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ABSTRACT  
This paper treats the estimation of the state of a nonlinear system with unknown input. The nonlinear system is 
described by a multimodel with unknown function of activation but depending only on the state. The method of design 
of the multiobserver is described by using the second method of Lyapunov and their candidate functions. The 
sufficient obtained stability conditions are expressed in terms of Linear Matrix Inequalities (LMI) and are obtained first 
using the Lyapunov quadratic functions and secondly by using Lyapunov polyquadratic functions. This latter technique 
seems to be less conservative and less constraining than the first. Illustrative examples are presented in this paper. 
 
Keywords: Discrete multimodel; multiobserver with unknown inputs; non measurable variables of decision; quadratic 
stabilization; polyquadratic stabilization; unknown input estimation; Linear Matrix Inequalities (LMI). 
 
RESUMEN 
Este artículo trata la estimación de estado de un sistema no lineal con una entrada desconocida. 
El sistema no lineal se describe por un multi-modelo con una función desconocida de activación, pero dependiendo 
sólo en su estado. El método de diseño del multi-observador se detalla mediante el segundo método de Lyapunov y 
sus funciones candidatos. Las condiciones de estabilidad obtenidos se expresan en términos de desigualdades 
matriciales lineales (LMI) y se obtienen de la utilización de las funciones cuadráticas de Lyapunov en un primer 
estudio y de las funciones poli cuadráticas de Lyapunov en un segundo estudio que aparece menos conservador y 
menos restrictivo que el primero. Múltiples ejemplos ilustrativos se presentan en este documento. 
 

 
1. Introduction 
 
A system is often controlled simultaneously by 
known and unknown inputs. The measurements 
taken at output of the system do not give complete 
information about the internal states, because a part 
of these states is not directly measurable. Moreover, 
not for purely technological reasons, but also for 
cost reasons, the number of sensors is limited. 
 
So the idea, for several years, has been the 
replacement of the material sensors by software or 
state observers, which make possible the rebuild 
of internal information (states, unknown inputs, 
unknown parameters) using, only, the known 
inputs and the measured outputs [18,19,20,21]. 
 
The need of internal information can be used for:  
identification, command by feedback control, 
monitoring and diagnosis of the system. The  

 
 
problem of the design of observers is in the heart 
of the general control problem [15,16]. 
 
Among the solutions brought to the problem of the 
state and output estimation of in the presence of 
unknown inputs, two approaches of developing 
multiobserver emerged. The first one supposes an 
a priori knowledge of information about these not 
measurable inputs; in particular, the  filter of 
Kalman who allows to rebuild the state of the 
system  in the presence of measurement noises 
which are defined like unknown inputs, by using a 
priori statistical knowledge on these noises. The 
second approach proceeds either by estimation of 
the unknown inputs or by their complete 
elimination from the equations of the system [1, 2, 
3, 5, 8, 23, 24, 28]. The observers with unknown 
inputs have attracted the attention of many 
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researchers like Abdelkader Akhenak [1, 2] who 
used unknown input observers to detect and 
isolate sensor faults in a turbofan engine. 
 
The crucial problem in the synthesis of the 
observers with unknown inputs is the 
convergence of the estimation error towards zero. 
Several works used the second method of 
Lyapunov and their quadratic functions for the 
stabilization of the estimation error in the case of 
linear systems [4, 6, 7, 9, 10, and 11] and in the 
case of nonlinear systems. 
 
However, this method generates very conservative 
conditions of stability of the observer in particular 
for certain classes of nonlinear systems such as 
the hybrid dynamic systems [27], the saturated 
systems and linear piecewise systems, where 
there is no information about space state partition’s 
[25]. Whereas, the use of the non quadratic 
Lyapunov functions  like the polyquadratic 
functions and the continuous piecewise functions, 
allows the reduction of the conservatism of the 
quadratic method and results are often less 
pessimistic for the stabilization and the control of 
the systems [9].  
 
For this reason, it is interesting to use the 
polyquadratic Lyapunov functions for the 
stabilization of the error estimation in the case of a 
nonlinear multiobserver with unknown inputs which  
is  used for the diagnosis and the supervision of a 
nonlinear systems described by a multimodels [1]. 
 
This paper is divided into five parts: 
 
After the introduction, the second part presents the 
multimodel approach and describes the conditions 
for stabilizing a nonlinear system described using 
this approach. 
 
The third part explains how to build a 
multiobservers and ensure its convergence. 
 
The fourth part deals with the assessment and 
determination of the unknown input of the system. 
 
Three examples are described in this paper to 
illustrate the power of the proposed method. 
 
Notation::Throughout the study, the following 
useful notations are used: 

(X)T = the transpose of the matrix X 
 
(Y)-1 = the inverse of the matrix Y 
 
(Z)¯ = the pseudo inverse of the matrix Z 
 
I= the n n identity matrix 
 

   * *
T

A B
B C

 
   

 
 

 
2. Multimodel Approach 
 
The multimodel approach makes possible the 
modeling of nonlinear system behavior by using 
several local linear models. Each local model 
contributes to this total representation according to 
its weight function µi(ξ(k)) with values in the 
interval [0, 1]. The multimodel structure is 
described as follows [1]: 
 

  ( 1) ( ) ( ) ( ) )
1

( ) ( ) ( )

M
x k μ ξ k A x k B u k R u(ki i i ii
y k Cx k Fu k


   

 
  

 

 
with: 
 

 

 
 

( ) 1
1, ,1

( ) 1

M
μ ξ k               i i .... Mi

0 μ ξ ki




 
  

               (2) 

 
Where x(k) Rn is the state vector, u(k)  Rm is the 
vector of the known inputs,  Rq is the vector of 
unknown inputs and y(k) Rp represents the vector 
of measurable outputs. 
 
For the ith local model, Ai Rn×n  is the state 
matrix, BiRn×m is the matrix of input, Ri  Rn×q is 
the matrix of influence of the unknown inputs on 
the state x(k), F Rp×q is the matrix of influence of 
the unknown inputs on the output y(k) with 
rank(F)=q and CRp×n  is the matrix of output. 
Finally, ξ(k) represents the vector of decision 
depending on the input and/or the measurable 
state variables. At every moment, µi(ξ(k)) indicates 
the degree of activation of each local model in the 
global model. Choosing the number M of local 
models of this multimodel can be intuitively 
achieved with taking into account the number of 

(1) 
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functioning modes observed [10]. However, 
determining the matrices Ai, Bi, Ri and Di needs the 
use of adapted estimation parametric techniques 
[10] or techniques of linearization [12,13]. 
 
The analysis and the synthesis of such systems 
can be made by adopting some tools of the linear 
field. One finds for example in [26 and 27] which is 
inspired directly from the use of linear systems 
stability tools for the analysis of the stability and 
stabilization of nonlinear systems.  In [17, 18 and 
20], the author deals with the problem of the 
estimation of state of nonlinear systems described 
by multimodels, and made it possible by designing 
observers, for the generation of defects. However, 
in all this work, the authors suppose that the 
variable of decision ξ(k) is measurable depending 
on  u(k) or/and  y(k) [1, 2 and 3]. In the problem of 
the diagnosis, this assumption obliges to design 
banks of observers containing multimodel in which 
the functions of activation depends on the input 
u(k), for the detection and the localization of the 
defected sensors, or on the output y(k) for the 
detection and the localization of the defects 
actuators. This strategy requires the development 
of two different multimodels, representing the 
same system. To overcome this problem, it is 
interesting to consider the case where the 
functions of activation depend on the state of the 
system.  Among rare public works in this context, 
we can cite for example [25] which, under the 
assumption of Lipschitzian activation functions 
µi(ξ(k)), propose an observer of the Luenberger 
type. The stability conditions of this last 
assumption are formulated in the form of Linear 
Matrix inequalities (LMI) easy to solve. 
 
3.:Design of multiobserver with unknown 
inputs 
 
3.1 General structure of the multiobserver 
 
In this section, we consider a nonlinear discrete time 
system described by a multimodel using activation 
functions depending on the state of the system: 
 

  ( 1) ( ) ( ) ( ) )
1

( ) ( ) ( )

M
x k μ x k A x k B u k R u(ki i i ii
y k Cx k Fu k


   

 
  

 

 

It is supposed that the number of unknown entries 
is lower than the number of measured outputs. The 
multimodel with non-measurable decision variables 
(3) can be written as follows: 
 

   ( 1) ( ) ( ) ( ) ) ( )
1

( ) ( ) ( )

M
x k μ x k A x k B u k R u(k w ki i i ii
y k Cx k Fu k







    


 


 

 
Where: 
 

   ( (( ) ( )) ( )) ( ) ( ) )
1

w k
M

μ x k μ x k A x k B u k R u(ki i i i ii
   




   
                  (5)

  

 
The multimodels (3) and (4) are equivalent. For 
the design of the observer, we will use the second 
structure. 
 
The multiobserver is taken in the form: 
 

(( 1) ( ))( ( ) ( ) ( ))
1

( ) ( ) ( )

M
z k μ x k N z k Q u k L y ki i i ii
x k z k Ey k


   

 
  




 

 
Where Ni Rn×n, QiRn×m, LiRn×p and E are the 
gain matrices of the ith local observer with 
unknown input.  
 
The variable z(k)  is an intermediate variable 
allowing to deduce the value estimated from the 
state )(kx


. 

 
Obviously, the observer uses only the known 
variables u(k) and y(k), )(ku  being not measured.  
 
The whole of these matrices must be given with 
a high degree of accuracy from a numerical point 
of view in order to guarantee the convergence of 
the state estimated by the observer towards the 
real state. For that, let us define the state 
estimation error: 
 

( ) ( ) ( )e k x k x k 


                                                (7) 

 
Starting from this definition and by using the 
expression of )(kx


 given by the equation (6), the 

expression of the error becomes: 
 
 

(3) 

(4) 

(6) 
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( ) ( ) ( ) ( )e k Px k z k EFu k                                  (8) 

 
with: 
 
P I EC                                                             (9) 

 
Then, we can express the temporal evolution of 
the state error in order to analyze its convergence 
towards zero. 
 
Thus, at time (k + 1), the state estimation error is 
expressed as follows: 
 

( 1) ( 1) ( 1) ( 1)

( ) ( ) ( )
= ( ( ))

( ) ( ) ( ) ( )1

                                              + ( 1)

e k Px k z k EFu k

PA x k PB u k PR u kM i i iμ x ki Pw k N z k Q u k L y ki i i i
EFu k

      

   
       



  

           (10) 
 
After recognizing the terms at the right side of 
equation (10), and by using the definitions of y(k) 
and z(k), (10) becomes:  
 

 
 

( )

(

)

                                          ( 1)

( )

( 1) ( )) ( ) ( )
1

( ( )

i

i

e k N C

Q

K F

EFu k

N PA K x ki i i
M

e k μ x k PB u k Pw ki i i
i

PR u ki

   
  
 

 
 

 



   





 

           (11) 
 
with : 
 

i i iK N E L                                                    (12) 
 
If the following conditions are satisfied: 
 

0EF                                                               (13a) 
  
N PA K Ci i i                                                  (13b) 

 

Q PBi i                                                            
(13c)

 

 
PR K Fi i                                                          (13d)

 

 

iL K N Ei i                                                      (13e)
 

 
 

then, the dynamic of the state estimation error 
becomes: 
 

( 1) ( ( ))( ( ) ( ))
1

M
e k μ x k N e k Pw ki ii

  


                (14)
 

 
It is clear that the above dynamic is disturbed by 
w(k). To synthesize the matrix of the multiobserver 
(6), two approaches are proposed in the following 
subsections. 
 
3.2 Global convergence of the multiobserver 
 
For the stabilization of the dynamic error (14), 
we propose two approaches which are based on 
two types of quadratic and polyquadratic 
Lyapunov functions. 
 
Hypothesis: It is supposed that term w(k) defined 
in (5) satisfied the following conditions: 
 

( ) ( )w k e k                                     (15)
 

 
Where   is a positive constant of Lipschitz. 

 
3.2.1 Global convergence of the multiobserver by 
the quadratic approach 
 
In this part, the stabilization of the dynamic error 
(14) is based on a quadratic Lyapunov function of 
the form: 
 

TT( ( )) ( ) ( )   0V e k e k Xe k , X X                      (16) 

 
Proposition 1: The state estimation error between 
the multimodel (4) and the unknown input 
multiobserver (6) converges globally asymptotically 

towards zero if there exists matrices T 0X X  , H 
and Wi such that the following conditions are hold  
i {1, ...,M} : 

 

 T*
0

( )i i i

X

XA HCA W C X HC X 

 
      

    (17a) 

 
0H F                                                             (17b) 
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( ) i iX HC R W F                                            (17c) 

 
Multiobserver (6) is then completely defined by 
 

1E X H                                                           (18a) 
 

1
i iK X W                                                        (18b) 

 
P I EC                                                          (18c) 

 

i i iN PA K C                                                   (18d) 

 

i i iL K N E                                                     (18e) 

 

i iQ PB                                                            (18f) 

 
Proof. The variation of the quadratic function (16) 
on all the trajectory of the multimodel (4) is: 
 

 1
( ( )) ( ( 1)) ( ( ))

e

V e k V e k V e k
T

              (19)
 

 
By using the equations (14) and (16), ( ( ))V e k  

can be written as follows: 
 

T T T T

T
1

( ( ) ( ) ) ( ( )1
( ( )) ( ( ))

( )) ( ) ( )

M
i i

e i

e k N w k P X N e k
V e k µ x k

T Pw k e k Xe k

   
   

 
 

                                                                            (20) 
 
According to the condition of Lipchitz (15), 

( ( ))V e k  becomes: 

 
T T T T

1

T T
T

1

( ( ) ( ) ) ( ( )1
( ( )) ( ( ))

( )) ( ) ( )

1 ( ) ( )
               = ( ( )) ( ) ( )

M
i i

Te i
M

i i

e i

e k N e k P X N e k
V e k µ x k

T Pe k e k Xe k

X P X N P
µ x k e k e k

T X





 





   
   

     
    









 

           (21) 
 
Since the functions of activation are verifying the 
conditions of convexity (2), the variation of the 
quadratic function (16) is negative if: 
 

T( ) ( ) 0,     {1,..., }i iN P X N P X i M        

                                                                            (22) 
 

The use of equation (22), the hypothesis X=XT>0 
and the Schur complement leads to:  
 

T(*)
0,    {1,..., }

( )i

X
i M

X N P X

 
     

            (23)

 

 
Using equations (9) and (13b), the above 
inequality (23) becomes: 
 

T(*) 0,  {1,..., }
( )

X i M
XA XECA XK C X XEC Xi i i  

 
    
     

 

           (24) 
 
However, expression (24) is a bilinear matrix 
inequality BMI with synthesis variables X, E and 
Ki. In order to convert these conditions into an 
LMI formulation, we consider the following 
changes of variables: 
 
H XE                (25) 

 

i iW XK               (26) 

 
Using the new variables of equations (25) and 
(26), inequality (24) becomes: 
 

T(*)
0

( )i i i

X

XA HCA W C X HC X 

 
      

      

                           (27)

 

 
The two equality constraints (17b) and (13c) are 
obtained by pre-multiplying the last two constraints 

(13a) and (13d) by T 0X X   with the change of 
variable (25) and (26): 
 

0 0 0

( ) ( )i i i i i i

XEF HF HF

XPR XK F X I EC R W F X HC R W F

                 
 
Therefore classical numerical tools may be used to 
solve LMI problem (17a) subject to linear equality 
constraints (17b) and (17c).  
 
After having solved this problem, the different gain 
matrices Ni, Li, Qi, and E defining the multiobserver 
(6) can be deduced from the knowledge of X, H 
and Wi as given in equations (18). This completes 
the proof. 
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3.2.2.Determination techniques of the multiobserver 
gains 
 
To determine gain matrices of the multiobserver 
(6) by quadratic approach, we propose to follow an 
algorithm with the following steps below: 
 
Step 1: determination of the matrices X, H and Wi 
i {1, ...,M}.  

 
We solve the Linear Matrix Inequalities (17a) in 
synthesis variables X, H and Wi subject to linear 
equality constraints (17b) and (17c). This problem 
can be solved by LMITOOL of Scilab. 
 
Step 2: determination of the gains matrices Ni, Li, 

Qi, and E  M...i ,,1 . 

 
After the knowledge of the matrices X, H, and Wi, 
we determine the other gains matrices of 
equations (18) defining the multiobserver (4). 
 
Remark 1: although the quadratic approach 
makes synthesis possible by ensuring the 
convergence of multiobserver (6) towards the 
multimodel (4), it constitutes in certain cases a 
source of conservatism due to the search of a 
unique matrix X which stabilizes a significant 
number of local observers. Also, researchers [25] 
define three cases where the quadratic approach 
shows conservative:  
 
- Case of the saturated systems, 
 
- Case of the piecewise linear systems, 
 
- Case of the multimodels with high number of local 
models 
 
These last points become the principal 
objectives of the stability study of by using the 
polyquadratic approach. 
 
3.2.2.1 Global convergence of the multiobserver by 
the polyquadratic approach 
 
In this part, the stabilization of the dynamic error 
(11) is based on a polyquadratic Lyapunov function 
of the form: 
 

   ( ) ( ) ( ) ( ),  0   
1

T
i

MTV e k e k µ x k X e k X Xi i ii
  




 

                 (28) 
 
Where (Xi, i = 1,..,M) are symmetric positive 
definite matrices. 
 
That is to say the following system: 
 

( 1) ( ( ))( ( ))
1 i

M
e k μ x k e kii

  



                           (29)

 

 
Theorem 1 [7]: System (29) is polyquadratically 
stable if and only if there exist symmetric positive 
definite matrices Si, Sj and matrices Gi of 
appropriate dimensions such that: 
 

T T

T

(*)
0, ( , ) {1,..., }i i i

i i j

G G S
i j M

G S

  
   
  

            (30)

 

 
The goal of this second approach is to mitigate the 
conservatism of the quadratic approach by 
formulating new less constraining conditions of 
stabilization of the dynamic error (14) by using 
theorem 1: 
 
Proposition 2: The state estimation error between 
the multimodel (4) and the unknown input 
multiobserver (6) converges globally asymptotically 
towards zero if there exist symmetric positive 
definite matrices Si and matrices Mi, Zi and Gi of 
appropriate dimensions such that the following 
conditions hold  ( , ) 1,...,i j M   : 

 
T T

T T T T

(*)
0

( ( ) )

i i i

i i i i i i j

G G S

A G A C M I G C Z S 

  
  
     

   (31)

 

 
T 0iM F                                                             (32a) 

 

 T T T
i i i iG M C R Z F                                         (32b)

 

 
Multiobserver (6) is then completely defined by 
 

1 T( )i iE M G                                                     (33a) 
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P I EC                                                          (33b) 

 

1i iG PB                                                          (33c) 

 
1 T( )i i iK Z G                                                     (33d) 

 

i i iN PA K C                                                   (33e) 

 

i i iL K N E                                                      (33f) 

 
Proof. According to the hypothesis (15) the 
estimation error (14) can be written as follows: 
 

( 1) ( ( ))(( ) ( ))
1

M
e k μ x k N P e ki ii

  



                 (34)

 

 
By substituting matrix i  by the matrix ( )Ni P  

in inequality (30) of theorem 1, one obtains the 
following condition, ( , ) {1,..., }i j M : 

 
T T

T

(*)
0

( )

i i i

i j

G G S

N P G Si 

  
  
  

                                  (35)

 

 
Using equations (9) and (13b), the inequality (35) 
becomes: 
 

T T

T T T T T T

(*)
0

( ( ) )

i i i

i i i i i i i j

G G S

A G A C E G I G C K G S 

  
  
     

 

           (36) 
 

T
i i iZ K G                                                             (37) 

 
T

i iM E G                                                           (38) 

 
Using the new variables of equations (36) and 
(37), inequality (35) becomes: 
 

T T

T T T T

(*)
0

( ( ) )

i i i

i i i i i i j

G G S

A G A C M I G C Z S 

  
  
     

   (39)

 

 
The two equality constraints (32a) and (32b) are 
obtained by pre-multiplying the last two constraints 

(13a) and (13d) by T
iG with the change of variable 

(37) and (38): 

T T

T T T T

T

T T T

0 0

( )

0
                               

( )

i i

i i i i i i i i

i

i i i i

G E F M F

G P R G K F G I E C R G K F

M F

G M C R Z F

    
    

  
  

 

 
Therefore classical numerical tools may be used to 
solve LMI problem (31) subject to linear equality 
constraints (32a) and (32b). After having solved 
this problem, the different gain matrices Ni, Li, Qi, 
and E defining the multiobserver (2) can be 
deduced from the knowledge of Si, Gi, Mi and Zi as 
given in equations (33).  
 
This completes the proof of proposition 2. 
 
Remark 2: It's obvious that the conditions of 
proposition 2 are less conservative than the 
conditions depending on the use of a single 
Lyapunov function: the quadratic stabilization 
conditions are considered like a particular case of 
(31) by composingG S Xi i  . 

 
3.2.2.2 Determination of the multiobserver gains 
 
To determine the gain matrices of multiobserver 
(6) using the polyquadratic approach, we propose 
the algorithm: 
 
Step 1: determination of the matrices Gi, Si, Zi and 
Mi,  1, ,i ... M  . 
 
We solve the Linear Matrix Inequalities (32a) in 
order to synthesis variables Si, Sj, Zi and Mi subject 
to linear equality constraints (32b) and (32c).  
 
This problem can be solved by LMITOOL of 
Matlab. 
 
Step 2: determination of the gain matrices Ni, Li, 
Qi, and E,  1, ,i ... M  . 

 
After the knowledge of the matrices Si, Zi and Mi, 
we determine the other gains matrices of 
equations (33) defining the multiobserver (6). 
 
4. Estimation of the unknown input 
 
In the system (4), the unknown input appears with 
the matrix of influence F: 
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( ( ))
( ) 1

M
μ k Ri iΦ k i

F


 
   

 
 

                                        (40)

 

 
To estimate the unknown input, it is necessary that 
the matrix Ф(k) is of full column rank and its 

pseudo inverse )(kΦ  exists: 
 

  1T T( ) ( ) ( ) ( )Φ k Φ k Φ k Φ k
                             (41)

 

 
The unknown input can then be deduced: 
 

 ( 1) ( ( )) ( ) ( )
( ) ( ) 1

( ) ( )

M
x k μ k A x k B u ki i iu k Φ k i

y k Cx k


 

     
  

 


 

           (42) 
 
We choose ( )Φ k  of full column rank, to reverse 

matrix  T ( ) ( )Φ Φk k . 

 
Example 1: Reconstruction of state and estimation 
of unknown inputs by quadratic approach 
 
Let us consider the following discrete multimodel: 
 

 2
( +1) ( ( )) ( ) ( ) ( )

1
( ) ( ) ( )

x k µ k A x k B u k R u ki i i ii
    y k Cx k Fu k

   
 
  

 

                (43) 
 
In this example, the variable of decision ξ(k) is not 
measurable and depends on to the estimated 
vector of states ( )x k


.  

 
The numerical values of the matrices Ai, Bi, Ri, C 
and F are as follows: 
 

 

0.3 0.4 -0.1 0.6 1
, ,   ,1 2 2-0.05 0.2 0.34 0.05 0.25

2 2 1
,  0 1 , ,   1 .        1 2 11 0.5 0.5

A A R

B B C R F

     
       
     
     

         
     

 

 
 
 
 
 
 

The activation functions have the following form: 
 

1

2 1

1 tanh( ( ))
( ( ))

2
( ( )) 1 ( ( ))

x k
x k

x k x k



 

 

  




 
                                    (44)

 

 
The multiobserver able to estimate the multimodel 
(43) state is as follows: 
 

 2
( +1) ( ( )) ( ) ( ) ( )

1
( ) ( ) ( )

z k µ x k N x k Q u k L y ki i i ii
    x k z k Ey k


  

 
  




 

 
The stabilization conditions given by proposition 1 
prove the stability of the multiobserver (45), via the 
existence of quadratic function (16). 
 
By applying the method of resolution presented in 
paragraph (3.2.1.1), we showed global 
convergence of the multiobserver (45).  
 
The resolution of the conditions of proposition 1 
leads to the following result: 
 

1 2

1 2 1 2

0 0.30 0.60 0.10 0.40
, ,  ,  

0 0.05 0.30 0.34 0.20

1 1 2 2
, ,  ,  .

0.50 8.78 1 0.50

E N N

L L Q Q

       
              
       

          
       

 

 
Figures 1 and 2 represents respectively the 
evolution of the inputs known u (k) and unknown 

)(ku .  

 
As for the figures 2, 3 and 5, they shows the state 
estimation errors (xi(k)- ))(kix

 , i={1, 2}) as well as 

the unknown input )(ku  of the multimodel and 

their estimation )(ku


.  

 
It is noted that the estimation quality is 
satisfactory except in the vicinity of the origin 
time; that is due to the choice of initial values of 
the multiobserver (45). 
 

(45) 
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Figure1. Evolution of known input U . 
 

 
 

Figure 2. Evolution of unknown input ഥܷ. 
 

 
 

Figure 3. Evolution of ݔଵ െ  .ොଵݔ

 
 

Figure 4. Evolution of ݔଶ െ  .ොଶݔ
 

 
 

Figure 5. Evolution of ܷ	ܽ݊݀	 ഥܷ. 
 
Example_2:_Conservatism of the quadratic 
approach 
 
Let us consider the following discrete multimodel, 
 

 2
( +1) ( ( )) ( ) ( ) ( )

1
( ) ( ) ( )

x k µ k A x k B u k R u ki i i ii
    y k Cx k Fu k

   
 
  

 

 
In this example, the variable of decision ξ(k) is not 
measurable but depending on the estimated vector 
of states ( )x k


. The numerical values of the 

matrices Ai, Bi, Ri, C and F are as follows: 
 
 

(46)
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0.94 0.23 0.1 0.81 0.1 0
0.5 1 1

0.3 0.65 0.3 0 1 0 ,
0.5 1 0

0.3 0.05 0.4 0.1  0 0.91

, , 1 2A A C
   

    
    
        

  

 
2 2 1 1
1 0.5 ,  0.5 0.25 .

0 0 00

5
, , , 1 2 1 21

B B F R R
                                      

    


 

 
The activation functions have the following form: 
 

1

2 1

1 tanh( ( )
( ( ))

2
( ( )) 1 ( ( )

x k
x k

x k x k



 

 

  




 
                                  (47)

 

 
The multiobserver able to estimate the multimodel 
(46) state is as follows:  
 

 2
( +1) ( ( )) ( ) ( ) ( )

1
( ) ( ) ( )

z k µ x k N x k Q u k L y ki i i ii
    x k z k Ey k


  

 
  




 

 
The conditions of quadratic stabilization of 
proposition 1 fails to prove the stabilization of the 
multiobserver (48), which shows that no quadratic 
function having the form (16) can exist. 
 
The quadratic approach becomes more and more 
conservative in the following cases: 
 
- When the number of local models is very 
important, this is due to the difficulty to find one 
matrix P satisfying all (17) inequalities and 
equalities. 
 
- When the multimodel have local saturated models 
(the eigen values of matrix Ai are closer to 1) like the 
local model number 2 (eigen values with A2 = {0.91, 
-0.81, 1 }). 
 
Example_3:_Reconstruction of state and 
estimation of unknown inputs by polyquadratic 
approach 
 
Let us consider the discrete multimodel of example 
2; the conditions of stabilization of proposition 2 
prove the stability of the multiobserver (48), which 
proves the existence of polyquadratic function of the 
form (29). 
 

By applying the method described at paragraph 
(3.2.2.1), we ensure the global convergence of the 
multiobserver (48).  
 
The resolution of the conditions of proposition 2 
leads to the following result: 
 

1 1

2

2

5.32 7.53 4.41 9.39

28.24 46.58 28.21 , 48.78 ,

43.94 73.56 44.67 75.72

4.37 0.27 0.06 0.61 3.08

11.52 25.14 13.21 , 4.14 20.74 , 

16.06 42.91 22.72 6.31 31.55

4.61 2

N Q

N E

L

   
           
   
   
    

           
      

 2 1

4.65 7.54 0.17 3.81

28.08 140.30  36.83 . 2.68 37.84 ,  

44.27 219.83 56.79 4.76 61.70

Q L

     
              
           

 

 
Figures 6 and 7 represents respectively the 
evolution of the inputs known u(k) and unknown 

( )u k .  
 
Figures 8, 9, 10 and 11 shows the state estimation 
errors (xi(k)- )(kix

 ) i={1, 2,3}) as well as the 

unknown input ( )u k  of the multimodel and their 

estimation )(ku


.  
 
It is noted that the estimation quality is satisfactory 
except in the vicinity of the time origin; that is due 
to the choice of the multiobserver (48) initial 
values. 
 
Therefore, we observe good performances of the 
multiobserver estimation. 
 

 
 

Figure 6. Evolution of Known input U (Example 3). 

(48) 
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Figure 7. Evolution of unknown input ഥܷ. 
 

 
 

Figure 8. Evolution of ݔଵ െ  .ොଵݔ
 

 
 

Figure 9. Evolution of ݔଶ െ  .ොଶݔ
 
 
 

 
 

Figure 10. Evolution of ݔଷ െ  .ොଷݔ
 

 
 

Figure 11. Evolution of ܷ	ܽ݊݀	 ഥܷ. 
 
5. Conclusions and prospects 
 
In this paper, we presented two stabilization 
approaches of a multiobserver with unknown 
inputs for a nonlinear system described by a 
discrete multimodel with non measurable decision 
variables. The first approach is based on the use 
of the Lyapunov quadratic functions, the conditions 
obtained from this approach for the convergence of 
the multi-observer are often easy to obtain but they 
appear pessimistic.  
 
The second approach suggested for the 
stabilization of the observation error, is based on 
the use of the Lyapunov polyquadratic functions. 
The conditions obtained of the multiobserver  
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convergence are given in the form of Bilinear 
Matrices Inequalities BMI that we can linearize by 
the technique of change of variables and easily 
solve them with the traditional numerical tools. 
This second approach appears less conservative 
than the first.  
 
Two illustrative examples are considered to 
prove the efficiency and the effectiveness of the 
proposed approaches. The first example showed 
that the quadratic approach is interesting from 
point of view of the practical implementation for 
the supervision and the diagnosis of the 
industrial processes. The second example puts 
emphases on the important contribution of the 
polyquadratic approach compared to the 
quadratic approach for the states estimation and 
unknown inputs of a nonlinear system 
represented by a discrete multimodel. 
 
Future work will relate to the poles placement of the 
multiobserver for unknown inputs, with the application 
to the diagnosis of the nonlinear systems. 
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