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Abstract: In this study, genetic programming (GP) was the systematic method used to identify the 
structure and parameters of a mathematical model for ethanol fermentation. The mathematical model 
simulated the effect of temperature on the kinetics of batch ethanol fermentation and helped to find 
out the optimum temperature for better performance of the process. Saccharomyces cerevisiae CSI-1 
growing in cane molasses-based media was the microorganism used in all the experiments. Achieving 
the model's precision in describing the experimental observations involved the estimation of its 
structure (non-linear principally) and its constant parameters. The model found describes the 
fermentation kinetics and showed a fair prediction for dry cell weight (DCW), colony forming units/mL 
(CFU/mL), residual sucrose (RS), residual glucose (RG), and ethanol concentration (E). The model was 
used to optimize the operating conditions of the process. The predictions from the model in terms of 
mean square error (MSE) and sum squared error (SSE) fitted the experimental data well with fitness 
values in a range of 𝑅𝑅2 ≥ 0.92 
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1. Introduction 
 

For ethanol fermentation to yield maximum results, it is crucial 
to optimize the operating conditions of the process 
(Asaithambi et al., 2021; Ciesielski & Grzywacz, 2021; Chen et 
al., 2021; Estevão et al., 2021; Gao et al., 2022; Li et al., 2021; 
Rodman & Gerogiorgis, 2020; Shen et al., 2021; Urtubia et al., 
2021). Among the key parameters, fermentation temperature 
plays a significant role in achieving high productivity. As 
ethanol production involves an exothermic reaction, it 
impacts the metabolism of the microorganism employed. 
While tropical regions naturally favor heat, controlling the 
fermentation temperature within the optimal range of 25-35 °C 
becomes challenging and economically unviable due to the 
substantial energy required to prevent heat-induced 
inactivation of yeast cells (Banat et al., 1992). Therefore, there 
is a quest for robust microorganisms that can efficiently 
ferment substrates in hot environments while tolerating high 
ethanol concentrations. The cost of controlling fermentation 
heat increases due to cooling requirements (Liu et al., 2019). It 
is worth noting that industrial ethanol fermentation relies on 
sugars derived from starchy materials, sugarcane juice, 
molasses (Lopes et al., 2016; McAloon et al., 2000; Samaniego-
Sánchez et al., 2020), and specific substrates for distilled 
alcoholic beverages (Solís-García et al., 2017). Determining 
feasible products based on available raw materials and 
established technologies is essential in industrial zones (Zhao 
et al., 2020; González-Herrera et al., 2016). In ethanol 
production, sugarcane addresses the raw material availability 
concern, but temperature remains a critical factor to be 
studied (Rivera et al., 2017). Modeling has been employed to 
elucidate cell growth in relation to temperature (Abunde et al., 
2019; Nor-Khaizura et al., 2019; Pereira et al., 2020). However, 
the outcome of simulation and optimization tools heavily 
relies on the quality of the mathematical model (Carrillo-
Ahumada et al., 2020; Castillo-Santos et al., 2017; Darvishi et 
al., 2020; Díaz &Tost, 2018; Goelzer et al., 2009; Hebing et al., 
2020; Jorayev et al., 2022; Meng et al., 2021; Müller et al., 2020; 
Rodríguez-Mariano et al., 2015; Salmi et al., 2021; Torralba-
Morales et al., 2020; Vignesh & Chandraraj, 2021; Wu et al., 
2015). Typically, fermentations rely on ideal laboratory 
conditions (e.g., synthetic media, stirring devices, heating 
modes), and it is preferable to consider industrial processes 
(real fermentation media, steady state, etc.) (de Andres-Toro 
et al., 1997). Modifying processes introduces new situations, 
necessitating extensive experimentation to generate data for 
constructing novel models. Consequently, developing a 
phenomenological process model becomes challenging due 
to limited understanding of the physicochemical phenomena 
and associated kinetic and transport mechanisms (Cheema et 
al., 2002). Moreover, the nonlinear dynamics of the process fur- 

ther complicate modeling (Feil et al., 2004). Given these 
challenges, hybrid approaches have emerged, such as genetic 
programming (GP), an evolutionary artificial intelligence 
technique for developing mathematical models based on 
input-output data, in contrast to conventional regression and 
neural network modeling techniques (Babu & Karthik, 2007). 
The study and modeling of ethanol fermentation processes 
have proven effective in improving product quality, enhancing 
process control, and reducing costs (Fan et al., 2015). genetic 
programming (GP) has successfully been utilized to model the 
glucose to gluconic acid bioprocess, resulting in increased 
overall productivity and improved interaction between 
dissolved oxygen and fungal mycelia (Babu & Karthik, 2007). In 
this research, GP was employed to develop a mathematical 
model that describes the impact of temperature on 
microorganism growth and ethanol yield. The approach 
followed the work of Madár et al. (2005), which focused on 
identifying the structure and parameters of a mathematical 
model using experimental data. Abonyi (2005) developed a 
MATLAB toolbox for this purpose, which was utilized in this 
research without modification. The algorithm selected for 
parameter and structure identification does not require a pre-
defined experimental design and produces satisfactory results 
with limited data for correlation, as demonstrated in the work 
of Ramírez-Hernández et al. (2017). This methodology has 
found applications in various domains such as algorithms, 
biotechnology, computing, process control, data mining, and 
modeling (Banzhaf et al., 1998; Dorgo et al., 2021; Kumar et al., 
2014). Germec et al. (2020) and Esfahanian et al. (2016) 
conducted parameter identification based on the Gompertz 
equation. However, this research focuses on establishing 
correlations using available data specific to the alcoholic 
fermentation process, rather than relying on a pre-defined 
mathematical structure. 

 
1.1. Model identification for the fermentation process 
Mathematical models play a crucial role in various scientific 
disciplines as they enable the description and prediction of 
system behavior under different conditions by utilizing 
variables. In this research, the symbolic optimization 
algorithm known as genetic programming (GP) was employed, 
following the approach proposed by Madár et al. (2005). This 
method facilitates the identification of both the model's 
structure and its parameters using experimental data. The key 
considerations in this approach include the following: 

 
𝐽𝐽(𝜃𝜃)min 𝜃𝜃∈ℝ𝑛𝑛 = [𝐽𝐽1(𝜃𝜃), 𝐽𝐽2(𝜃𝜃), … , 𝐽𝐽𝑚𝑚(𝜃𝜃)] ∈ ℝ𝑚𝑚                   (1) 

 
𝐽𝐽1(𝜃𝜃) = 𝜒𝜒2 = 1

𝑁𝑁
∑ (𝑦𝑦(𝑘𝑘)− 𝑦𝑦�(𝑘𝑘))𝑁𝑁
𝑘𝑘=1                                       (2) 

 
𝑦𝑦�(𝑘𝑘) = ∑ 𝑝𝑝𝑖𝑖𝐹𝐹𝑖𝑖(𝐱𝐱(𝑘𝑘))𝑀𝑀

𝑖𝑖=1                                                               (3) 
 



 
 

 

Cirilo Nolasco-Hipólito et al. / Journal of Applied Research and Technology 753-763 

 

Vol. 21, No. 5, October 2023    755 
 

The target vector 𝐽𝐽(𝜃𝜃) ∈ ℝ𝑚𝑚  represents the adjustment 
function based on the mean square error (MSE) between the 
calculated data and the measured output values. Here, 𝜃𝜃 ∈
ℝ𝑛𝑛  denotes the decision vector. In "Eq. 2," the parameters 
include 𝑁𝑁, the number of samples used for model 
identification;𝑦𝑦(𝑘𝑘), the experimental output; 𝑦𝑦�(𝑘𝑘), the 
calculated output; k, the sample index; and 𝜒𝜒, the vector of 
regression variables. In "Eq. 3," the parameters consist of 
nonlinear functions 𝐹𝐹1, … ,𝐹𝐹𝑀𝑀 and model parameters 
𝑝𝑝1, … , 𝑝𝑝𝑀𝑀. genetic programming (GP) is a systematic method 
that employs natural evolution to automatically generate 
algorithms and expressions for the identification of 
mathematical models for specific problems (Koza & Poli, 
2005). These expressions are encoded as a tree data structure, 
with functions as nodes and terminals as leaf nodes, allowing 
the generation of nonlinear input-output models. An 
orthogonal least squares algorithm is applied to estimate the 
contribution of tree branches and create a precise model 
(Brameier & Banzhaf, 2007). To develop the appropriate model 
for ethanol fermentation and similar systems, the GP 
MATLAB™ toolbox (available at 
http://www.mathworks.com/matlabcentral/fileexchange/471
97-genetic-programming-matlab-toolbox) (Abonyi, 2005) was 
utilized (Datta et al., 2019; Grosman & Lewin, 2004; Kummer et 
al., 2019). The parameters of GP are presented in "Table 1." 

 
Table 1. Parameters of GP. 

 
Parameter Value 
Population size 100 
Maximum number of tree levels 10 
Symbols +,*,/,-,^ 
Type of selection and selection mode Tournament 

selection 
Generation gap 0.8 
Probability of crossover 0.7 
Probability of mutation 0.3 
Mode of tree-recombination 1.0 

 
In this research, the variables 𝜃𝜃 = [𝑡𝑡,𝑇𝑇] are considered as 

decision variables. In addition to the results obtained using 
"Eq. 1," the following adjustment metrics are utilized: the 
coefficient of determination 𝑅𝑅2 ("Eq. 4"), which describes the 
fit between experimental and calculated data; the root mean 
squared error (RMSE) ("Eq. 5"), and the sum of squared error 
(SSE) ("Eq. 6"). The objective is to develop a model that can 
elucidate the impact of temperature on ethanol fermentation 
productivity, particularly how temperature influences the 
growth of microorganisms and, consequently, the system's 
ethanol concentration over time. 

 
 
 

𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆
∑ (𝑦𝑦�(𝑘𝑘))𝑁𝑁
𝑘𝑘=1

                (4) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁
                (5) 

 
𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝑦𝑦(𝑘𝑘) − 𝑦𝑦�(𝑘𝑘))2𝑁𝑁

𝑘𝑘=1                (6) 
 
The structure of the article is the following: Section 2 shows 

the experimental and computational methodologies; The 
results and discussion are shown in Section 3. Finally, some 
remarks and conclusions are exposed in Section 4. 

 
1.2. Review of multi-objective optimization design 
procedures 
A multi-objective optimization statement without loss of 
generality is defined as follows: 

 
𝐽𝐽(𝜃𝜃)min 𝜃𝜃∈ℝ𝑛𝑛 = [𝐽𝐽1(𝜃𝜃), … , 𝐽𝐽𝑚𝑚(𝜃𝜃)] ∈ ℝ𝑚𝑚              (7) 
 
subject to: 𝑔𝑔(𝜃𝜃) ≤ 0, ℎ(𝜃𝜃) ≤ 0 and  𝜃𝜃𝑖𝑖 ≤ 𝜃𝜃𝑖𝑖 ≤ 𝜃𝜃𝑖𝑖  with 𝑖𝑖 =

[1, … ,𝑛𝑛]. Where 𝜃𝜃 ∈ ℝ𝑛𝑛 is defined as the decision vector, 𝐽𝐽(𝜃𝜃) ∈
ℝ𝑚𝑚  as the objetive vector and 𝑔𝑔(𝜃𝜃), ℎ(𝜃𝜃) as the inequality and 
equatilty constraint vectors, respectively; 𝜃𝜃𝑖𝑖 , 𝜃𝜃𝑖𝑖  correspond to the 
lower and upper bounds in the decision space. 

Since there is no single solution that is optimal for all 
objectives, a set of solutions called the Pareto set is defined. 
Each solution in the Pareto set represents an objective vector on 
the Pareto front. All solutions on the Pareto front are considered 
a set of Pareto-optimal and non-dominated solutions. 

A design procedure employing multi-objective 
optimization techniques typically consists of three 
fundamental steps: 1) stating the multi-objective problem 
(MOP), 2) conducting the multi-objective optimization (MOO) 
process, and 3) performing the multi-criteria decision making 
(MCDM) stage (Meza et al., 2017). 

• MOP statement 
At this stage, the designer must make decisions regarding 

the design concept to address the problem, how to evaluate 
the performance of design alternatives, and which solutions 
are relevant, practical, or feasible. In the case of ethanol 
fermentation, the design concept refers to the operating 
conditions, while the design alternative pertains to specific 
time and temperature settings. Performance measurement 
requires the existence of a parametric model that establishes 
a correlation between the decision variables (which lead to 
specific design alternatives) and their performance 

• MOO process 
 
 
 
 

http://www.mathworks.com/matlabcentral/fileexchange/47197-genetic-programming-matlab-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/47197-genetic-programming-matlab-toolbox
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During this stage, the multi-objective optimization 
algorithm is implemented for the multi-objective problem 
(MOP). The algorithm can be ad-hoc or selected from a 
suitable pool of algorithms available. An algorithm is 
considered suitable for the problem at hand if it possesses 
desirable characteristics such as convergence, diversity, and 
relevance. 

• Decision-making stage 
Finally, with the approximate Pareto front, the designer will 

evaluate the trade-offs between conflicting design objectives 
and consider the design alternatives. The goal is to select a 
solution that strikes a preferable balance in performance for 
the specific problem. Procedures and visualization tools play 
a crucial role in assisting designers, particularly when dealing 
with four or more design objectives. 

 
2. Methodology 

 
2.1. Microorganism and culture conditions 
Saccharomyces cerevisiae CSI-1 (abbreviated as CSI) yeast was 
used as the microorganism in this study. A vial of CSI stock 
cultures, stored at -10 °C, was thawed and used to refresh the 
cells in tubes containing 10 mL of culture medium prepared 
with 20 g/L of glucose and 5 g/L of yeast extract (YE). The 
medium, sterilized for 20 minutes at 121°C prior to inoculation, 
was then incubated at 37°C for 24 h in a Shel Lab Sl incubator. 
Subcultures were performed monthly. 

 
2.2. Inoculum preparation and fermentation medium 
The refreshed culture served as the seed to prepare the 
inoculum using 200 mL of growth medium composed of 30 g/L 
of glucose and 5 g/L of YE. The inoculum was cultivated in a 
Shel Lab Sl incubator at a temperature of 37°C for 24 h. The 
pre-culture was subsequently centrifuged at room 
temperature using a high-speed centrifuge (Kubota model 
CR21G) at a speed of 6000×g for 5 min to harvest the cells. The 
cell pellet was then resuspended in 100 mL of sterilized water 
and used as the inoculum. The fermentation medium 
consisted of 5 g/L of YE and 100 g/L of molasses (70 g/L sucrose 
and 30 g/L glucose). The molasses contained a low 
concentration of fructose and were not monitored. The media 
was autoclaved for 20 min at 121°C. 

 
2.3. Batch fermentation 
The harvested cells from the inoculum were transferred to the 
fermenter to initiate the fermentation process. Ethanol 
fermentations were conducted in a 1 L fermenter with a 
working volume of 800 mL. The experiment was initiated at 
temperatures of 30°C, 33°C, 35°C, and 37°C with an agitation 
speed set at 100 rpm. The optical density, temperature, and 
pH were monitored and recorded throughout the 
fermentation process. Samples were withdrawn every 3 h, 

except at 12 h and 15 h, as these periods corresponded to the 
logarithmic phase where the monitored parameters were 
predictable, stable, and reproducible. 

 
2.4. Analysis 
2.4.1. Cell growth analysis 
The growth of CSI yeast was monitored by measuring the 
optical density (OD) of cells at a wavelength of 575 nm using a 
UV-Vis Spectrophotometer and correlated to dry cell weight. 

 
2.4.2. Colony forming units 
Colony forming units (CFU/mL) were determined using the decimal 
serial dilutions method (100 - 900 μL) of 101-107 or 108 in 1.5 mL 
tubes. An aliquot of 100 μL was spread on a PDA plate medium. 

 
2.4.3. Ethanol, glucose, and sucrose determination 
Fermentable sugars (glucose and sucrose) and ethanol were 
analyzed using an enzymatic method with a model BF-5D (Oji 
scientific instruments Co., Ltd. Japan) analyzer. 

 
2.4.4. Computational methodology 
This section presents the computational methodology used in 
this research work. Firstly, the experimental dynamics of the 
fermentation process were observed using the original 
experimental data. Subsequently, based on the experimental 
data and utilizing GP (Banat et al., 1992), a nonlinear 
mathematical model was identified to represent the variable 
responses: dry cell weight (DCW), residual glucose (RG), residual 
sucrose (RS), ethanol (E), and colony forming units/mL 
(CFU/mL) as functions of time and temperature. Then, to 
validate the obtained model, correlation metrics between the 
model and experimental data were performed. Finally, multi-
objective optimization was employed to determine if there is a 
certain correspondence between the previously obtained data 
and the results provided by optimization. 

 
3. Results and discussion 

 
3.1. Experimental dynamics of the fermentation process 
The experimental dynamics of the fermentation process are 
presented using the experimental characteristics DCW, RG, RS, 
E, and CFU/mL (see "Tables 2-6" and "Figures 1-2"). 

"Table 2" displays the dynamics of DCW as a function of 
time and temperature. The parameters that are within a 
limited range are DCW and CFU/mL, which show a strong 
correlation. It is preferable to have low values of DCW and 
CFU/mL to achieve high specific productivity. However, DCW or 
its equivalent CFU/mL correlates with the volumetric 
productivity, represented by ethanol concentration (E) 
("Figure 1"). Ethanol (E) can be considered as a reference for 
analyzing the coupling of the other parameters. This is the 
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optimal way to track the fermentation kinetics, considering 
that E is the final product of the substrate metabolism. Three 
intervals can be identified for E ("Figure 2"): a) 𝐸𝐸 > 40 g/L, b) 
20 g/L < 𝐸𝐸 ≤ 40 g/L and c) 0 g/L < 𝐸𝐸 ≤ 20 g/L. For the 
first interval a)  𝐸𝐸 > 40 g/L, high values of DCW, low values of 
RG, low values of RS, and high values of CFU are required and 
were obtained as expected. This trend is evident since higher 
CFU production leads to increased ethanol production. 

 
Table 2. Experimental data for DCW (g/L). 

 

c 
Temperature (°C) 

Mean 
Std. 
dev. 30 33 35 37 

0 1.95 2.2 2.25 2.28 2.17 0.15 
3 2.2 2.51 2.46 3.03 2.55 0.35 
6 2.6 2.82 3.48 5.64 3.64 1.39 

12 6.03 6.36 6.93 8.25 6.89 0.98 
18 10.1 9.1 11.1 8.55 9.71 1.13 
21 10.5 9.3 11.1 8.65 9.89 1.11 
24 9.75 9.55 10.08 8.7 9.52 0.59 

 
Table 3. Experimental data for RG (g/L). 

 

Time (h) 
Temperature (°C) 

Mean 
Std. dev. 

30 33 35 37 
0 28.0 27.3 27.0 28.0 27.58 0.51 
3 22.0 21.5 18.0 21.0 20.63 1.80 
6 16.0 14.0 10.0 13.8 13.45 2.51 

12 6.0 1.1 1.3 1.6 2.50 2.34 
18 2.0 0.8 0.5 0.08 0.85 0.82 
21 1.6 0.09 0.2 0.2 0.52 0.72 
24 0.2 0.0 0.1 0.0 0.08 0.10 

 
 

Table 4. Experimental data for RS (g/L). 
 

Time 
(h) 

Temperature (°C) 
Mean 

Std. 
dev. 30 33 35 37 

0 70.0 70.0 72.0 72.0 71.0 1.15 
3 67.5 67.0 68.0 67.0 67.38 0.48 
6 65.0 64.0 64.0 65.0 64.5 0.58 

12 65.0 61.3 64.0 62.4 63.18 1.65 
18 5.6 5.3 5.7 5.2 5.45 0.24 
21 5.0 4.0 5.0 4.5 4.63 0.48 
24 4.7 4.6 4.3 2.1 3.93 1.23 

 
Table 5. Experimental data for E (g/L). 

 
Time 

(h) 
Temperature (°C) 

Mean 
Std. 
dev. 30 33 35 37 

0 0.4 0.6 0.0 0.4 0.35 0.25 
3 3.0 2.9 0.8 1.7 2.10 1.05 
6 4.2 4.8 4.9 6.0 4.98 0.75 

12 20.0 18.0 24.0 26.0 22.0 3.65 
18 37.4 40.1 42.4 38.9 39.70 2.11 
21 41.4 43.2 45.3 44.4 43.58 1.69 
24 44.8 48.0 49.5 49.6 47.98 2.24 

 
 

Table 6. Experimental data for CFU/mL (Log10).  
 

Time 
(h) 

Temperature (°C) 
Mean 

Std. 
dev. 30 33 35 37 

0 6.54 6.82 6.70 6.48 6.64 0.15 
3 6.88 7.98 7.54 7.96 7.59 0.51 
6 7.15 8.32 8.88 8.64 8.25 0.77 

12 8.20 8.85 9.08 8.95 8.77 0.39 
18 8.93 8.95 9.12 8.66 8.92 0.19 
21 8.90 9.0 9.01 8.68 8.90 0.15 
24 8.91 8.98 9.04 8.52 8.86 0.23 

 
For the second interval (b) 20 g/L < 𝐸𝐸 ≤ 40 g/L, high and 

medium values of DCW, low values of RG, high values of RS, and 
high values of CFU are required. In contrast, for the third 
interval 0 g/L < 𝐸𝐸 ≤ 20 g/L, low and medium values of DCW, 
high, medium, and low values of RG, high values of RS, and 
high, medium, and low values of CFU are observed to be 
required. This trend is also reasonable because lower CFU 
results in lower production of E. One solution to this situation 
is to allow the fermentation to continue for a longer time. 
However, this approach is unfavorable from an industrial 
perspective. This situation arises since the yeast acts as a 
biocatalyst, consuming the substrate according to the 
reaction rate. Glucose is the first substrate to be consumed 
due to the diauxic phenomenon, and then sucrose is 
metabolized once the initial glucose present in the molasses 
is depleted. At the end of fermentation, the desired product, E, 
is produced consequently correlated with the consumed 
substrate, the concentration of cells (DCW), and the operating 
temperature. "Table 3" shows the dynamics of RG as a function 
of time and temperature. The decrease in RG is inversely 
proportional to time, with the most drastic results at 𝑡𝑡 > 12 h. 
There are similarities in the RG values, specifically at: (a) 𝑅𝑅𝑅𝑅 ≅
27 g/L, (b) 𝑅𝑅𝑅𝑅 = 28 g/L, (c) 𝑅𝑅𝑅𝑅 = 0.2 g/L and (d) 𝑅𝑅𝑅𝑅 = 0 g/L. 

For (a) 𝑅𝑅𝑅𝑅 ≅ 27 g/L, the operating conditions correspond 
to: 𝑇𝑇 = 33 °C, 𝑡𝑡 = 0 h and 𝑇𝑇 = 35 °C, 𝑡𝑡 = 0 h. For (b)  𝑅𝑅𝑅𝑅 =
28 g/L, the operating conditions correspond to: 𝑇𝑇 = 30 °C, 
𝑡𝑡 = 0 h and 𝑇𝑇 = 37 °C, 𝑡𝑡 = 0 h. For (c) 𝑅𝑅𝑅𝑅 = 0.2 g/L, the 
operating conditions correspond to:  𝑇𝑇 = 30 °C, 𝑡𝑡 = 24 h and 
𝑇𝑇 = 35 °C, 𝑡𝑡 = 21 h and 𝑇𝑇 = 37 °C, 𝑡𝑡 = 21 h. Finally, for (d) 
𝑅𝑅𝑅𝑅 = 0 g/L the operating conditions correspond to: 𝑇𝑇 = 33 
°C, 𝑡𝑡 = 24 h and 𝑇𝑇 = 37 °C, 𝑡𝑡 = 24 h. The decrease in glucose 
concentration is due to the cell's metabolism for cell 
reproduction, converting glucose into ethanol as a product. 
Glucose is preferred over sucrose as a substrate because it is 
thermodynamically favorable. 

"Table 4" displays the dynamics of RS as a function of time 
and temperature. The decrease in RS varies with time, with the 
most significant changes occurring at 𝑡𝑡 > 12 h. This 
characteristic shows similar values for all operating 
conditions. However, the operating conditions 𝑇𝑇 = 33 °C, 𝑡𝑡 =
12 h, and 𝑇𝑇 = 37°C, 𝑡𝑡 = 24 h do not follow the same trend as 
the other operating conditions. As part of the normal yeast 
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metabolism of glucose and sucrose, the cell undergoes 
diauxic shift, where glucose is preferred over sucrose (Peng et 
al., 2015). Only when glucose is depleted does the yeast start 
to consume sucrose. It is known that Saccharomyces 
cerevisiae can utilize simple sugars but are unable to use 
monosaccharides such as xylose. Therefore, this model does 
not apply when the substrate comes from lignocellulosic 
fermentable sugars (Nawaz et al., 2020). 

"Table 5" presents the dynamics of ethanol (E) as a 
function of time and temperature. The increase in E is directly 
proportional to time, with the most notable changes occurring 
at 𝑡𝑡 > 12. For the time interval at at 𝑡𝑡 > 12 h, the production 
of E increases twice that of at 𝑡𝑡 > 12 h. Some operating 
conditions that do not present the same trend as the others 
are the following: (a) 𝐸𝐸 = 0 g/L, (b) 𝐸𝐸 = 0.8 g/L and (c) 𝐸𝐸 = 6 
g/L with 𝑇𝑇 = 35 °C, 𝑡𝑡 = 0 h with; with 𝑇𝑇 = 35°C, 𝑡𝑡 = 3 h and 
𝑇𝑇 = 37 °C, 𝑡𝑡 = 6 h respectively. Again, this small difference is 
due to slight differences in the initial inoculum to the main 
fermentation. 

"Table 6" displays CFU/mL as a function of time and 
temperature. The increase in CFU/mL is directly proportional 
to time, but there is a stationary phase observed at 𝑡𝑡 > 12 h. 
This characteristic exhibits a similar trend across all operating 
conditions and is often observed in various microorganisms 
when important nutrients or cofactors are depleted. “Figures 
1-2" illustrate the interrelationship among all the fermentation 
process characteristics in a combined manner. 

 
Figure 1. Coupling of the characteristics of the fermentation process. 
Green lines: 𝐸𝐸 > 40 g/L; blue lines: 20 g/L < 𝐸𝐸 ≤ 40 g/L: red lines: 

0 g/L < 𝐸𝐸 ≤ 20 g/L (experimental characteristics). 
 

 
Figure 2. Coupling of the characteristics of the fermentation process. 
Green lines: 𝐸𝐸 > 40 g/L; blue lines: 20 g/L < 𝐸𝐸 ≤ 40 g/L: red lines: 

0 g/L < 𝐸𝐸 ≤ 20 g/L (normalized responses). 

The characteristics that are in a limited range are DCW and 
CFU/mL, and their influence on the other characteristics is 
observed in the production of ethanol ("Figure 1"). 
Characteristic E (ethanol) can be considered as a reference to 
analyze the coupling of the other characteristics, for which 
there are three intervals ("Figure 2"): a) 𝐸𝐸 > 40 g/L, b) 
20 g/L < 𝐸𝐸 ≤ 40 g/L and c) 0 g/L < 𝐸𝐸 ≤ 20 g/L. For the first 
interval a) 𝐸𝐸 > 40 g/L, high values of DCW, low values of RG, 
low values of RS and high values of CFU/mL are observed. For 
the second interval b) 20 g/L < 𝐸𝐸 ≤ 40 g/L, high and 
medium DCW values, low RG values, high RS values and high 
CFU/mL values are observed. Finally, for the third interval 
0 g/L < 𝐸𝐸 ≤ 20 g/L, low and medium values of DCW, high, 
medium, and low values of RG, high values of RS and high, 
medium, and low values of CFU/mL are observed for the 
kinetics of the fermentation. The situation is due to the 
consumption of substrate by the yeast obeying the reaction 
rate. The first substrate consumed is glucose, then the diauxic 
phenomenon biases the reaction toward sucrose 
consumption. At the end of the fermentation, the ethanol 
produced as desired product is a consequence correlated with 
the substrate consumed and the temperature. 

 
3.2. Model identification of the fermentation process 
The experimental data were used in the GP MATLAB™ toolbox 
to obtain the mathematical model that describes the behavior 
of the fermentation process. The parameters of GP are 
described in "Table 1." The mathematical models are: 

 
𝐷𝐷𝐷𝐷𝐷𝐷 = −0.001857𝑡𝑡(𝑇𝑇 + 𝑡𝑡2) + 0.059𝑡𝑡2 + 2.232         (8) 

 

𝑅𝑅𝑅𝑅 = − 28.130𝑡𝑡2

(𝑡𝑡2−𝑡𝑡+𝑇𝑇)
+ 27.586                                                         (9) 

 

𝑅𝑅𝑅𝑅 = −61.36� 𝑇𝑇

𝑇𝑇+�𝑇𝑇−𝑡𝑡𝑡𝑡 �
𝑇𝑇� + 66.22                                       (10) 

 
𝐸𝐸 = 0.067𝑡𝑡𝑡𝑡                                                                                  (11) 
 

𝐶𝐶𝐶𝐶𝐶𝐶 = �
−0.080𝑡𝑡 − 305.94

(𝑡𝑡+𝑇𝑇)
+ 16.47 if 𝑇𝑇 ≤ 33°C

−0.224𝑡𝑡 − 12.92𝑇𝑇
(𝑇𝑇+2𝑡𝑡)

+ 19.56 if 𝑇𝑇 > 33°C
           (12) 

 
where, the parameter models are: DCW is dry cell weight, 

CFU is colony forming units, RG is residual glucose, RS is 
residual sucrose, E is ethanol concentration, t is time and T is 
temperature considering the following restrictions: if 𝐷𝐷𝐷𝐷𝐷𝐷 <
0 then 𝐷𝐷𝐷𝐷𝐷𝐷 = 0; if 𝑅𝑅𝑅𝑅 = 0; if 𝑅𝑅𝑅𝑅 < 0 then 𝑅𝑅𝑅𝑅 = 0; if 𝐸𝐸 < 0 
then 𝐸𝐸 = 0 and 𝐶𝐶𝐶𝐶𝐶𝐶/mL < 0 then           𝐶𝐶𝐶𝐶𝐶𝐶/mL = 0. The 
mathematical models are compared with the experimental 
data ("Figure 3"), and it can be observed that the 
mathematical model fitted the experimental data values fairly. 
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Figure 3. Validation of the mathematical model vs. experimental 

data: a) DCW (g/L); b) RS (g/L); c) log10CFU/mL; d) RG (g/L); e) E (g/L); 
experiments were performed by triplicate. 

 
The fitness is higher than 𝑅𝑅2 ≤ 0.92 as reported in "Table 

7." Therefore, "Eqs. 7-11" adequately represent the 
experimental data and are used to optimize the characteristics 
of the fermentation process. 

 
Table 7. Fit Indices of experimental values.  

 
 
 
 
 
 
 
3.3. Statement of optimization problem 
In this research work, it is considered that the ethanol 
fermentation process presents the following characteristics: 
(DCW) g/L, (RG) g/L, (RS) g/L, (E) g/L and (Log10CFU/mL). These 
characteristics are considered as dependent variables of the 
process. The independent variables of the process are time (𝑡𝑡) 
and temperature (𝑇𝑇). The relationship between the dependent 
and independent variables is shown in "Eqs 8-12". Some 
bibliographic references that consider a methodology like this 
work is Ramírez-Hernandez et al. (2017) where they consider: 
a) set of data obtained experimentally from the dependent va- 
 
riables of independent, b) identification of the structure and 
parameters of the model and finally c) optimization in 
numerical simulation of the best operating conditions. For 
point c) optimization in numerical simulation of the best 
operating conditions in this research work, the following is 
considered. The multiobjective optimization problem can be 
posed by finding the values of 𝑋𝑋1 and 𝑋𝑋2 with 𝐉𝐉(𝜃𝜃) ∈ ℝ6 =
�𝐽𝐽1,𝐽𝐽2,  𝐽𝐽3 ,   1

𝐽𝐽3
,   𝐽𝐽4,  𝐽𝐽5� therefore:  

 
min  𝐉𝐉               (13) 
 
where 𝜃𝜃 is time (𝑋𝑋1) and temperature (𝑋𝑋2) subject to the 

decision variables are 0 < 𝑋𝑋1 < 24 and 30 < 𝑋𝑋2 < 37. The 

definition of the decision variables allows the optimization 
algorithm to define the search space for potential solutions. In 
this work, the search space was determined with respect to a 
previous experimentation ("Tables 2-6"). To obtain potential 
solutions the MATLAB™ optimtool/gamultiobj (multiobjective 
optimization using genetic algorithm) toolbox was used. 

 
3.4. Optimization 
"Figures 4a-4b" present the operating conditions and 
corresponding characteristics obtained from the model and 
experimental data, showing a correspondence between them. 
In contrast, "Figures 4c-4d" display the set and Pareto front of 
operating conditions obtained through the optimization 
algorithm, along with the characteristics obtained through 
simulation. Additionally, the maximum values obtained from 
both experiments and simulation are also indicated. 
 

 
 

Figure 4. Set and Pareto front of the optimization process: a) 
Independent variables (t,T) proposed experimentally, b) dependent 

variables (DCW, RG, RG, E and Log10CFU/mL) obtained with the 
mathematical model; c) independent variables (t, T) proposed by 

means of optimization, d) dependent variables (DCW, RG, RG, E and 
Log10CFU/mL) obtained with the mathematical model and c). Blue 

lines indicate the maximum of E. 
 
It is observed that there is a highly aggregated set in the 

region corresponding to a time interval of 10 to 15 h, but the 
maximum value is found with the operating conditions that 
meet  𝑡𝑡 > 37 °C and 𝑡𝑡 > 22 h. One advantage of simulation is 
that it  allows us to observe operating conditions that could 
lead to better performance of the process, which may include 
regions that were not explored in experimentation. The model 
was evaluated through experimentation and yielded 
satisfactory results. 

These results precisely reveal the desired conditions for an 
exothermic process like ethanol fermentation. Operating 
ethanol fermentation above 37°C is crucial for tropical 
countries due to its significant economic advantages. The 
advantage lies in the fact that if fermentation is conducted at 
temperatures higher than 37°C, it becomes easier to control 
using heat exchangers, especially considering that the cooling 
water temperature in tropical countries typically ranges from 

Characteristic 𝑅𝑅2 RMSE SSE 
DCW 0.93 0.82 19.14 
RG 0.97  1.74 84.78 
RS 0.98 3.08 267.15 
E 0.92 5.39 814.45 

Log10CFU/mL 0.94 0.19 1.11 



 
 

 

Cirilo Nolasco-Hipólito et al. / Journal of Applied Research and Technology 753-763 

 

Vol. 21, No. 5, October 2023    760 
 

30-35°C. Moreover, operating at temperatures above 37°C is 
also an economic advantage for processes with a duration of 
less than 24 h, as it reduces energy consumption required for 
cooling equipment. Operating at 37°C is a characteristic of the 
selected microorganism, which can produce ethanol even at 
temperatures as high as 45°C. However, operating at such 
elevated temperatures is not advisable as it negatively affects 
the viability of the microorganism. Maintaining viability is 
crucial to reuse the microorganism for multiple cycles of 
operation. 

 
4. Conclusions 

 
The values calculated with the mathematical model align well 
with the experimental data. Thus, the models can be 
effectively applied to predict the kinetics of the fermentation 
process, including cell growth and ethanol production from 
sugarcane molasses across a range of temperatures, 
demonstrating the accuracy of the proposed model. Finally, 
the optimization of ethanol fermentation characteristics 
highlights the identification of feasible operating conditions. 
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