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ABSTRACT  
The zones design occurs when small areas or basic geographic units (BGU) must be grouped into acceptable zones 
under the requirements imposed by the case study. These requirements can be the generation of intra-connected 
and/or compact zones or with the same amount of habitants, clients, communication means, public services, etc. In 
this second point to design a territory, the selection and adaptation of a clustering method capable of generating 
compact groups while keeping balance in the number of objects that form each group is required. 
 
The classic partitioning stands out (also known as classification by partition among the clustering or classification 
methods [1]). Its properties are very useful to create compact groups. 
 
An interesting property of the classification by partitions resides in its capability to group different kinds of data. 
When working with geographical data, such as the BGU, the partitioning around medoids algorithms have given 
satisfactory results when the instances are small and only the objective of distances minimization is optimized. In 
the presence of additional restrictions, the K-medoids algorithms, present weaknesses in regard to the optimality 
and feasibility of the solutions.  
 
In this work we expose 2 variants of partitioning around medoids for geographical data with balance restrictions over 
the number of objects within each group keeping the optimality and feasibility of the solution. The first algorithm 
considers the ideas of k-meoids and extends it with a recursive constructive function to find balanced solutions. The 
second algorithm searches for solutions taking into account a balance between compactness and the cardinality of the 
groups (multiobjective). Different tests are presented for different numbers of groups and they are compared with 
some results obtained with Lagrange Relaxation. This kind of grouping is needed to solve aggregation for Territorial 
Design problems 
 
Keywords: Cardinality, grouping, k-medoids. 
 
RESUMEN 
El diseño de zonas ocurre cuando pequeñas áreas o unidades geográficas básicas (UGB) deben ser agrupadas en 
zonas que resulten aceptables según los requerimientos impuestos por el problema estudiado. Estos requerimientos 
pueden ser la generación de zonas conexas y/o compactas o con la misma cantidad de habitantes, clientes, medios 
de comunicación, servicios públicos, etcétera. En este punto, es exigido para el diseño de un territorio, la selección y 
adaptación de un método de agrupamiento que genere grupos compactos satisfaciendo también balanceo en el 
número de objetos que integran los grupos.  
 
Dentro de los métodos de agrupamiento o clasificación, destaca el particionamiento clásico (llamado también 
clasificación por particiones [1]). Sus propiedades son muy útiles en la creación de grupos compactos. 
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Un aspecto importante de la clasificación por particiones reside en su capacidad para agrupar distintos tipos de 
datos. Si de datos geográficos se trata, como lo son las UGB, los algoritmos particionales alrededor de los medoides 
han dado resultados satisfactorios cuando las instancias son pequeñas y solo el objetivo de minimización de 
distancias es optimizado. En presencia de restricciones adicionales, los algoritmos K medoides, presentan 
debilidades en la optimalidad y factibilidad de la solución.  
 
En este trabajo exponemos 2 variantes de particionamiento sobre medoides para datos geográficos con restricciones 
de balanceo en el número de objetos que forman los grupos manteniendo optimalidad y factibilidad.  El primer 
algoritmo considera los principios de k-medoides y lo extiende con una función recursiva y constructiva para 
encontrar solucione balanceadas. El segundo algoritmo se ocupa en la búsqueda de soluciones considerando un 
esquema de equilibrio entre compacidad y balanceo (multiobjectivo). Se presentan distintas pruebas para el tamaño 
de los grupos y se comparan con algunos resultados obtenidos por Relajación Lagranjeana. Este tipo de 
agrupamiento se hace necesario en la resolución de agregación con homogeneidad en la cardinalidad de los grupos 
para problemas de Diseño de Territorio. 
 
 
1. Introduction 
 
The zones design problem can be approached as 
a combinatory optimization problem, where the 
objective function searches for the best 
combination between the balance for a certain 
property of the zones and geometrical 
compactness whereas the restrictions guarantee 
the connectivity within the zones. Many efforts 
about the solution of TD problems have been 
reported: The zones design appears in diverse 
application such as districts design [2, 3, 4, 5], 
sales territories [6, 7], service and maintenance 
areas [8, 9] and use of lands [10, 11, 12.]. 
 
In the algorithms implicit to solution of TD 
problems, is desired that all the zones are 
balanced in regard to one or many properties of 
the geographic units that form them. For example, 
zones that have the same workload can be 
designed, same transfer times or the same ethnic 
or socio-economical representation percentage. In 
general, it isn’t possible to achieve the perfect 
balance; therefore the deviation with respect to the 
ideal arrangement is calculated. The bigger the 
deviation, the worse the balance of the zone or the 
generated zoning plans. 
 
On the other hand, geometric compactness is 
understood as a condition that tries to avoid the 
creation of zones with irregular shapes and 
pursuits the generation of zoning plans with clear 
boundaries. In the practice it has been observed 
that the compact zones are easier to manage and 
to analyze due to the fact that the transfer times 
and the communication issues are decreased 
(sampling, districting, location-allocation, etc.). It 
must be observed that the population balance and  

the geometric compactness are objectives that are 
opposed, because an improvement in one of them 
can cause the other to deteriorate. 
 
Attaining homogeneity in TD is very important in 
diverse applications that demand an equal 
resources proportion allocated to every zone. For 
example, in our population sampling the 
homogeneity is related to the samplers’ effort, in 
sales this is understood as the fair demand of the 
salespeople for every sale point, in logistics, as the 
effort to distribute the products to the clients. 
 
In TD problems, the clustering algorithm has the 
job to create groups of compact and balanced 
zones with regards to the specific same number of 
geographic units in every group (zone) criterion. 
The procedure to group data is also known as 
cluster analysis. 
 
The importance of cluster analysis resides in 
finding clusters directly in the data without using 
any previous knowledge. The use of clustering in 
diverse areas is beneficial, however, in order to 
have efficient cluster analysis techniques; there 
must be some kind of similarity between the data. 
Several researchers propose its use in spatial 
data, given the existence of distance notions and 
partitioning around medoids algorithms, they are 
adapted with ease to this kind of data [13]. In 
particular, the model PAM (Partitioning Around 
Medoids), has been important in the latest works 
about territorial partitioning [14]. PAM achieves this 
purpose determining an object, representative for 
each cluster to find k clusters (groups) [14]. This 
representative object, called medoid, is the one 
located closer to the center of the cluster. Once the 
medoids have been selected, each unselected 
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object is grouped with the medoid that is more 
similar to itself. In this point, an evident weakness 
of PAM is the process of repeated and long local 
searches in the solution space; however, it obtains 
a good “optimum” solution. On the other hand, 
when additional restrictions are incorporated, the 
complexity nature increases considerably. 
 
In this work, we have adapted to PAM a 
homogeneity restriction to balance the number of 
objects in each cluster. Two algorithms have been 
implemented: 1) PAM-RH (ALGORITHM 1):  
Recursive PAM with homogeneity, where the 
objects are assigned as usual to the medoids (the 
closest one) and once every object is assigned, a 
recursive and constructive procedure is run over 
this compact solution to adjust it to the desired 
balance restriction, this implies that the stronger 
the restriction the higher the complexity of this 
procedure will be and therefore the computing time 
will increase considerably in exchange for a well-
balanced solution. This adjust looks for the clusters 
which size is under the ideal size (the number of 
geographical units, divided by the number of 
groups to form) and proceeds move objects from 
the closest group to the group that needs them to 
achieve balance, but if this group is also under the 
ideal size then the algorithm will have to move 
objects from another nearby group to this group. 
This implies a recursive procedure that will be 
executed until there is a balance in the number of 
objects assigned among the clusters. 
 
2) Bi-Objetive PAM (ALGORITHM 2):  This 
algorithm uses a multiobjective function, following 
the principle of the weighted sum, where each of 
the objectives has a weight or priority. The 
extension to PAM is over the objective function 
that now employs a heterogeneity minimization 
strategy, this is, the minimization of the standard 
deviation of the number of objects in each groups 
to the ideal size of the groups. This will be further 
explained later in the paper. In accordance to 
above the present work is organized as follows: 
this introduction as section 1, section 2 deals with 
the general aspects of partitioning around the 
medoids, in section 3 a partitioning algorithm 
around medoids under a recursive scheme is 
exposed to continue with section 4 that covers the 
partitioning with a multiobjective perspective: 
geometric compactness and balance. Section 5 

gathers the final results of the computational 
experience. Finally the conclusions are presented. 
 
2. Preliminaries: Partitioning 
 
Clustering is the process of grouping a set of 
objects into classes or clusters so that objects 
within a cluster have similarity in comparison to 
one another, but are dissimilar to objects in other 
clusters. K-means clustering and Partitioning 
Around Medoids (PAM) are well known techniques 
for performing non-hierarchical clustering [14]. 
 
Let us describe the clustering problem formally. 
Assume that S is the given data set ܵ ൌ
ሼݔԦଵ, . . . , Ԧ௜ݔ Ԧ௡ሽ, whereݔ ∈ ܴ௡. The goal of clustering is 
to find K clusters ܥଵ, ,ଶܥ . . . , ௜ܥ ௞ such thatܥ ് ∅ for  
 
݅ ൌ 1, . . . , ݇                                                            (1) 
 
௜ܥ ∩ ௝ܥ ൌ ∅ for ݅, ݆ ൌ 1, . . . , ݇; ݅ ് ݆                         (2) 
 

∪
௜ୀଵ

௞
௜ܥ ൌ ܵ                                                              (3) 

 
and the objects belonging into same cluster are 
similar in the sense of the given metric, while the 
objects belonging into different cluster are dissimilar 
in the same sense. In other words, we seek a 
function ݂: ܵ → ሼ1, . . . , ݇ሽ such that for ݅ ൌ
1, . . . , ݇: ௜ܥ ൌ ݂ିଵሺ݅ሻ, where ܥ௜	satisfy the above 
conditions. 
 
݂ ൌ arg	min

௙
,Ԧଵܥ௏ொሺܧ . . . ,  Ԧ௄ሻ                                   (4)ܥ

 

݂ ൌ argmin
௙

෍ฮݔԦ௜ െ ௙ሺ௫೔ሻฮܥ
ଶ

௞

௜ୀଵ

 

 

Where  ܥԦ௞ ൌ
ଵ

|஼಼|
∑ Ԧ௜௫೔∈஼ೖݔ , ݇ ൌ 1,… ,  (5)                  ܭ

 
Therefore instead of function f directly, one can 
search for the centers of the clusters, i.e, vectors 
Ԧܿଵ, . . . , Ԧܿ௄, and implement the function f as 
 

݂ሺݔԦሻ ൌ argmin
௜

ฮݔԦ െ Ԧ௜ฮܥ
ଶ
                                       (6) 

 
that is, assign the point to the cluster 
corresponding to the nearest center [15]. 
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2.1 Sensibility of the partitioning in K-Medoids 
 
When the clustering is not of the hierarchical kind, 
it is known as automatic classification or group 
analysis. The partitioning methods are also known 
as optimization methods due to the fact that they 
reach a unique classification that optimizes a 
predefined criteria or objective function, without 
producing a series of nested groups. 
 
One of the most known methods in the literature is 
k-medoids, and just like dynamic clouds, they are 
based on the principle that a class can be 
represented by an object, being this an average 
point, and individual or group of individuals of the 
class, a set of parameters, etc; this representative 
is usually known as kernel. The first algorithm of 
this kind was proposed by Forgy (1965) [16]. The 
underlying idea is that given a set of kernels, the 
following steps must be done: • assign the 
individuals to the closest kernel, thus forming the 
classes to proceed with the calculation of the new 
kernels with the formed classes, • iterate the 
previous steps until stability is achieved. It parts 
from an initial configuration of kernels, and the 
method converges to a partition that doesn’t 
improve the criteria anymore. Depending on the 
context and the kind of kernel, a criterion to be 
improved is defined. 
 
In general, k-medoids is fragile in regard to: 1) the 
sensibility of the initial selection of the centroids, 2) 
the prior selection of the value of k, 3) Handling of 
non-numerical attributes, 4) poor efficiency in the 
groups of different size, different density and non-
convex clusters and 5) with the use of a measure 
to calculate the centroids, the method is sensitive 
to outliers.  
 
2.2 K-Medoids algorithm 
 
One of the answers to the weaknesses of k-means 
has been the proposals of algorithms over 
medoids: instead of using the vector of means as 
centroids, a vector corresponding to a real data (a 
representative) is used where k-medoids uses 
medians instead of means to limit the influence of 
the outliers. 
 
Due to fact that the K-means algorithm is sensitive 
to outliers since an object with an extremely large 
value may substantially distort the distribution of 

data. How could the algorithm be modified to 
diminish such sensitivity? Instead of taking the 
mean value of the objects in a cluster as a 
reference point, a Medoid can be used, which is 
the most centrally located object in a cluster. Thus 
the partitioning method can still be performed 
based on the principle of minimizing the sum of the 
dissimilarities between each object and its 
corresponding reference point. This forms the 
basis of the K-Medoids method. The basic strategy 
of K-Mediods clustering algorithms is to find k 
clusters among n objects by first arbitrarily finding 
a representative object (the Medoids) for each 
cluster. Each remaining object is clustered with the 
Medoid that is the most similar. K-Medoids method 
uses representative objects as reference points 
instead of taking the mean value of the objects in 
each cluster. The algorithm takes the input 
parameter k, the number of clusters to be 
partitioned in a set of n objects. A typical K 
Mediods algorithm for partitioning based on 
Medoids or central objects is as follows: 
 
Input: 
K: The number of clusters 
D: A data set containing n objects 
Output:  
A set, of k clusters, that minimizes the sum of 
the dissimilarities of each object to its 
nearest medoid. 
Method: Arbitrarily choose k objects in D as 
the initial representative objects; 
Repeat: 
Assign each remaining object to the cluster 
with the nearest medoid; 
Randomly select a non medoid object Orandom; 
compute the total points S of swap point Oj 
with Oramdom 
if S < 0 then swap Oj with Orandom to form the 
new set of k medoid  
until no change 

 
Like this algorithm, a Partitioning Around Medoids 
(PAM) was one of the first k-Medoids algorithms 
introduced. It attempts to determine k partitions for 
n objects. After an initial random selection of k 
medoids, the algorithm repeatedly tries to make a 
better choice of medoids [17]. 
 
3. Recursive partitioning around medoids 
 
The majority of the problems of territorial design 
TD demand geographical clustering. This kind of 
clustering pursues the compactness, contiguity, 
convexity and homogeneity of the groups to be 
created for restrictions that define a specific 
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problem [18, 19, 20]. Different authors have 
adapted clustering algorithms to solve the TD 
problems, however, we have focused on taking 
advantage of the properties of the partitioning 
around medoids to solve the compactness and in 
this section we present a partitioning algorithm 
over medoids that considers in the clustering, 
geographical data known as Agebs. To answer to 
the compactness, each geographical unit i is 
assigned to the closest group representative 
(medoid). Seen as an optimization problem, the 
objective function is minimizing the total distance, 
that is, the sum of the distances of each 
geographical unit to its respective centroid [20]. 
Treating the problem in this way the formation of 
compact groups of geographical units is achieved, 
however, some problems require a balance on the 
number of objects that form the groups (groups 
with the same amount of elements). Then, for n 
geographical units and k groups to form, each 
group must have n/k members when n can be split 
exactly into k groups or |n/k| + 1 otherwise. We 
denominate this problem as homogeneity in the 
number of elements. The combination of 
compactness and homogeneity is treated in this 
section in an algorithm around medoids with a 
recursive approach. 
 
3.1 PAM-Recursive Homogeneous: Algorithm for 
compactness and homogeneity in the number of 
objects (PAM-RH) 
 
Considering the capabilities of PAM an algorithm 
has been built that acts as a post-process in the 
objective function of PAM, this is, a process that 
will rearrange the solutions obtained to force the 
desired balance in the solution. 
 
For n elements to group and k groups to form, 
having each group with 

௡

௞
 elements is desired when 

these n elements can be split exactly into k groups 

or in a maximum of ቚ
௡

௞
ቚ ൅ 1 otherwise. For a group 

݆ ∈ ሼ0, . . . , ݇ െ 1ሽ let size ܧ௝  be the expected size of j 
which is calculated with the principle of 
homogeneity described above. If ݖ݅ݏ ௝݁  is the 
current size of the group j, the group with the least 
amount of elements is selected (in order to choose 
the group that will need the most elements to 
achieve its expected size) to continue with the 
procedure recursiveHomogeneityAdjust() that is 
described in the following algorithm: 

ALGORITHM 1 
PAM RECURSIVE HOMOGENEOUS (PAM-RH) 
INPUT the centroid j of the group found with 
the least elements 
INPUT array of centroids 
INPUT toSteal – the amount of elements that the 
group j needs to “steal” to become of the 
expected size. 
INPUT cost – the current cost (compactness) of 
the unbalanced solution 
PROCEDURE recursiveHomogeneityAdjust(j, 
centroids, toSteal, cost)  
  Get the centroid i closest to j; 
    surplussizei – sizeEi; 
      IF toSteal< surplus THEN 
 Stack.push(j, toSteal); 
          WHILE !stack.empty() DO 
     Node stack.pop(); 
        FOR h  0 TO h <node.toSteal DO 
          Move an object  from i to j;  
//The closest one. Update the cost of the 
solution; 
     END LOOP 
          END LOOP 
     ELSE 
     Stack.push(j, toSteal); 
     toSteal = toSteal – surplus; 
     recursiveHomogeneityAdjust(i,centroids, 
toSteal, cost);  
     END IF 
END PROCEDURE 

 
The algorithm does the following: It takes as input, 
the centroid j of the group found with the least 
elements (this will ensure the complete balance of 
the solution after the procedure ends), the array of 
centroids (the current solution), the elements that 
the cluster j needs (to reach the ideal size) and the 
current cost of the solution. The first step is to find 
the closest centroid to the cluster j, this will tell us 
which one is the closest cluster. Then the surplus 
of i will be calculated, if the expected size is bigger 
than the current size of cluster I (sizei – sizeEi) 
then we’ll have a surplus of elements in that group, 
otherwise the value will be negative and therefore 
this group will need to get more elements from 
another group as well. Next if the elements that 
cluster j needs to “steal” are less than the surplus 
of cluster i then we employ an auxiliary stack to 
store the number of cluster (centroid) and the 
number elements it needs, this step is done so 
when the recursion occurs we will have the 
clusters that need elements stored in here. The 
following step is a cycle that will finish when this 
stack is empty. Inside this cycle we take out the 
element at the top of the stack to move the 
elements from i to j that are needed and then the 
cost of the solution is updated. 
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This is the basic case if the procedure is executed 
once, the other case is when the elements needed 
by j can’t be taken from the closest group i, and in 
this case we store the cluster j and the elements 
needed. Note that with a negative surplus the new 
value of toSteal will be increased, this means that 
cluster i will need to get enough elements from 
another group to satisfy its own need and the need 
of cluster j but when the value of surplus is positive 
but still less than toSteal, this last one decreases 
because now cluster i will give its surplus of 
elements to cluster j but will need some more to 
keep its balance. After this calculation the 
recursion takes place, now cluster i will be the new 
cluster used as parameter along with its elements 
needed. Following this example, let’s assume that 
we have a total of 3 clusters, so the next cluster, 
closest to i, let’s call it h has the biggest surplus 
and therefore has enough elements to give to i and 
j, this means that toSteal is less than surplus and 
now we push cluster i to our stack, the cycle will 
run two times (the size of our stack that right now 
contains clusters j and i). We take out cluster i and 
move enough elements from cluster h to i so i can 
have enough to give to cluster j and remain 
balanced. Finally cluster j is removed from the 
stack and we assign the nodes needed to j from 
the surplus of cluster i and we finish by updating 
the cost of the solution accordingly. 
 
A vulnerable aspect of this algorithm lies in the 
dispersion of elements due to those cases where a 
group that contains many elements (in a much 
bigger proportion to the other groups) must lend a 
great percentage of objects to other groups. The 
implication of this conflict is centered in this big 
group that will give away many of its objects and 
until after several iterations the problem seems to 
invert itself due to the fact that the centroid starts 
to be surrounded by objects that now belong to 
other clusters because a cluster can’t give away its 
own centroid. This case is distinguished as the 
group formed by objects taken from other groups 
that in the first iterations had more objects than the 
rest of the groups. The problem of dispersion 
occurs usually for cases of 40 groups or more and 
it is possible to notice that the computational cost 
increases in function of the number of groups. For 
this algorithm PAM-RH, good optimal and feasible 
results have been achieved with a satisfactory 
homogeneity for no more than 40 groups but the 

homogeneity achieved has a precise balance over 
the cardinality of the groups. 
 
The following Table 1 concentrates the results 
between 4 and 40 groups where 469 objects were 
grouped; the results that don’t go beyond 800 
seconds. The data correspond to the Metropolitan 
Zone of the Toluca Valley in Mexico (ZMVT). In 
this table we included two results obtained with 
PAM alone for 14 and 40 groups to show that PAM 
on its own can’t reach a satisfying balance or 
homogeneity. In this table the nomenclature is the 
following: G (number of groups), Smallest (The 
size of the smallest group obtained), Biggest (The 
size of the biggest group obtained), Time 
(Execution time of the algorithm in seconds). 
 
The hardware used for the tests has the following 
characteristics:  
 
CPU: Dual Core AMD E-350 at 1.6 Ghz. 
 
RAM: 2GB DDR3. 
 
HDD: SATA-II 320GB 5400 RPM 
 
OS: Windows 7 Ultimate 32bits 
 
G Smallest Biggest Cost Time Algorithm

4 117 118 27.385883 4.107 PAM-RH 

8 58 59 21.229193 17.174 PAM-RH 

12 39 40 15.595103 53.385 PAM-RH 

14 34 35 15.056902 79.536 PAM-RH 

16 29 30 15.912905 54.236 PAM-RH 

20 23 24 13.539497 175.536 PAM-RH 

24 19 20 13.045602 240.692 PAM-RH 

28 16 17 11.656398 229.474 PAM-RH 

32 14 15 10.739399 337.512 PAM-RH 

36 13 14 9.507203 483.711 PAM-RH 

40 12 11 10.689795 715.477 PAM-RH 

4 51 172 27.17601 0.0257 PAM  

14 10 64 12.985695 3.604 PAM 

 
Table 1. Test runs for algorithm PAM-RH  

(Algorithm 1) and two example runs with PAM. 
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The algorithmic proposals around the Medoids with 
restrictions over the cardinality of the clusters that 
we have exposed have produced good results for 
small instances. 
 

 
 

Figure 1. Result for 40 groups (Algorithm 1: PAM-RH). 
 
4..Partitioning around medoids with Bi-
Objective Function (BI-Objective on the 
standard deviation) 
 
The PAM-RH algorithm has many limitations, 
mainly its complexity for bigger problems because 
it forces the solutions to be balanced, therefore we 
can say that it works under hard restrictions and 
this implies a high computing cost. Due to the fact 
that we are trying to reach a small fragment of the 
solution space that contains the desired feasible 
homogeneous solutions, we have decided to turn 
this hard restriction into a soft one in order to 
improve the computing times and to actually guide 
the search process towards this fragment of the 
solution space but of course this change implies a 
penalization over the homogeneity objective since 
it won’t be a demanded characteristic of the 
solutions attained [21]. Now our combinatory 
problem will have two objectives and we have 
taken the model proposed in [20] to revise it and 
adapt it to our new need for homogeneity and 
below we present the definitions of interest along 
with the adapted model. 
 
Definition 1. Compactness 
 
If we denote ܼ	 ൌ 	 ሼ1, 2, … , ݊ሽ as the set of n objects 
to classify, it is wished to divide ܼ into ݇ 
groups	ሼܩଵ, ,	…,ଶܩ ݇ ௞ሽ withܩ ൏ ݊ in such a way that: 

ራܩ௜ ൌ ܼ

௞

௜ୀଵ

 

௜ܩ ∩ ௝ܩ ൌ ∅, ݅ ് ݆ 
|௜ܩ| ൒ 1, ݅ ൌ 1,2, … , ݇ 

 
A group ܩ௠ with |ܩ௠| ൐ 1 is compact if for every 
object ݐ	 ∈  :௠ meetsܩ	
 
min௜∈ீ೘ ݀ሺݐ, ݅ሻ ൏ min௝∈௓ିீ೘ ݀ሺݐ, ݆ሻ, ݅	 ്  (7)              ݐ
 
A group ܩ௠ with |ܩ௠| ൌ 1 is compact if its object ݐ 
meets: 
 

min
௜∈௓ିሼ௧ሽ

݀ሺݐ, ݅ሻ ൏ min
௝,௟∈ீ೑

݀ሺ݆, ݈ሻ, ∀	݂ ് ݉				 

 
The criterion of neighborhood between objects to 
achieve compactness is given by the pairs of 
distances described in 1. 
 
Definition 2. Homogeneity (in the number of 
elements) 
 
Let ௜ܶ ൌ ݅ ௜| forܩ| ൌ 1,2, … , ݇ y ܯ ൌ ݊/݇ where ݊ is 
the number of geographical units and ݇ the number 
of groups to form. ܯ is the mean or the average 
amount of elements that correspond to each group 
(േ1 when the n objects can’t be split into k groups 
exactly). Then the standard deviation is given by: 
 

ߪ ൌ ට∑ ሺ்೔ିெሻమ
ೖ
೔సభ

௡
																							                                  (8) 

 
The standard deviation indicates how deviated 
from the average size	ܯ are the values of the set 
	 ௜ܶ. Therefore by minimizing the standard deviation, 
we minimize the unbalance of the solution rather 
than building already balanced solutions as it is 
done in the PAM-RH algorithm. The algorithm 
standard deviation is shown below: 
 
4.1 Algorithm standard deviation ߪ (SD) 
 
This algorithm can be seen as a complement or 
extension that can be used with several 
algorithms, for our work we chose PAM because of 
reasons explained in section 1. It can be deduced 
from our previous section (our definitions) that this 
algorithm is an implementation of a Bi-objective 
function formed by equation (7) and (8). 
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The following procedure is the new proposal itself; 
it is a simple calculation of the standard deviation 
of an array that contains the sizes of the entire 
cluster in the partition. 
 
Procedure CalculateSD (procedure 1) 
Input: array T that stores the sizes of the 
groups. 
Input: M average size of the groups (n/k). 
Output: σ the standard deviation of the array T 
 op = 0 
 fori = 0 hasta k do 
  op = (Ti – M)2 
 end for 
 S2 = op / n 
Return √S2 

 
This algorithm can be incorporated to any objective 
function as a homogeneity measure, for example a 
tabu search algorithm for clustering could add this 
procedure as an objective of the objective function. 
This means that with the proper strategies: initial 
solution and neighborhoods and search techniques 
this small procedure could be exploited to achieve 
even better solutions. In the following section we 
present our implementation with a simple PAM 
algorithm to show how it can be embedded in any 
algorithm and the results we achieved. 
 
4.2 Bi-Objective Proposal for compactness + 
homogeneity partitioning around medoids 
 
Let ܷܩ be the total number of Agebs. Let ܩ	 ൌ
	ሼݔଵ, ,ଶݔ … ,  ௡ሽ be the initial set of geographicalݔ
units, where: ݔ௜ is the ith geographical unit, (i is the 
index of the UG), and k is the number of zones 
(groups). Given that it is wished to form groups 
and to refer to these, we define: 
 
ܼ௜  as the set of UG that belong to the zone I and 
,௧ is the centroid, and ݀ሺ݅ܥ  ݆ሻ is the Euclidean 
distance from node i to node j (from one Ageb to 
another).  
 
Then we have as restrictions: ܼ௜ ് ݅	ݎ݋݂	∅ ൌ
1,… , ݇ (the groups are empty), ܼ௜ ∩ ௝ܼ ൌ ݅	ݎ݋݂	∅	 ്
݆ (there no repeated Agebs in different groups), 
and ⋃ ܼ௜ ൌ ௞ܩܷ

௜ୀଵ  (the union of all the groups is all 
the Agebs). 
 
Once the number k of centroids has been 
decided	ܿ௧, ݐ ൌ 1,… , ݇, to use they must be 
selected in a random way and next assign the 

Agebs to the centroids in the following way: for 
each Ageb i 
 

min
௧ୀଵ,…,௞

ሼ݀ሺ݅,  ௧ሻሽܥ

 
Each Ageb is assigned to the closest centroid ܿ௧. 
To achieve homogeneous cardinality in the groups 
to form, a weighted sum is done where each value 
of k is calculated in accordance to the sum of the 
distances of the AGEBS assigned to each 
centroid. The obtained value is weighted with w1 
and the standard deviation of the sizes of each 
group represented by ௜ܶ is weighted with a value 
 such that the minimum of the sum of both 2ݓ
weighted values is chosen. This can be expressed 
as the equation (9): 
 

min௧ୀଵ,…,௡௜௧ ቊ1ݓ൫min ൛∑ ∑ ݀ሺ݅, ௧ሻ௜∈௖೟ܥ
௞
௧ୀଵ ൟ൯ ൅ 2ቆටݓ

∑ ሺ்ೕିெሻమ
ೖ
ೕసభ

௡
ቇቋ          (9) 

 
This weighed objectives strategy is common in 
the multiobjective  literature, usually the weights 
of all the objectives should add up to 1. The 
values of each weight can be determined by 
means of experiment designs, shadowing, 
manual setting, etc. [21]. In our case we have 
experimented with manual tuning to determine 
that the most adequate weights for our desired 
goals are .7 for the homogeneity objective and .3 
for compactness. 
 
With this new strategy, in each movement, we 
achieve a minimization of the unbalanced groups 
and at the same time the compactness. It can be 
seen as a process that tries to locate the 
homogeneous solutions in the space where the 
compactness plays a tie breaker role to determine 
the best solution from very similar ones in regard 
to the standard deviation value. The only extension 
in this case is only over the objective function; 
therefore the usual assignation of objects to 
medoids that PAM employs remains the same. 
 
Based on equation (9) (The multiobjective function 
of compactness plus homogeneity) the following 
algorithm is built (procedure 2), which is the 
calculus of the weighted sum of the distances 
between objects and medoids plus our new 
homogeneity measure proposal, the standard 
deviation (procedure 1). 
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Procedure Bi-objective PAM Function (Procedure 
2)  
Input: array T that stores the sizes of the 
group. 
Input: array C of centroids. 
Input: weights w1 y w2. 
Output: cost the cost of the weighted sum of 
objectives. 
 cost = 0 
 for i = 0 until n do 
  j = ClosestCentroid(i,C) 
  cost = cost + d(i,j) 
  Tj = Tj + 1 
 end for 
 return w1*CalculateSD(T) + w2*cost 

 
The algorithm returns the value of the weighted 
sum, over which a search procedure like PAM can 
be guided towards the desired homogeneous 
solutions without overlooking the compactness 
needs of many TD problems. 
 
We show bellow how we incorporate this strategy 
to a PAM algorithm. 
 
(ALGORITHM 2) 
Algorithm PAM with Standard Deviation ߪ: Bi-
Objetive PAM  
Input: Dissimilarity matrix of size n x n. 
Input: integer k number of groups to form. 
Output: A compact and balanced solution. 

1: Initialize: Select k of the n objects   
as medoids 
2: Associate each object to the closest 
medoid  

 3: for each medoid m do 
 4:  for each object no-medoid o do 

5: exchange m with o and 
compute the total cost of 
the configuration using 
Bi-Objetive Function. 

 6:  end for 
 7: end for 

8: Select the configuration with the 
lowest cost 
9: Repeat 2 and 8 until there is no 
change in the medoids 

 
It’s easy to observe that algorithm 2 is the same as 
PAM but in line 5 we employ Procedure 2 as an 
objective function (line 5), this will make the search 
process to revolve around this value and will lead 
the process to balanced solutions eventually. 
 
The following table 2 gathers some important test 
runs of our Bi-Objective PAM approach in the 
standard deviation assuming that it makes sense  
 
 
 

to grant to the weighted sum a partial treat to the 
homogeneity. In this table 2 a value of .9 for 
homogeneity has been specified and .1 for 
compactness. Even though an experiment design 
wasn’t done, some tests were, taking into account 
some values for the weights that could be 
important for a decision maker with regards to 
each criterion.  
 
It was assumed that due to the important role of 
homogeneity in this study case, that it should have 
a bigger weight. It’s important to note in this table 
that the difference of homogeneity (DH) consists in 
subtracting the size of the smallest group to the 
size of the biggest one. 
 
 Compactness cost (CC) is the compactness cost 
and time (T) is the time that the algorithm needed 
to find a solution and is given in seconds. Lower 
bound (LB) is the lowest bound obtained with 
Lagrange Relaxation and Best feasible solution 
(BFS) is the best solution found [22]. 
 

G DH CC T LB BFS 

2 1 37.36047363 0.03 36.09367 36.0995

4 3 31.2165947 0.24 27.21939 27.2244

6 3 31.01499748 0.776 22.74695 22.8878

8 7 25.82069206 1.311 18.97615 19.4539

10 14 26.65379524 1.456 16.25054 16.3904

15 7 14.69729328 8.547 13.1308 13.7122

20 10 16.01709747 6.059 11.222 11.3802

40 9 7.332001686 142.823 7.1723 8.9053 

60 7 5.056399345 382.308 5.55026 6.6463 

80 10 3.856300831 672.112 4.45614 6.4801 

100 10 3.037899256 1047.046     

120 8 2.572799206 1258.085     

140 8 2.191200495 1745.663     

160 8 1.880400062 2427.552     

180 6 1.622200251 2334.863     

200 6 1.41950047 2552.976     

 
Table 2. Test runs for PAM with Standard  

Deviation with weights .9 and .1 respectively:  
Bi-Objective PAM (ALGORITHM 2). 
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5..Compilation of results of the computational 
experiments. 
 
For the test runs of the algorithm, the map ZMVT 
has been chosen and a Lagrange Relaxation (LR) 
approach has been used to obtain the lower 
boundaries of the optimal solution, based on a 
10% tolerance of unbalance in the number of 
elements in each group, this tolerance represents 
the elements above or below the ideal mean 
permitted in any given group.  
 
For example, if we have a problem with 500 
geographical units and we want to form two 
groups, this means that the ideal size should be 
500 divided by 2 which is 250, then the 10% 
tolerance means that any of the groups could 
have a size of ±%10 of 250, this is, one group 
could have 225 elements and the other one 275.  
 
Thereafter that the optimal values found by the 
LR are feasible only for this tolerance restriction. 
The scheme of LR considered was developed for 
the p-median problem and to get lower 
boundaries and it was developed in previous 
works and it is used in this paper due to the 
strong similarities between the p-median problem 
and the partitioning problem, not even in the 
model but also in the results found [22]. 
 
In table 3 the test runs for PAM-RH (algorithm 1) 
and Bi-Objective PAM (algorithm 2) have been 
gathered. It’s possible to assume that by 
assigning .9 as a weight to the homogeneity 
objective, the results could be better, just as we 
did on the experiments exposed in table 2, but the 
randomness of the solutions doesn’t help to emit 
a safe conclusion like that.  
 
Then, after diverse experimental trials for the map 
that has been used, it has been decided that a 
good balance for the values of the weighted sum 
is .7 for homogeneity and .3 for compactness. 
The results are presented in the following table. 
 
This table deserves different explanations: The 
gap value is calculated as the compactness cost of 
the solution minus the lower boundary and this is 
divided by the lower boundary again. 
 
 
 

G 

PAM RH 
(Algorithm 1) 

 Bi-Objetive PAM 
(Algorithm 2) 

LR 

CC 
Gap 
% 

D
H 

CC 
Gap 
% 

 
DH 

LB BFS 

2 36.73 1.76 1 37.22 3.12 1 36.09 36.09

4 27.38 0.63 1 30.95 13.75 5 27.21 27.22
6 24.32 6.88 1 29.46 29.46 6 22.75 22.77
8 21.22 11.54 1 24.44 28.44 6 19.03 19.30

10 17.86 9.64 1 17.12 5.11 12 16.29 16.30
15 14.67 11.54 1 14.32 8.92 4 13.15 13.78
20 13.53 19.96 1 13.08 15.91 4 11.28 11.91
40 10.68 47.71 1 7.520 3.93 8 7.236 7.96
60 8.894 61.65 1 5.113 -7.06 7 5.502 6.47

80 6.156 39.83
1

3.888 
-

11.69 
10 

4.403 5.12

100 8.454 126.3
1

3.049 
-

18.35 
9 

3.735 4.88
120       2.588   8     
140       2.194   8     
160       1.878   6     
180       1.621   6     
200       1.420   4     
220       1.241   4     
240       1.089   4     
260       0.949   4     
280       0.807   4     
300       0.680   4     

 
Table 3. Test runs for Algorithms 1 and 2. 

 
This value indicates how worse the solution in 
regard to the lower boundary is. In general, the 
gap is used to measure the improvement that a 
boundary cost has over another. In the literature in 
a wide sense, GAP means Generalized 
Assignment Problem and to be able to do a 
numerical study for algorithms like the ones we 
have developed, the GAP adapts in order to 
incorporate the LR boundaries and to compare the 
relationship between the quality of the boundaries 
and the feasibility of the solution with regards to 
the exact optimal solution. The value of the 
boundaries is previously calculated and they are 
included in the quotient of the gap equation for this 
purpose. In previous works we obtained the 
boundaries for compactness [22]. In this article we  
have included the homogeneity and the  
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compactness gap. In our study case, we have 
focused on the upper and lower boundaries 
through the formula ݃ܽ݌ ൌ ሺݖ∗ െ ሻܲܮݖ ܲܮݖ ∗ 100⁄ , 
where z* denotes the solution and zLP denotes the 
lower boundary that corresponds to the linear 
relaxation of the problem (measures the quality of 
the solutions found). A very interesting 
postgraduate document shows good details about 
LR and GAP [23]. 
 
The contrast between algorithm 1 and LR with 
respect to compactness indicates that they are very 
close to the lower boundary and it’s also possible to 
observe that the homogeneity or balance difference 
for PAM-RH is only of one object between the 
groups. On the other hand, as it was explained 
above, the values obtained with LR obey a 10% 
tolerance of unbalance for all of the tests; therefore 
we don’t know the optimal values for a less flexible 
tolerance like the results generated by algorithm 1. 
In other words a first look to the results seems to 
show that algorithm 1 reaches to a solution far from 
the lower boundary in some cases, however it 
achieves the “perfect” balance for this case due to 
the fact that the 469 objects can’t be split into 
equally sized groups, otherwise the homogeneity 
difference for this algorithm would be 0. With these 
results we suggest PAM-RH as an algorithm for 
small problems where the balance is not an option 
but a necessity.  
 
For bigger problems we have designed a faster but 
flexible approach, a homogeneity measure that 
can be implemented in any clustering optimization 
algorithm to minimize the unbalance of the 
solutions. Up until 40 groups the results found are 
within the 10% tolerance boundaries and as the 
problem grows it seems that the compactness cost 
improves with respect to the results of algorithm 1 
and the most important feature is the capability to 
work with bigger problems, unlike algorithm 1 that 
was problematic to keep testing for more than 100 
groups due to the heavily increased computing 
times. With this we conclude that algorithm 2 is a 
very strong option when a decision maker needs to 
work with a big clustering problem and a greater 
tolerance for unbalanced solutions is acceptable. 
The issues with the unbalance are not unexpected, 
it is known that in multiobjective problems, a 
constant struggle between the objectives exists 
and some will be affected and others benefited. 
 

The following figure shows a graphical 
representation of a solution for 40 groups obtained 
with Bi-Objective PAM. 
 

 
 

Figure 2. Map for 40 groups (Algorithm 2). 
 
This map in figure 2 reveals the problem of 
homogeneity over 10%. Some groups lose balance 
not only because of the conflict between the two 
objectives but also due to the geographical 
conditions of the data complicate the clustering 
with the two objectives (compactness and 
homogeneity), some of the objects are dispersed 
and not connected 
 
6. Conclusions  
 
The compactness implied in the classification by 
partitions has been discussed due to its high 
computational cost, and in this work we have 
proven that the complexity is greater when 
additional restrictions are incorporated to this kind 
of partitioning. Therefore we propose two 
solutions, one to deal with the problem in a strict 
way and another to deal with the high complexity 
of this problem. 
 
Both algorithms, 1 and 2, are better than the 
original PAM in regard to homogeneity, attaining 
compactness just above the ones that PAM 
obtains without balancing restrictions and in 
general terms Bi-Objective PAM compared to 
PAM-RH can work with problems that require a 
number of groups higher than 100 in an instance of 
469 objects.  
 
Algorithm 1 employs PAM improving its objective 
function with a post-processing of the solution to 
rearrange it in a balanced one in an iterative and  
 



 

Extensions to K‐medoids with balance restrictions over the cardinality of the partitions, B. Bernábe‐Loranca, et al. / 396‐408

Journal of Applied Research and Technology 407

recursive way. This procedure is complex and 
requires a high computing time as can be 
observed in table 1. For this, algorithm 2 was 
developed, that uses a combined objective 
function where the homogeneity restriction 
becomes a soft requirement to obtain better 
solutions for bigger problems in a smaller time (the 
maximum time is just over 2500 seconds for the 
biggest instance with an exhaustive algorithm like 
PAM). This second algorithm can be extended 
easily to applications with more than 2 criteria; this 
makes it a very flexible approach.  
 
A not serious flaw from both algorithms is that they 
barely reach the compactness cost given by LR, 
however LR has issues to work with the instances 
of 100 or more groups as well, and in this point our 
algorithm 2 is a good contribution to achieve bigger 
groupings. Furthermore algorithm 2 reaches a 
better compactness for more than 40 groups 
sacrificing the homogeneity a little.  
 
From the results obtained we have concluded that 
it is possible to obtain better results in both aspects 
(compactness and homogeneity) with algorithm 2 if 
we implement it along with a custom clustering 
algorithm based on a metaheuristic technique, due 
to the fact that PAM works with a random initial 
solution and its search strategy is exhaustive but 
not necessarily fit to find balanced solutions. Better 
strategies and techniques adapted to our study 
case promise better results for our algorithm 2 that 
has obtained promising solutions with a basic 
algorithm such as PAM. Also for PAM-RH there’s 
room for improvement through coding optimization 
to reduce its complexity. 
 
Currently, we are working with other peers to 
compare our results with other approaches. 
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