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ABSTRACT 
This work presents a practical method for estimating the full kinematic state of a vehicle, along with sensor error 
parameters, through the integration of inertial and GPS measurements. This kind of system for determining attitude 
and position of vehicles and craft (either manned or unmanned) is essential for real time, guidance and navigation 
tasks, as well as for mobile robot applications. 
 
The architecture of the system is based in an Extended Kalman filtering approach in direct configuration. In this case, 
the filter is explicitly derived from the kinematic model, as well as from the models of sensors error.  The architecture 
has been designed in a manner that it permits to be easily modified, in order to be applied to vehicles with diverse 
dynamical behaviors. 
 
The estimated variables and parameters are: i) Attitude and bias-compensated rotational speed of the vehicle, ii) 
Position, velocity and bias-compensated acceleration of the vehicle and iii) bias of gyroscopes and accelerometers. 
Experimental results with real data show that the proposed method is enough robust for its use along with low-cost 
sensors. 
 
Keywords: Inertial Navigation, Sensor Fusion, State Estimation. 
 

 
1. Introduction 
 
The process for autonomously estimating the state 
of a vehicle (e.g position, velocity, orientation, 
etc.), while it is maneuvering along a trajectory, is 
often referred as navigation. 
 
The autonomous navigation is an important 
capability for both manned and unmanned 
vehicles. In our context the term "autonomous" 
refer to the capacity of the system for estimating 
the state of the vehicle without the aid of a human 
operator. Often, the autonomous navigation is a 
prerequisite for control tasks. 
 
The Inertial Navigation System (INS) is one of the 
most widely used dead reckoning systems. A 
typical INS fuses sensory information taken from 
inertial sensors (accelerometers) and rotational 
sensors (gyroscopes) in order to continuously 
estimate position and orientation of the body 
(vehicle). Because different sources of sensor 
errors are integrated over time, an INS can provide 
correct and high frequency (typically in the range  
 

 
 
of 100 to 200 Hz) information but only for short  
term. This fact is especially notorious when low-
cost sensors are used. On the other hand, a 
Global Positioning System (GPS) provides global-
referenced position and velocity estimations at low 
rate (typically in the range of 1 to 4 Hz).  The 
integration of both systems (INS and GPS) can 
generate a navigation system capable of exploiting 
the advantages of both, and also limits the 
drawbacks of the systems viewed by separate. 
Thus, a GPS-aided INS can produce estimates of 
the full state of the vehicle, both at high frequency 
as drift-free.  
 
The integration of inertial sensors with GPS is 
broadly classified as follows [25]: 
 
• Loosely coupled system.  
 
• Tightly coupled system. 
 
• Ultra-tightly coupled system 
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In loosely coupled systems [8-13],[16],[18] and [19], 
the GPS data (e.g. position velocity, etc) are fused 
explicitly with INS data. This kind of systems is 
significantly dependent on the availability of GPS data. 
 
In tightly coupled systems [6] and [13], the GPS raw 
measurements (e.g pseudo ranges) are fused 
directly with the INS data. The main advantage of this 
kind of methods is that the system can carry out GPS 
measurement updates, even if there are less than 
four satellites available. Their downside has to be 
with the increase of complexity.  
 
In Ultra-tightly coupled systems [26], the INS output 
(position, velocity and attitude) is used as an external 
input to the GPS receiver. The INS output aid in 
prepositioning calculation for faster signal acquisition 
and in interference rejection during signal tracking. 
The implementation of this kind of systems is often 
complicated because access to the GPS's firmware 
is required. 
 
Different techniques of state estimate have been 
used for integrating INS and GPS. Schemes 
presented in [1] and [2] are based in techniques of 
linear Kalman filtering. The Kalman filter (KF), 
commonly used in estimating the system state 
variables and suppressing the measurement noise, 
has been recognized as one of the most powerful 
state estimation techniques. The KF allows to merge 
information obtained from different sensor sources in 
a structured manner. For example in [29], a KF-
based method for estimating position is presented, 
this approach combines visual data with wireless 
sensors network information. Commonly methods 
based on linear filtering utilize simplified (linearized) 
models. Thus, some computational time is saved, but 
at the cost of some decrease in performance. 
However, the wide variety of processing devices 
currently available makes feasible the implementation 
of complex algorithms in order to improve 
performance. 
 
Due to the nonlinear nature of the problem, the 
nonlinear version of the Kalman Filter (The Extended 
Kalman Filter or EKF) has been the technique 
typically used to compute the GPS-INS solution. 
There are two basic ways for implementing the EKF: 
 
• Indirect formulation. 
 
• Direct formulation.  

The EKF in Indirect formulation (also referred as 
the error state space formulation), estimates a 
state vector which represents the errors defined 
by the estimated state and the estimated nominal 
trajectory. An error model for each component of 
the state is needed in order to estimate the 
measurement residual. The measurement in the 
error state space formulation is made up entirely 
of system errors and is almost independent of 
the kinematic model. Most of the approaches 
found in literature are based in this kind of 
configuration [3-13]. 
 
The EKF in Direct configuration (also referred to 
as total state space formulation) updates the 
vector state implicitly from the predicted state and 
the measurement residual (the difference 
between the predicted and current measurement). 
 

Method
Integration 

type 
Estimated 

errors 
Attitude 

Estimation 
technique

[16] Loosely Gb,Gs,Ab,As Quat. 
I-EKF 

(Unscented)

[19] Loosely No Euler 
Neural 

Networks 

[6] Tightly Gb,Ab Euler 
i-EKF 

(Quadratic)
[9] Loosely Gb Quat. i-EKF 
[8] Loosely Gb,Ab DCM i-EKF 

[10] Loosely Gb,Ab Euler i-EKF 

[18] Loosely No Euler 
Particle 
Filter 

[11] Loosely Ab Euler i-EKF 
[12] Loosely * * i-EKF 
[13] Tightly Gb,Ab,Tb Quat. i-EKF 
This 
work 

Loosely Gb,Ab Quat. d-EKF 

 
Table 1. Resume of Methods. *Not specified.  For 

"Estimated errors" column: G = gyroscope, A = 
accelerometer, T = GPS time, b = bias, s = scale, (e.g. 

Gb means gyro bias). For "Attitude" column: DCM 
means Direction Cosine Matrix, and Quat. is the 

abbreviation of quaternion.  For "Estimation Technique" 
column, i-EKF = Extended Kalman Filter in indirect 

configuration, d-EKF = Extended Kalman Filter in direct 
configuration. In parentheses are indicated. 

 
In this kind of EKF configuration, the system is 
essentially derived from the kinematics. One of the 
characteristics of the direct configuration is its 
conceptual clarity and simplicity. A review on the 
EKF and its configurations can be found in [14]. 
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In addition, it is possible to find others methods which 
rely in some variations of Kalman filtering as: 
Adaptative Kalman filtering [15], Unscented Kalman 
filtering [16].  Particle filtering (PF) is a nonlinear 
estimation technique which has been also utilized for 
integrating INS and GPS. The advantage of PF is the 
capability to deal with nonlinear non-Gaussian 
models. Some methods based on PF are [17] and 
[18]. Another kind of methods relies in estimation 
techniques coming from the artificial intelligent (AI) 
research community, as [19], which is based on 
Neural Networks. Alternatively, there is also possible 
to find hardware-oriented approaches as [20]. 
 
Table I presents a resume of some methods 
published in journals in recent years. The 
characteristics of the methods presented in Table I 
are: i) Integration type, ii) estimated parameters of 
sensors error (e.g. bias, scale, etc.) iii) attitude 
representation, and iv) main estimation technique.   
While it is possible to find different families of 
approaches in literature, the EKF is still the standard 
estimation technique used for GPS-aided Inertial 
Navigations Systems. Nevertheless, the use of the 
EKF in direct configuration has been much less 
explored than its counterpart; the EKF in indirect 
configuration (See Table I). This is especially the 
case when sensor errors (e.g. bias of gyros and 
accelerometers) want to be included in the estimated 
vector state. 
 
This paper describes a novel method for 
implementing a GPS-INS integrated system. The 
proposed system architecture is based in an 
Extended Kalman filtering approach in direct 
configuration. Thus, the filter is explicitly derived from 
the kinematic model as well as from the models of 
sensors error. 
 
The paper is organized as follows: Section II 
describes in detail the proposed method. In section III 
experimental results, carried out with real data, are 
presented in order to validate the performance of the 
proposed method. Finally section IV presents 
conclusions and final remarks. 
 
2. Method description 
 
2.1 Vector state and system specification 
 
The goal of the proposed method is the estimation 
of the following system state x ̂: 

'
x̂ x xvnb b n n

g a

nq r a 
 

   (1) 

 
where qnb = [q1,q2,q3,q4] is a unit quaternion 
representing the orientation (roll, pitch and yaw) of 
the body (vehicle). ωb = [ωx ωy ωz] is the bias-
compensated velocity rotation of the body expressed 
in the body frame (b). xg = [xg_x xg_y xg_z] is  the bias of 
gyros. rn = [xv yv zv]  represents the origin of the body 
coordinate frame (b) expressed in the navigation 
frame (n). vn = [vx vy vz] is the velocity of the body 
expressed in the navigation frame. An = [ax ay az] 
represents the bias-compensated acceleration of the 
body expressed in the navigation frame. xa = [xa_x xa_y 

xa_z] is the bias of the accelerometers. Figure 1 
(upper plot) illustrates the relation between the 
vehicle (body) frame and the coordinate systems 
used as navigation frame.  
 

 
 

 
 

Figure 1. Relation between the vehicle frame and the 
coordinate system used as navigation frame (upper). 

The local tangent frame is used as the navigation frame 
(lower). For navigation in a local tangent frame, the 
origin of the ned coordinate axes would be at some 

convenient point near the area of operation. 
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The proposed method is mainly intended for local 
autonomous vehicle navigation. Thus, the local 
tangent frame is used as the navigation frame (n) 
(Figure 1, lower plot). In this work, the axes of the 
coordinate systems follow the NED (North, East, 
Down) convention. 
 
In order to estimate the system state x̂, two kinds of 
measurement are considered: 
 
a) High rate measurements. 
An inertial measurement unit (IMU) of 9DOF 
formed by i) 3-axis gyroscope, ii) 3-axis 
accelerometer, and iii) 3-axis magnetometer, is 
considered. See [27] for an extended discussion 
about estimating orientation using a 9DOF IMU. 
Whereas magnetometers are used only for the 
system initialization, it is assumed that at every k 
steps there is availability of gyros and 
accelerometers measurements.  
 
Gyroscopes measurements: the angular rate ωb of 
the vehicle, measured by the gyros (in the body 
frame) as yg, can be modeled by:  
 

gxb
g gy v       (2) 

 
where xg is an additive error (bias) and vg is a 
Gaussian white noise with power spectral density 
(PSD) σg

2.  
 
Accelerometer measurements: the acceleration of 
the vehicle ab, measured by the accelerometers (in 
the body frame) as ya can be modeled by: 
 

axb
a a

by a g v        (3) 

 
where, gb is the gravity vector expressed in the 
body frame, xa is an additive error (bias), and va is 
a Gaussian white noise with PSD σa

2. 
 
b) Low rate measurements:  
GPS measurements of position zr and orientation 
zθ, available at n*k steps, can be modeled by:  
 

n n
r r
n n
z r v
z v 
   
   
      

 
    (4) 

 
 

where rn = [xv yv zv]  represents the position of the 
GPS antenna expressed in the navigation frame 
(in Cartesian coordinates), and vr is a Gaussian 
white noise with PSD σr

2. θn is the course angle of 
the vehicle, measured by the GPS unit (respect to 
the geographic north), and vθ is a Gaussian white 
noise with PSD σθ

2. See [28] for an extended 
discussion about GPS measurement models. 
Commonly, position measurements are obtained 
from GPS devices in geodetic coordinates (latitude 
longitude height). If this is the case, the GPS 
position measurements must be transformed to 
their corresponding local tangent frame 
coordinates. 
 
2.2 Architecture of the system 
 
The architecture of the system is based in the 
typical loop of prediction-update steps, defined by 
an EKF in direct configuration (Figure 2).  
 
System Prediction: Prediction equations propagate 
in time the estimation of the system state, by 
means of the measurements obtained from gyros 
and accelerometers. Prediction equations offer 
correct estimates at high frequency, but only for 
short term. 
 
System Updates: In order to correct and limit the 
drift in estimates of the system state, globally 
referenced information along with a priori 
assumptions about the systems dynamics, are 
fused into the system, by means of the update 
equations.  Three kinds of system updates are 
considered: 
 
• Updates by means of dynamical constraints: a-
priori knowledge about the vehicle dynamics is 
incorporated into the system at medium rate. 
 
• Updates by means of the observation of the 
gravity vector: information about the attitude of the 
vehicle (roll and pitch) is incorporated into the 
system at variable rate.  
 
• Updates by means of GPS measurements: 
information about position and heading of the 
vehicle are incorporated into the system at low rate.   
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2.3 System prediction 
 
At every k step that measurements of gyroscopes 
and accelerometers are available, the system state 
is taken a step forward by the following (discrete) 
nonlinear model: 
 

( 1) ( ) ( 1)

( 1) ( ) ( )

g(k 1) g(k)

2
( 1) ( ) ( 1) ( 1)

( 1) ( ) ( 1)

( 1) ( ) ( )

(

( [ ] )

Attitude x

x (1- )x

(v ) ( )2
v v ( )

Position
[ x ]

x

nb nb bn b
k k k

b
k g k g k

xg

n n n n
k k k k

n n n
k k k

n bn
k a k a k

a

q q q R t

y

t

tr r t a

a t

a R y g







 





  

 






  

 
 




  

  

 

   

  

  

1) a(k)(1- )xxak t











 

 

       
being q(Rbn [ωb∆t]´) a quaternion computed from the 
rotation vector Rbn[ωb∆t]´ (using Eq. 25). The rotation 
vector [ωb∆t] is determined by the bias-compensated 
gyro readings ωb. Note that [ωb∆t] is converted to 
navigation coordinates via the body-to-navigation 
rotation matrix Rbn. The matrix Rbn is computed from 
the current quaternion qnb, (using Eq. 26). A similar 
model for integrating attitude by means of gyro 
measurements was used in previous author work [21].  

Parameters λxg and λxa are correlation time 
factors which respectively model how fast the 
bias of gyro and accelerometers are varying. g 
is the gravity vector and ∆t, the sample time of 
the system. 
 
The state covariance matrix P is taken a step 
forward by: 
 

( 1) ( )x x u uk kP F P F FU F
        (6) 

 
The measurement noise of gyroscopes and 
accelerometers (respectively vg and va) are 
incorporated into the system by means of the 
process noise covariance matrix U, through 
parameters σg

2 and σa
2: 

 

 (7) 
 
The full model used for propagating the sensor 
bias error is: biask+1=(1-λ∆t)biask + vb. Where vb  
models uncertainty in bias drift. The uncertainty 
in bias for gyro and accelerometers 
(respectively vxg and vxa) is incorporated into 
the system through the noise covariance matrix 
U via PSD parameters σxg

2 and σxa
2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2 2 2
3 3 3 3 3 3 3 3g xg a xaU diag I I I I         

(5) 

 
 

Figure 2.  Block diagram showing the system architecture. 
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The Jacobian ∇Fx (Eq. 8) is formed by the partial 
derivatives of the nonlinear prediction model 
(Eq. 5) with respect to the system state x ̂. In 
Jacobians the notation "∂fx/∂y" is used for partial 
derivatives. And it reads as the partial derivative 
of the function f (which estimates the state 
variable x), with respect to the variable y. 
Jacobian ∇Fu (Eq. 9) is formed by the partial 
derivatives of the nonlinear prediction model 
(Eq. 5) with respect to the system inputs. 
 
In Jacobian ∇Fx, it can be observed that the only 
term that correlates attitude and position 
equations (see Eq. 5) is: ∂fan/∂qnb. Therefore:  
 
• ∂fan/∂qnb ≠ 0 couples attitude and position 
estimation. 
 
• ∂fan/∂qnb = 0 decouples attitude and position 
estimation  
 

One of the implications of coupling attitude and 
position equations is: If one of the axis of the IMU 
(usually the x axis) is assumed to be aligned 
(fixedly) toward the displacement of the vehicle (as 
it occurs in a typical land-vehicle configuration), then 
GPS position measurements can be used for 
updating attitude. However, there are some cases 
where the assumption described above does not 
apply. For example, this is the case of an airplane 
where the pitch angle does not coincide with the 
flight path angle due to the angle of attack. In this 
work it is assumed that attitude and position 
equations are coupled (∂fan/∂qnb ≠ 0). 
 
2.4 System update 
 
Every time that is needed, the filter can be updated 
as follows: 
 

1ˆ ˆx x ( )i ik k W z h                 (10) 

 

1 ik kP P WSW                 (11) 

 

where zi is the current measurement and hi = h(x̂) 
is the predicted measurement. W is the Kalman 
gain computed from;  
 

1
1 i ikW P H S 


                      (12) 

 
Si  is the innovation covariance matrix 
 

1 ii i ikS H P H R
                (13) 

 ∇Hi is the Jacobian formed by the partial 
derivatives of the measurement prediction model 
h(x̂) with respect to the system state x̂. Ri is the 
measurement noise covariance matrix. Equations 
10 to 13 are either used for each one of the system 
updates that are carried out, along with their 
corresponding: i) zi ii) hi iii) ∇Hi and iv) Ri. 
 
a) Dynamical constraints update 
Knowledge about the vehicle dynamics can be 
incorporated into the system through the filter 
updates [22]. For this work, the data used for 
experiments was captured by measurement 
devices mounted over a land vehicle. In this case, 
nonholonomic constraints are included in the 
system in the form of zero velocity updates.  
 

(8) 

(9) 
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If axis x of the IMU is assumed to be aligned with 
the axis x of the land vehicle, then y and z 
velocities (in the body frame), respectively vy

b and 
vz

b, can be modeled as zero plus an additive 
Gaussian white noise vv with PSD σv

2. 
 

v 0
0v

b
y v
b vz

v
v

   
   
     




              (14) 

 
The measurement prediction hv0 is computed from:  
 

v0 [v v ]b b
y zh                  (15) 

 
where 

[v v v ] vb b b nb n
x y z R  

 
Rnb is the navigation to body rotation matrix 
computed from the current quaternion qnb, and vn is 
the velocity of the vehicle (expressed in the 
navigation frame) obtained from the current vector 
state x̂.  
 
For updating the filter (Equations 10 to 13): 
 
[0 0]'iz  V0ih h   2

v2 2IR   
v0 x̂iH h        (16)         

 
b) Roll and pitch updates 
If the vehicle is not accelerating, (i.e. ab ≈ 0) then 
Eq. 3 can be approximated as ya ≈ gb + va 
(neglecting or estimating xa). In this situation, 
accelerometers measurements ya provide noisy 
observations (in the body frame) about the gravity 
vector. The gravity vector g can be used as an 
external reference for correcting roll and pitch 
estimations [21].  
 
In order to detect k instants, where the body is in a 
non-accelerating mode, the Stance Hypothesis 
Optimal Detector (SHOE) is used [23]. 
 
The gravity vector g is predicted to be measured 
by the accelerometers as hg: 
 

R [0 0 ]nb
g ch g                 (17) 

 
 
 
 

where gc is the constant gravity and Rnb is the 
navigation to body rotation matrix computed from 
the current quaternion qnb. For updating the filter 
(Equations 10 to 13): 
 

aiz y  gih h  2
a3 3IR    x̂giH h              (18) 

 
c) Position and heading updates 
In this work, a loosely coupled approach is used 
for incorporating the data provided by the GPS unit 
into the system state. In a loosely coupled 
approach, the high level outputs provided by the 
GPS unit are directly incorporated into the system 
state via their corresponding measurement 
prediction model.   
 
On the other hand, the architecture proposed in 
this work could be extended in order to be suitable 
for a tightly coupled approach. Among other things 
(as the use of an adequate measurement model), 
in order to implement such adaptation, the system 
state should be augmented for including GPS 
errors (e.g. time bias).  
 
The model hr used for predicting the GPS 
measurements about the vehicle position is: 
 

3 10 3 3 3 9 ˆ[0 I 0 ]xrh                                       (19) 

 
For updating the filter (Equations 10 to 13): 
 

n
riz z   rih h

 

 2
r3 3IR   

3 10 3 3 3 90 I 0iH   
 
    

 

(20) 
 
In order to update the vehicle yaw using GPS 
measurements, it is assumed that the heading 
(yaw) of the vehicle is fixed with respect to the 
angle, of course, measured by the GPS. If the 
above assumption is not valid, as it could be the 
case for some aerial vehicles (e.g. helicopter), then 
an external reference should be used for updating 
the yaw (e.g. earth´s magnetic field). 
 
The model hθ used for predicting the angle of 
course measured by the GPS is: 
 
 
 



 

 

A GPS‐aided Inertial Navigation System in Direct Configuration, R. Munguía / 803‐814

Vol. 12, August 2014 810 

 2 2
2 3 1 4 3 4atan2 2( ),1 2( )h q q q q q q             (21) 

 
where qnb=[q1,q2,q3,q4] is the current quaternion. 
For updating the filter (Equations 10 to 13): 
 

n
iz z ih h  2R   x̂iH h             (22) 

 
Position and heading updates can be also 
implemented together in a single filter update step. 
 
2.5 System initialization 
 
The system is initialized as follows: 
 

1 18
'x̂ 0nb

iniq 
 
  

               (23) 

 
2

1 18P ( )nb
ini inidiag q  

 
  

                        (24) 

 
where ε is an arbitrary very small positive value. 
The initial attitude qnb

ini and its corresponding initial 
uncertainty σ(qnb

ini)
 2 are estimated in the same 

manner as [27]. It is important to remark that in this 
work, magnetometers are used only for having an 
initial estimation of heading (yaw). 
 
In Eq. 23, note that the initial position of the vehicle 
is set to zero due to the fact that local tangent 
plane is used as navigation frame. On the other 
hand, for transforming GPS measurements, from 
geodetic coordinates to the tangent plane 
coordinates, it is necessary to know the 
geographic location of the tangent plane origin. 
 
3. Experimental results 
 
In order to test the performance of the proposed 
method, a MATLAB implementation of the 
method was executed off-line using the Malaga 
dataset [24] as input signals. The Malaga dataset 
is freely available online, and contains several 
sources of sensors signals along with an accurate 
ground truth.  The inertial measurement data were  
collected at 100 Hz, whereas GPS data were 
collected at 4 Hz. The measurements devices, 
used for collecting the data, were mounted over an 
electric buggy-type vehicle, (see [24]). Table II 

shows information about the parameters used in 
experiments.  
 
Figure 3 shows some of the experimental results 
obtained from the input signals that have been 
described above. The left graphic, shows an aerial 
view of the path followed by the vehicle as well as 
its environment. Plot (a) shows the trajectory 
estimated by the proposed method. 
 
In experiments some GPS outages were simulated 
in order to test the performance of the method for 
periods where navigation is solely based in inertial 
measurements (in the original dataset, the GPS 
signal is available for the whole trajectory). In 
Figure 3 (plots a and b) observe that the estimated 
trajectory is composed for green and red 
segments. Green segments indicate periods of 
time where GPS is available, whereas red 
segments indicate periods of time where GPS 
outages occur. 
 

Parameter Description Value Unit 

σg
2 PSD for gyroscopes 

4.8 × 
10-6 

(rad/s)
2 

σa
2 PSD for accelerometers 

4.8 × 
10-2 

(m/s2)
2

σr
2 PSD for GPS position 

readings. 
1.0 × 
10-2 

(m)2 

σθ2 PSD for GPS heading 
readings. 

7.0 × 
10-3 

(rad)2 

σxg
2 PSD for  drift rate of 

gyro bias 
4.0 × 
10-14 

(rad/s2

)2 

σxa
2 PSD for  drift rate of 

accelerometers  bias 
4.0 × 
10-14 

(m/s3)
2

σv
2 

PSD for zero velocity 
constraint 

1.0 × 
10-2 

(m/s)2 

λxg
 Correlation time for 

gyro bias 
1.0 × 
10-3 

1/s 

λxa
 Correlation time for 

gyro bias 
1.0 × 
10-4 

1/s 

∆t Sample time 
1.0 × 
10-2 

s 

 
Table 2. Parameters. 

 
In order to validate the capability of the method for 
estimating the parameters of sensors error, the 
algorithm was executed again. In this case, 
running over the same input signals and conditions 
(GPS outages), but ignoring both, the estimated 
gyro bias xg and the estimated accelerometer bias 
xa. Plot (b) shows the adverse effects in the 
estimated trajectory, when sensor errors are 
ignored. In this case, and as it could be expected,  
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there is a huge drift in the estimated trajectory for 
the periods of inertial navigation, where GPS is not 
available. Therefore, by comparing plots (a) and 
plot (b), it can be deduced that the method is 
performing the parameter estimation tasks 
reasonably well. 
 
Figure 4. shows the progression over time for the 
rest of the estimated vector state of the vehicle 
[qnb, ωb, xg, v

n, an, xa], for the experiment executed 
with the full method (Fig.3 (a)). 
 
The lower plots illustrate periods of time where 
attitude and GPS updates take place.  
 
For this experiment, observe that attitude 
updates (roll and pitch) are suitably suspended 
when the vehicle is experimenting some sudden 
turns. The GPS outages can also be appreciated 
in the lower-right plot. 
 

4. Conclusions 
 
This work presents a practical method for 
estimating the full kinematic state of a vehicle, 
along with sensor error parameters, through the 
integration of inertial and GPS measurements. The 
estimated vector state is formed by 22 state 
variables: of which, 16 describes the full motion of 
the body in 6DOF, and 6 describes the parameters 
of sensors error (gyros and accelerometers bias).     
The architecture of the system is based in an 
Extended Kalman filtering approach in direct 
configuration. The EKF is still the standard 
estimation technique for this kind of systems. 
However, practically all recent approaches found in 
literature are based in the indirect configuration of 
the filter (called also error configuration).  
 
One of the motivations of the proposed approach is 
due to the clarity and simplicity associated with the 

 
 
 

Figure 3.  Left plot: Aerial view illustrating the path followed by the vehicle, while the sensor data were 
collected. Plot (a), shows its corresponding estimated trajectory. Green segments indicate  periods of time with 

GPS availability. Red segments indicate periods of time where GPS outages occur.  
Plot (b) shows the trajectory obtained when the parameters of the sensors error (xg and xa) are ignored. 
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EKF in direct configuration.  Moreover, the EKF in 
direct configuration is the approach typically taught 
in academic courses. In that sense, it is considered 
that the proposed method could be straightforwardly 
implemented, for example, by junior engineers and 
practitioners. 
 
The proposed architecture has been also 
designed in a manner that permits the scalability 
of the system. For example, by means of the use 
of the adequate dynamical constraints (or 
possibly without them), the method could be 
easily modified for its use with another kind of 
vehicle or craft (e.g. aerial robots). 

Different experiments with real data were carried 
out in order to validate the performance of the 
proposed method. The experimental results show 
that the method is capable of estimating the 
parameters of sensors error reasonably well. 
 
Thereby, improving the system estimates in 
periods where GPS outages occur, and the 
navigation is based solely in inertial 
measurements.  
 
Finally, it is considered that the method is enough 
robust for its use along with low-cost sensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.  Estimation results for a) Attitude of the vehicle qnb (expressed in Euler angles), b) Velocity rotation 
of the vehicle ωb (expressed in the body frame b), c) Gyroscopes bias xg, d) Velocity of the vehicle vn 

(expressed in the navigation frame n), e) Acceleration of the vehicle an (expressed in n),  
and f) Accelerometers bias xa. The lower  plots illustrate periods where the attitude updates (left)  

and the GPS updates (right) occur.
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Appendix 
 
In this appendix include some transformations:  
The rotation vector ω to quaternion q transfor-
mation is defined by: 
 

cos sin2 2q
  



 
      
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                 

 




             

 
The rotation matrix Rnb can be computed from the 
quaternion q by: 
 

2 2 2 2
1 2 3 4 2 3 1 4 1 3 2 4

2 2 2 2
2 3 1 4 1 2 3 4 3 4 1 2

2 2 2 2
2 4 1 3 1 2 3 4 1 2 3 4

( ) 2( ) 2( )
2( ) ( ) 2( )
2( ) 2( ) ( )

nb

q q q q q q q q q q q q

R q q q q q q q q q q q q

q q q q q q q q q q q q

 
 
 
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 
 
 

    
     

    

  

Euler angles φ, θ, ψ, (roll, pitch and yaw) can be 
computed from a quaternion q by: 
 

   
 
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2 2
3 4 1 2 2 3

1 3 2 4
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asin 2
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