models. To estimate the performance of the models, 
typically measured in terms of root mean square error (RMSE), 
a cross-validation procedure of 10 partitions is used, where 
each partition is formed by a training subset of the linear 
regression model of 199 data, and the remaining 22 are used 
to measure the performance of the same model. This process 
is repeated ten times, once for each different participation. 
Table (2) reports the performance results regarding the mean 
square error. 

On the other hand, to determine whether the differences in 
performance in terms of RMSE are statistically significant, a two-
sample t-student test is applied. The results show that the 
inclusion of the thickness of the absorbing layer (√δ) as a 
descriptor improves the prediction of the Jsc and PCE values. 
The thickness information, transformed in the √δ form, provides 
relevant information for Jsc and PCE estimation purposes. As a 
result, it is found that for the case of Jsc and PCE, the 
improvement in performance by adding the thickness. 
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The Jsc, Voc, FF, and PCE characteristics were estimated 

using multiple linear regression. For each electrical variable to 
be estimated, two models were applied by selecting those 
described in equations 2 and 3 belonging to the Z and 𝑍𝑍𝛿𝛿 sets, 
respectively. Due to its low level of nonlinear correlation 
reported in Table 1, Descriptor B was not considered in any of 
these models. To estimate the performance of the models, 
typically measured in terms of root mean square error (RMSE), a 
cross-validation procedure of 10 partitions is used, where each 
partition is formed by a training subset of the linear regression 
model of 199 data, and the remaining 22 are used to measure 
the performance of the same model. This process is repeated 
ten times, once for each different participation. Table (2) reports 
the performance results regarding the mean square error. 

On the other hand, to determine whether the differences in 
performance in terms of RMSE are statistically significant, a 
two-sample t-student test is applied. The results show that the 
inclusion of the thickness of the absorbing layer (√δ) as a 
descriptor improves the prediction of the Jsc and PCE values. 
The  thickness  information, transformed  in the √ δ form,  provi- 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

des relevant information for Jsc and PCE estimation purposes. 
As a result, it is found that for the case of Jsc and PCE, the 
improvement in performance by adding the thickness. 

To visualize this improvement, we have compared the 
predictions obtained vs the real values for the four models. 
Figure 2 shows the behaviors of the estimated values. Of these 
four models, Jsc's prediction is the best performing.  
 

Table 2. Estimation results of Jsc, Voc, FF, and PCE using linear 
regression. We also report the improvement in performance by 

including the squared root of thickness √δ as a descriptor.  
The value in parenthesis corresponds to the standard 

 deviation of the measurement. 
 

 Using Z Using 𝑍𝑍𝛿𝛿 Improvement 

Voc 0.07 0.07 - - 

Jsc 22.69 
(0.0028) 

21.68 
(0.0013) 

4.44% 

FF 6.08 6.07 - - 

PCE 2.88 
(0.004) 

2.79 
(0.002) 

2.88% 

Figure 1. Example of scatter plots of some inputs versus some outputs.  
a) Thickness vs PCE, b) thickness vs Voc, c) thickness vs Jsc, d) thickness vs FF. 

 

a) b) 

c) d) 
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4. Conclusions 
 
The results obtained show that the thickness of the absorbing 
layer is a relevant variable in predicting electrical measures of 
performance. It could be inferred that the thickness is related 
to electrical variables, especially with the Jsc, for which higher 
improvement percentages were observed. An explanation for 
this fact is that the thickness of the absorbing layer influences 
the process of photogeneration and carrier transport. On the 
other hand, these results show that the inclusion of new 
features, such as thickness, can positively influence the 
models used in machine learning tasks. Unfortunately, it 
requires the scientific community to report these parameters 
in research articles.  

On the other hand, extracting new variables from the 
available scientific literature is a time-consuming task that 
could be improved through natural language processing tools 
or by standardizing the reporting formats of solar cell 
parameters published in academic reports. 
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Figure 2. Estimated values vs real values plot for linear regression model outputs. a) Vocreal vs Vocestimated, b) Jscreal vs  
Jscestimated, c) FFreal vs FFestimated, d) PCEreal vs PCEestimated. 
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