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ABSTRACT  
The generalized Shiryayev sequential probability ratio test (SSPRT) is applied to linear dynamic systems for single 
fault isolation and estimation. The algorithm turns out to be the multiple model (MM) algorithm considering all the 
possible model trajectories. In real application, this algorithm must be approximated due to its increasing computation 
complexity and the unknown parameters of the fault severeness. The Gaussian mixture reduction is employed to 
address the problem of computation complexity. The unknown parameters are estimated in real time by model 
augmentation based on maximum likelihood estimation (MLE) or expectation. Hence, the system state estimation, 
fault identification and estimation can be fulfilled simultaneously by a multiple model algorithm incorporating these two 
techniques. The performance of the proposed algorithm is demonstrated by Monte Carlo simulation. Although our 
algorithm is developed under the assumption of single fault, it can be generalized to deal with the case of (infrequent) 
sequential multiple faults. The case of simultaneous faults is more complicated and will be considered in future work. 
 
Keywords: Generalized SSPRT, state estimation, fault isolation and estimation, multiple model, Gaussian mixture 
reduction, model augmentation 
 

 
1. Introduction 
 
Fault diagnosis has been extensively studied [1-
10]. It can be addressed by hardware redundancy 
or analytical redundancy [4]. With the increasing 
computational power and decreasing cost of the 
digital signal processors and software, the method 
of analytical redundancy, which diagnoses the 
possible fault by comparing the signals from a real 
system with a mathematical model, is prevailing 
due to its low cost and high flexibility. 
 
In this work, we study the fault diagnosis problem 
of a linear stochastic system subject to a single 
sensor/actuator fault. As pointed out in [3], the fault 
diagnosis problem consists of the following three 
sub-problems: 
 
Fault detection: Is there a fault in the system? The 
answer is “yes”, “no” or “unknown”. It is actually a 
change detection problem with binary hypotheses. 
We want to detect the fault after its occurrence as 
quick as possible. For simple hypotheses with  

 
 
independent and identically distributed (i.i.d.) 
observations, optimal algorithms exist, e.g., 
cumulative sum (CUSUM) test [11], which 
(asymptotically) minimizes the worst-case expected 
detection delay under some false alarm restrictions 
[12, 13]. If the change time is assumed random and 
prior information is available, the Shiryayev 
sequential probability ratio test (SSPRT) [14] in 
Bayesian framework is optimal in terms of a 
Bayesian risk. Note that the fault source needs not to 
be identified (or isolated) in fault detection. 
 
Fault isolation (or identification): Usually there are 
many components in modern systems and merely 
knowing there is a fault (by fault detection) in a 
system is far from enough for a quick and effective 
remedy. Hence, the goal of fault isolation is to 
identify the source of a fault as soon as possible. 
So, the answer to this problem is a fault type, e.g., 
which component in a system is faulty. This is a 
change detection problem with multiple alternative 
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hypotheses. Each alternative hypothesis 
corresponds to a fault model (unlike fault detection, 
all the fault models are included in a single 
alterative hypothesis) and we need to isolate which 
hypothesis happens after a change. The fault 
isolation can be carried out subsequently after the 
fault detection (i.e., identifying the source after 
declaration of a fault) or individually (i.e., operates 
in a stand-along mode without the fault detection). 
Sequential algorithms for this problem were 
proposed in [6, 9] and it minimizes the worst-case 
expected isolation delay under the restriction of 
mean time before a false alarm/isolation. The 
generalized SSPRT (GSSPRT) in Bayesian 
framework was proposed [8] and it is optimal in 
terms of a Bayesian risk for fault isolation. To the 
authors’ best knowledge, joint optimal solution for 
fault detection and isolation is not known. 
 
Fault estimation: Estimate the severeness of a 
fault. For example, a sensor/actuator may fail 
completely (it does not work at all) or partially 
(has degenerated performance). This piece of 
information is useful for future decision and 
action. If a sensor/actuator fails completely, the 
system may have to be stopped until the faulty 
component is replaced or fixed. In another hand, 
if only minor partial fault occurs, the 
sensor/actuator may be kept in use, with some 
online compensation [3]. 
 
In this work, system state estimation, fault isolation 
and estimation are tackled simultaneously. We 
start from applying the GSSPRT to a linear 
dynamic system and the algorithm turns out to be 
a multiple model (MM) algorithm considering all 
possible model sequences [15]. Fault diagnosis by 
multiple model algorithms is gaining attentions. A 
bank of mathematical models is constructed to 
model the normal operation mode and the fault 
modes. Filters based on these models are running 
in parallel, and the system state estimation is 
obtained by the outputs from MM, and the fault 
isolation can be done by comparing the model 
probabilities with the pre-defined thresholds. So, 
the fault diagnosis and state estimation can be 
done simultaneously, and the performance of the 
state estimation is independent to that of fault 
diagnosis. The MM is attractive since it uses a 
bunch of models rather than a single model to 
represent the faulty behaviours of a system [10]. 
The autonomous multiple model (AMM) [15] 

algorithm was the first MM algorithm proposed for 
fault diagnosis [16–18]. However the underlying 
assumption of AMM about the model trajectory—
the model in effect does not change over time—
does not fit the change detection problem. Then, 
the interacting multiple model (IMM) [19] algorithm, 
which considers the interaction between models, 
was proposed [7,10,20,21] and they outperform 
AMM in general. In [7], the IMM was directly 
applied to a fault isolation problem, but it was 
assumed that the fault models are exactly known. 
The hierarchical IMM [22] and IM3L [10] were 
proposed to address the fault isolation and 
estimation. However, they were tackled in a 
sequential manner, i.e., isolation-then-estimation. 
Without the information of the fault severeness, the 
isolation performance suffers. In this paper, we 
propose a multiple model algorithm that solves the 
fault isolation and estimation simultaneously. 
 
In practical applications, each sensor/actuator fault 
can be total or partial. So, a parameter [0,  1]   

is introduced for each sensor/actuator to indicate 
its fault severeness [7,10]. 0   means complete 

failure while 0 1  denotes a partial fault. If   
is known after a fault occurrence, the hypothesis 
for each sensor/actuator fault becomes a simple 
hypothesis and the GSSPRT algorithm for this 
case is exactly the same as the MM algorithm 
considering all possible model sequences. Hence, 
the optimality of GSSPRT and the virtues of MM 
algorithms are all preserved. Further, the system 
state can be also estimated as a by-product. 
However, two difficulties impede its exact 
implementation in practice: 
 
a) Its computational complexity is increasing due to 
the increasing number of model sequences. 
 
b)   is unknown in general. 
 
The first problem can be solved by pruning and 
merging the model sequences so that the total 
number of sequences is bounded. A bunch of 
algorithms were proposed for this purpose, e.g., 
B-best and GPBn, see [15] and the references 
therein. We propose to use the Gaussian mixture 
reduction [23, 24] to merge the “similar” model 
sequences, since it can be better justified than 
GPBn or IMM. Second, the unknown parameter 
  can be estimated online by model 
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augmentation. We introduce one augmented 
model for each sensor/actuator with an (unknown) 
fault parameter  , which is updated at every step 
by maximum likelihood estimation (MLE) or 
expectation—the so-called maximum-likelihood 
model augmentation (MMA) [10,20] or expected 
model augmentation (EMA) [15,25], respectively. 
So, before declaration of a fault, the fault 
severeness has been estimated and updated in 
real time based on these augmented models. 
Further, these augmented models are expected to 
be “close” to the truth, and hence further benefit 
the overall performance of state estimation and 
fault isolation. As shown in the simulation, the EMA 
and MMA have their pros and cons to each other. 
The MMA has better adaptation of parameter 
change and hence has faster isolation and smaller 
miss detection rate, while the EMA performs better 
in terms of the parameter estimation and correct 
isolation rate. 
 
Although our algorithm is developed based on the 
assumption of single fault, it can be extended to 
deal with infrequent sequential multiple faults 
easily provided the interval between two faults is 
long enough for isolating the first fault before the 
second fault. If a fault has been identified and its 
fault severeness estimated, then all the models 
can be revised to accommodate this fault and 
hence detection for further fault can be carried out. 
The case of simultaneous faults is more 
complicated and deserves further studies. 
 
This paper is organized as follows. First, the 
problem of fault isolation and estimation for linear 
dynamic systems is formulated in Sec. 2. The 
algorithm based on GSSPRT is derived in Sec. 3. 
The multiple model methods based on the 
Gaussian mixture reduction and the model 
augmentation are presented in Sec. 4. Three 
illustrative examples are provided in Sec. 5, and 
our algorithms are compared with the IMM method. 
Conclusions are made in Sec. 6. 
 
2. Problem Formulation 
 
A linear stochastic system subject to a 
sensor/actuator fault can be formulated as the 
following first-order Markov jump-linear hybrid 
system: 
 
 

                 (1) 
 

                                                     (2) 
 

where kx  and kz  are the system state and the 

measurement at time k , respectively. Each 

column of kB  is an “actuator” while each row of 

kH  is a “sensor” in the system [7, 10, 21]. The 

superscript j denotes that the matrices dependent 

the model jm  in effect. It is assumed that there 

are total M  fault models  1 2, , , Mm m m  and 

one normal model 0m . The control input ku  is 

assumed deterministic and known all the time. The 

process noise kw  and measurement noise kv  are 

Gaussian white noise with zero mean and 

covariances kQ  and kR , respectively. The model 

sequence  km is assumed to be a first-order 

Markov sequence with the transition probability 
 

≜ |  
 

where i
km  denotes the event that im  is in effect at 

time k. The system usually starts with the normal 

model 0
0m  and at each time k  it has probability 

0 0i   to transfer to im  (the i th fault model). 

Further, it is assumed that all fault models 

,  1, , ,im i M   are absorbing state in the 

Markov chain, that is 
 

1, 	 0
0, 	 , 0 

 
meaning that once a system gets into one of 
the fault models, it remains, since we only 
consider the case with single fault.  The 
possibility that a system recovers 
automatically from a fault model is ignored 
since it rarely happens in practice. So, the 
transition probability matrix (TPM) is 
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0
0
⋮
0

1
0
⋮
0

				
0
1
⋮
0

				⋯
⋯
⋯
⋱
⋯

				
0
0
⋮
1

                              (3) 

 
The total and partial sensor/actuator faults are 
considered, and the fault models proposed in [7, 

10] are adopted. Let [0,  1)j
k  denotes the 

severeness of the j th sensor/actuator’s fault at 

time k . The corresponding “actuator” in kB  

or“sensor” in kH  is multiplied by j
k  due to the 

fault. Clearly 0j
k   means that the 

sensor/actuator fails completely while 0 1j
k   

indicates a partial fault. In general, if a fault 

happens, j
k  is unknown and time varying. The 

problem becomes much more difficult if j
k 	is fast 

changing. For simplicity, only a constant or a 

slowly drifting sequence is considered for j
k . If 

prior information is available, more sophisticated 

dynamic models for j
k 	are also optional. 

 
Under these problem settings, we are trying to 
achieve the following three goals simultaneously 
based on sequentially available measurements 

 1 2, z , ,k
kZ z z  : 

 
(a) State estimation ( |ˆk kx ) in real time; 

(b) Fault identification (i.e., sensor/actuator ĵ ); 

(c) Fault severeness estimation 
ˆˆ j

k  when a fault is 

identified. 
 
Once a fault has been isolated and an estimate of 
the fault severeness is provided, additional actions 
based on these results can be taken to further 
inspect the decision and improve the estimation 
accuracy. This is problem dependent and there are 
many options, e.g., use a different model set 
specifically designed for the faulty sensor/actuator 
to achieve better state estimation and fault 
estimation. Also, the declared fault can be further 
tested against the normal model (or other fault 
models) to mitigate the possible false alarm (or  
 

false isolation) rate. We do not further examine 
these possibilities since they are beyond the scope 
of this paper. 
 
3. Generalized Shiryayev Sequential Probability 
Ratio Test 
 
First, we only consider the goal (b) and assume 

j
k  is exactly known after a fault occurs. Then an 

optimal solution in Bayesian framework— 
generalized Shiryayev sequential probability ratio 
test (GSSPRT)—was proposed in [8] for this fault 
isolation problem. The optimality of GSSPRT was 
proved in terms of a Bayesian risk. Further, it 
minimizes the time of fault isolation given the costs 
of false alarm, false isolation and a measurement 
at each time k , see [8] for the proof and details. 
 
Assume the system starts with no fault. At each 
time k , the GSSPRT computes the posterior 

probability of the event j
k {Transition from 0m  

to im  occurs at or before time k }，and compares 

it with a threshold ,  i 1, 2, ,MiT   . Once one 

of the thresholds is exceeded, the corresponding 
fault is declared. The optimal thresholds can be 

determined by the given costs [8]. Note that 0
k

means the system remains in normal mode up to 

time k . The event i
k  is equivalent to the event 

i
km  since the fault model im  is an absorbing state 

in the Markov chain. The GSSPRT algorithm is 
summarized as follows: 
 
Declare a sensor/actuator fault i  if 
 

≜ | |  
 

1, 2,⋯ ,  
 
Else, compute , 0, 1,⋯ ,  
 

Loop k k 1 
 
Note that in the algorithm there is no threshold set 

for 0m  since declaration of the normal model is of 

no interest. The posterior probability i
k  is 

computed by 
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, , , ≜ , |  

 
and	 , denotes a model sequence which starts 

from time 0  and reaches model im  at time k , h  
is the index, and 	is the total number of such 
sequences. Since the system starts with no fault, 

, 	is the only valid sequence at time k = 0, and 

hence , 1. The probability , 	can be 
computed recursively. Since 
 

,

,⋯,
, ,

,⋯,

,⋯,
 

 
by Bayesian formula, we have 
 

, | , , ,

|
 

 
where the likelihood function , , 	can 
be calculated based on the Kalman filter (KF) [26] 
under the linear Gaussian assumption. This can be 
done since the model trajectory has been specified 
by	 , , 
 

, , ; ̅ | ,  
 
where 
 

̅ | | , ,  
 

|  
 
and |  is the error covariance matrix of	 ̅ | . 
The model conditional density of the system state 
is 
 

, ∑ | , , ,          (4) 

 
Clearly, , 	is a Gaussian mixture density 
and the number of Gaussian components is 

increasing geometrically (i.e.,  1
k

M  ) with 

respect to k  for a general TPM. However, due to 
the assumption that all the fault models are 

absorbing states (the special structure of Eq. (3)), it 
only increases linearly (i.e., MK+1) for our problem. 
 

The estimate of kx  and its mean square error 

(MSE) matrix can be obtained by: 
 

≜ |  

 

 

 
where 
 

≜ | ,  
 

≜ MSE | ,  
 
can be obtained from , 	(Eq. (4)). 	is 
optimal in terms of the MSE. 
 
The above procedure turns out to be the well-
known cooperating multiple model (CMM) 
algorithm [15] considering all possible model 
trajectories. Before, the multiple model algorithm 
was developed for state estimation with model 
uncertainties. It is estimation oriented. Here, it is 
derived from a totally different angle by starting 
from GSSPRT for decision purpose. So, the goal 
(a) and (b) can be fulfilled simultaneously and 
optimally in terms of their criterions, respectively. 
Further, the state estimation is not affected by the 
performance of fault isolation.  
 
Even a false alarm or false isolation occurs, the 
state estimation is still reliable, since the detection 
has no impact (or feedback) to the model-
conditioned estimates and model probabilities, and 
hence does not affect the state estimation. 
 
Besides the increasing computational complexity, 

the unknown fault parameters j
k  in practical 

applications incur further difficulties to our 
algorithm. The hypothesis of a fault model 
becomes composite in this case, rendering it much 
more complicated. Further, it is usually very 

desirable that a good estimate of j
k  can be 

provided at the time a fault is identified, meaning 
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that j
k  should be estimated online along with the 

fault identification process. The fault estimation 
can also provide useful information for fault 
isolation, and consequently benefits its 
performance. 
 
4. Multiple Model Algorithm Based on Gaussian 
Mixture Reduction and Model Augmentation 
 
First, we address the problem of computation 
complexity. As aforementioned, Eq. (4) is a 
Gaussian mixture density and its number of 
components is increasing rapidly. Each Gaussian 
component in , 	corresponds to a model 

trajectory	 , . In real time implementation, the 
number of the components must be bounded. 
 
In MM method, there are many algorithms 
proposed to reduce the number of model 
sequences [15]. They can be classified as: a) 
methods based on hard decision, such as the B-
Best algorithm, which keeps the most likely one or 
a few model sequences and prunes the rest; b) 
methods based on soft decision, such as the 
GPBn algorithm, which merges those sequences 
with common model trajectories in last n steps 
(they may have different trajectories in older 
times). In general, the algorithms based on soft 
decision outperform those based on hard decision. 
However, for GPBn methods there is no solid 
ground to justify why sequences with common 
model steps should be merged. These common 
parts of model trajectories do not necessarily imply 
that the corresponding Gaussian components are 
“close” to each other. Consequently the merging 
may not lead to good estimation accuracy. We 
propose to use a more sophisticated scheme 
based on Gaussian mixture reduction, which 
involves both pruning and merging. The idea is 
simple and better justified, but requires more 
computation. However, in our problem, the number 
of model trajectories increases linearly instead of 
geometrically. The reduction process usually 
needs not to be performed frequently. Of course, 
this approach can be implemented for general MM 
algorithm, which may require the reduction for 
every step. 
 
Once the number of components in ,  
exceeds a threshold, the extremely unlikely 
components can be pruned first. Then, the number 

of Gaussian components is further reduced to a 
pre-specified number by pairwise merging, with the 
grand mean and covariance maintained. This is 
the so-called Gaussian mixture reduction problem 
and was studied by [23, 24, 27–32]. The problem 
is to reduce the number of Gaussian components 
in a Gaussian mixture density by minimizing the 
“distance” (to be defined) between the original 
density and reduced density, subject to the 
constraint that the grand mean and covariance are 
unaltered. The optimal solution requires solving a 
high dimensional constrained nonlinear 
optimization problem that the weights, means and 
covariances are chosen such that the “distance” 
between the original mixture and the reduced 
mixture is minimized. This is still an open problem 
and optimal solution is computationally infeasible 
for most applications. However, a suboptimal and 
efficient solution is acceptable for our problem. As 
proposed in [23, 24, 30], a top-down reduction 
algorithm based on greedy method is employed. 
Two of the components are selected to merge by 
minimizing the “distance” between them at each 
iteration, until the number of components reduces 
to a pre-determined threshold. For two Gaussian 

components with weights iw , means i and 

covariances iP , they are merged by 

 

,					
1

 

 

1
 

 
so that the grand mean and covariance are 
preserved. 
 
Further, there were many distances proposed for 
merging. They can be categorized to two classes: 
global distance and local distance. The global 
distance of two Gaussian components measures 
the difference between the original mixture density 
and the reduced mixture density (by merging these 
two elements), while the local distance only 
measures the difference between these two 
components. The global distance is preferred in 
general since it considers the overall performance. 
Kullback-Leibler (KL) divergence may be a good 
choice [30], but it cannot be evaluated analytically 
between two Gaussian mixtures, see [33] and 
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reference therein for some numerical methods. An 
upper bound of KL divergence was proposed in 
[30] to serve as the distance, which is, however, a 
local distance. We adopt the distance proposed in 
[23, 24]—the integral squared difference (ISD). For 

two Gaussian mixture densities  f x  and  g x , 

the ISD is defined as 
 

 

 
It is a global distance and can be evaluated 
analytically between any two Gaussian mixture 
densities: 
 

 
 

where 
 

; ,  

 

̅ ; ̅ ,  

 

; ̅ ,  

 
and { , , } and { , ̅ , } are the weights, 
means and covariances, respectively, of the i th 

Gaussian components in  f x  and  g x . 

Efficient algorithms to compute the distance was 
proposed in [24]. Hence, the distance between two 
Gaussian components for merging is defined as 
 

 

 

where  f x is the original Gaussian mixture, 

 l
ijf x  is the mixture density after merging the i th 

and j th components in  lf x , which is the 

reduced Gaussian mixture at iteration l . For each 

iteration l , two components are selected to merge  
 

such that l
ijD is minimized. The iteration stops 

when the number of the components reduces to 
the pre-specified number. Compare with the 
merging method in GPBn, the merging based on 
this Gaussian mixture reduction is better justified. 
Although the above reduction procedure does not 
reduce the Gaussian component optimally, it is 
based on a good guidance—only components that 
are “close” to each other are merged and hence 
the loss should be smaller than GPBn. 
 
In MM algorithm, at time 1k  , assume the 

Gaussian mixture densities | ,  and 

the model probabilities for j = 0, 1, … , M are 

obtained. Then , 	can be updated 
recursively: 
 

,
| , | ,

| ,
 

 
and the model probability  
 

| , |

|
 

 
where 
 

,  
 
∑ | , , | ,      (5) 

 
| , ,  

 
| , | ,         (6) 

 
and 
 

| ≜ |  

 

, | , | ,  

 

,
∑
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| , 	 and , 	are obtained from 
Eqs. (1) and (2), respectively. It can be seen from 
Eq. (5) that the number of the Gaussian 
components in , 	is increasing in each 
cycle. The Gaussian mixture reduction is 
implemented if necessary and | ,  is 
replaced by the reduced density. 
 
As mentioned before, due to the special structure 
of the TPM in our problem, the number of the 
Gaussian components increases linearly and 
hence the Gaussian reduction procedure needs 
not to be performed frequently. 
 
The second problem of applying the MM algorithm 

is the unknown parameter j
k  for each 

sensor/actuator in the fault identification process. 

Before any fault occurrence, 1j
k   and it subjects 

to a possible sudden jump to a value that 
 
0 1                                                           (7) 
 
Practically, only when	 		drops below a 
threshold	 , 1 it is considered as a fault: 
 

0 ,  
 

Several methods may be applied to estimate j
k . It 

may be augmented into the system state. However, 

this requires a dynamic model for j
k , and the 

system becomes nonlinear (for sensor fault models) 
and subjects to a constraint. It can be also 
estimated by least squares method with fading 
memories [34, 35]. However, the abrupt change of 

j
k  when a fault happens can incur difficulties for 

this algorithm. The method based on the maximum 
likelihood estimation (MLE) [10] is a good choice. 
For the j th sensor/actuator fault, a few models with 

different but fixed j
k  ( , , 1,2,⋯ , , where 

	is the number of fault models for the j th 

sensor/actuator) values and one augmented model 

with the parameter j
k   estimated by the MLE in 

real time are included in the model set. The 

estimate ˆ j
k  can be obtained by 

 

max | , ,  

 
s. t. Eq. (7) 

 

where, for simplicity,		 	 , , 	can be 
approximated by a single Gaussian density, e.g., 
for a sensor fault, it yields 
 

| , , ̃ ; 0,  
 
where 
 

̃  
 

 
 

 
 

Since both	 ̃  and 	are functions of j
k , the MLE 

becomes a one-dimensional nonlinear inequality-
constrained optimization problem which may be 
solved numerically. The MLE for an actuator fault 
can be obtained similarly, but the optimization 
procedure is simpler since it becomes a quadratic 
programming problem, which can be solved 
analytically by solving a linear equation. Then, the 

augmented models are updated by j
k  in real 

time. This is the maximum likelihood model 
augmentation (MMA). It has a quick adaption in 
fault estimation when a fault occurs. 
 
Another option is the expected model 
augmentation (EMA). It is similar to the MMA but 

the parameters j
k  for the augmented models are 

estimated by weighted average of the models for 
the same sensor/actuator. That is, for a 

sensor/actuator fault j , the ˆ j
k  for the augmented 

model is obtained by 
 

1
|

,
|
,

|  

 
where 
 

| |
,

|  
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is a normalizing constant, ≡ 1, | 	is the 

predicted probability of the augmented model, 

|
,  are the predicted model probabilities of the 

models with fixed parameter , .		Note that this 
method circumvents the requirement of the 
constraint (Eq. (7)) since it is automatically 
guaranteed by the convex sum. 
 
The augmented models in the model set serve two 
purposes: a) They are expected (hopefully) to be 
closer to the truth than the other models, and 
hence benefit the overall performance of the MM 
filter. b) The fault severeness can be obtained 
based on those augmented models, i.e., once a 
particular fault   is declared, the corresponding 
	can be outputted as the fault estimate. 

 
It is clear that the state estimation, fault isolation 
and estimation are solved simultaneously the a 
MM algorithm based on Gaussian mixture 
reduction and model augmentation. The results 
provide a basis for further diagnosis and actions. If, 
for example, a fault is declared but not sever or the 
faulty sensor/actuator is not critical, some online 
compensation can be applied to maintain the 
system in operation. Major action may have to be 
taken if a crucial or total failure occurs. 
 
5. Illustrative Examples 
 
We provide three illustrative examples to 
demonstrate the applicability and performance of 
our algorithms by comparing with the results of 
IMM based on Monte Carlo (MC) simulation. 
 
5.1 Simulation Scenario 
 
The ground truth is adopted from [10, 21], i.e., a 
longitudinal vertical take-off and landing (VTOL) of 
an aircraft. The state   is defined as 
 

, , ,  
 
where the components are horizontal velocity 
(m/s), vertical velocity (m/s), pitch rate (rad/s) and 
pitch angle (rad), respectively. The target dynamic 
matrix and measurement matrix are obtained by 
discretization of the continuous system: 
 

 

 

 
1
0
0
0

		0		
		1		
		0		
		1		

	0
	0
	1
	1

		0
		0
		0
		1

 

 
Where 0.1T s  is the sampling interval, and 
 

0.0366				
0.0482
0.1002
0

0.0271		
1.01		

0.3681		
0		

0.0188
0.0024
0.707
1

		 0.4555
		 4.0208
		1.420
		0

 

 
0.4422
3.5446
5.52
0

			0.1761		
				 7.5922		

	4.49		
0		

 

 
The control input is set to be	 0.2		0.05 , the 
true initial state	 250		50		1		0.1 , the covariances 
of the process noise	 0.2  and the 
measurement noise 1, 1,0.1,0.1 . In this 
system, there are two actuators (A1 and A2) and 
four sensors (S1 – S4). The simulation lasts for 70 
steps and the fault occurs at 10k  . The initial 
density of the state for the algorithms is chosen to 
be a Gaussian density , ) with 

10, 10, 1, 1 . 
 
5.2 Performance Measures 
 
The performances of our algorithms are evaluated 
by the following measures: 
 
1.-.Correct identification (CI) rate: the rate that an 
algorithm correctly identifies a fault after it 
happens. 
 
2.-.False identification (FI) rate: the rate that an 
algorithm incorrectly identifies a fault after it 
happens. 
 
3.-.False alarm (Fa) rate: the rate that an algorithm 
declares a fault before any fault happens. 
 
4.-.Miss detection (MD) rate: the rate that an 
algorithm fails to declare a fault within the total 
steps of each MC run. 
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5.-.Average delay (AD): the average delay (in 
terms of the number of sampling steps) for a 
correct isolation. 
 

6.-.	 : the root mean square error (RMSE) of ̂   
for a correct isolation. 
 
All the performances are obtained by Monte Carlo 
simulation with 1000 runs. The thresholds for 
decision are determined by the results of 
simulation such that different methods have 
(almost) the same false alarm rate. 
 
5.3 Total Failure 
 
In this case, we consider the complete failure for 
each actuator/sensor. Hence, the fault severeness 

0   is known. We compare the IMM, the exact 
MM (MME) method (i.e., considering all possible 
model trajectories) and the MM method based on 
the Gaussian mixture reduction (MMR). All the 
methods have the same model set of 1M   
models. It includes one normal model, and one 
fault model for each sensor/actuator.  
 
There is no model-set mismatch between the 
algorithms and the ground truth. In MMR, the 
number of the Gaussian components for each 
model is reduced to 2 if it exceeds 10. This is a 
relative simple scenario since the fault parameter 
is known. The results are given in Table 1. It is 
clear that a sensor fault is much easier than an 
actuator fault to be identified.  
 
A sensor fault can be detected (almost) 
immediately after the occurrence while it takes 
some time to detect an actuator fault. This makes 
sense because a sensor fault is directly revealed 
by the measurement while an actuator fault affects 
the measurement only through the system state.  
 
The performance differences among the three 
algorithms for a sensor fault are negligible, while 
MME and MMR evidently outperform the IMM 
algorithm for an actuator fault. But this superior 
performance is achieved at the cost of higher 
computational demands (given in Table 2). 
Comparing with MME, the performance loss of 
MMR is tiny. 
 
 

Fault Algo. CI Fa FI MD AD 

A1 
MME 0.854 0.010. 0 0.136 11.01
MMR 0.850 0.010 0 0.140 11.09
IMM 0.819 0.010 0.001 0.170 11.94

A2 
MME 0.823 0.016 0.057 0.104 15.8
MMR 0.823 0.016 0.057 0.104 15.8
IMM 0.771 0.016 0.039 0.174 17.3

S1 
MME 0.985 0.015 0 0 0 
MMR 0.985 0.015 0 0 0 
IMM 0.985 0.015 0 0 0 

S2 
MME 0.990 0.010 0 0 0.36
MMR 0.990 0.010 0 0 0.36
IMM 0.990 0.010 0 0 0.39

S3 
MME 0.992 0.008 0 0 0 
MMR 0.992 0.008 0 0 0.002
IMM 0.992 0.008 0 0 0.002

S4 
MME 0.990 0.010 0 0 0 
MMR 0.990 0.010 0 0 0 
IMM 0.990 0.010 0 0 0 

 

Table 1. Total fault, 0   and known. 
 

IMM MME MMR 
1 20.7 15.4 

 
Table 2. Average computational cost (normalized). 

 
5.4 Random Scenario 
 
In this case, for each MC run, the fault severeness 

j
k  is sampled uniformly from the interval [0, , ] 

when a fault occurs and remains constant. The 
IMM, EMA and MMA (both based on Gaussian 
mixture reduction) are implemented and evaluated. 
The IMM contains 13 models: one normal model, 
two fault models for each sensor/actuator with α = 
0 and 0.5, respectively. The EMA and MMA 
contain 19 models: all the models in IMM algorithm 
and one augmented model for each 
sensor/actuator. The results are given in Table 3. 
Similar to Case 1, a sensor fault is easier to be 
identified than an actuator fault, revealed by a 
shorter detection delay and better fault estimates. 
The performance differences among the three 
algorithms are insignificant for sensor faults. For 
actuator faults, MMA has a shorter detection delay 
and smaller miss detection rate, while EMA is 
better in terms of correct identification rate, false 
identification rate and estimation root mean square 
error . 
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This can be explained by the quick adaption of the 
change in   by MLE after the fault occurrence. It 
helps identifying the fault faster, but in general its 
estimation is less accurate than EMA and hence 
may increase the false identification rate. Overall, 
they outperform the IMM method. 
 

Fault Algo. CI Fa FI MD AD  

A1 
MMA 0.709 0.009 0.066 0.216 18.2 0.208
EMA 0.711 0.009 0.037 0.243 18.4 0.199
IMM 0.707 0.009 0.045 0.239 18.7 0.209

A2 
MMA 0.762 0.011 0.116 0.111 15.1 0.230
EMA 0.771 0.011 0.099 0.119 17.1 0.215
IMM 0.743 0.011 0.118 0.128 17.5 0.219

S1 
MMA 0.992 0.008 0 0 0 0.103
EMA 0.992 0.008 0 0 0.257 0.117
IMM 0.992 0.008 0 0 0.500 0.206

S2 
MMA 0.981 0.012 0.007 0 1.320 0.147
EMA 0.984 0.012 0.004 0 1.322 0.138
IMM 0.980 0.012 0.008 0 1.320 0.235

S3 
MMA 0.990 0.010 0 0 0 0.131
EMA 0.990 0.010 0 0 0.001 0.126
IMM 0.990 0.010 0 0 0 0.235

S4 
MMA 0.991 0.009 0 0 0 0.135
EMA 0.991 0.009 0 0 0 0.127
IMM 0.991 0.009 0 0 0 0.232

 
Table 3. Random fault, , = 0.7. 

 
5.5 Fault with Drifting Parameter 
 

In this case, j
k  is drifting after the fault. It is 

sampled uniformly from theinterval [0, 	 , ] at the 
time of the fault occurrence and then follows a 
randomwalk (but bounded within [0, , ]), that is 
 

, , 	 |
, 			

0,														 	 | 0

| ,																							

 

 
where 
 

| ℓ  
 
and	ℓ 	is uniformly distributed random samples 
(i.e., ℓ ~ , . Asmentioned before, a sensor 
fault is easier to be detected. It is identified 
(almost) immediately when it happens. So, in this 
case we only evaluate the performancefor actuator  
 

faults. The results are given in Table 4. Compared 

with Case 2, the drifting j
k  decreases the 

estimation accuracy and miss detection rate for 
both actuators, but increases the false 
identification rate significantly for actuator 1. 
 

Fault Algo. CI Fa FI MD AD  

A1 
MMA 0.710 0.04 0.188 0.062 14.8 0.220
EMA 0.724 0.04 0.160 0.076 15.3 0.208
IMM 0.681 0.04 0.188 0.091 16.9 0.225

A2 
MMA 0.745 0.08 0.106 0.069 15.6 0.236
EMA 0.755 0.08 0.094 0.071 16.3 0.231
IMM 0.726 0.08 0.118 0.076 17.9 0.245

 
Table 4. Fault with Drifting Parameter,  

where , 0.7 and 0.02. 
 
6. Conclusions 
 
Applying the generalized SSPRT to a linear 
dynamic system for fault isolation and estimation 
leads to the multiple model algorithm. However, 
this algorithm must be approximated in real 
applications due to the increasing computational 
demands and the unknown fault parameters. The 
Gaussian mixture reduction (GMR) and model 
augmentations are proposed to address these two 
problems, respectively.  
 
The GMR reduces the number of Gaussian 
components in a greedy manner by merging 
iteratively components that are “close” to each 
other. This merging algorithm is based on more 
solid ground than the conventional GPBn method 
for multiple model algorithms. Further, the fault 
parameters can be estimated based on the 
augmented models.  
 
The model augmentations by expectation and MLE 
are good options. They have their pros and cons 
as indicated by the simulation results. The MLE 
provides a shorter fault isolation delay and an 
smaller miss detection while the EMA performs 
better in terms of the correct isolation rate and the 
estimation accuracy for the unknown parameter.  
 
As mentioned before, the isolation and estimation 
of a fault provide a reference for further actions, 
and hence infrequent sequential faults can also be 
dealt with. The case of simultaneous faults is more 
complicated and is considered as future work. 
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