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ABSTRACT 
Today the increased world population and therefore the growth demand has forced the researchers to investigate 
better water canal networks distributing much more water while at least keeping its quality. Canal design formulas are 
explicitly obtained for different cross-sections considering minimum area but optimal design of canal sections 
considering seepage and evaporation losses are still an open area to study. In this study, two different algorithms are 
applied to this problem and results are compared with the one in literature. Genetic algorithm and sequential quadratic 
programming technique are used in optimization. Triangular, rectangular and trapezoidal cross-sections are 
optimized. It is seen that both algorithms are giving more accurate results than in literature. 
 
Keywords: Design of canal section, genetic algorithm, sequential quadratic programming, seepage loss. 
 
 
1. Introduction 
 
Water is the key element of life and its importance 
for life beings has not changed over the centuries. 
Even though today there are many investigations 
and consequently inventions on new kind of 
materials, a simple solution on using water 
effectively is still concerned as much important as 
them [1]. Saving water used in irrigation, cleaning, 
cooking and even transferring energy is necessary 
for a sustainable life [2]. 
 
Much of the water used by mankind is used in 
irrigation. Many different irrigation ways are 
applied over the years but water has been always 
conveyed and distributed by using canals. Today 
the increased world population and therefore the 
growth demand has forced the researchers to 
investigate better water canal networks 
distributing much more water while at least 
keeping its quality. The uncertainty of canal’s 
nature may cause the failure of the canals to 
convey water during periods of high flow which 
may lead to the overall failure of many surface 
water resource systems. Therefore the loss of 
water from irrigation canals has to be minimized. 
 
Swamee et al. has shown that more than half of 
the water supplied at the head of the canal is lost 
in seepage and evaporation by the time water  

 
 
reaches the field [3]. Seepage loss is the 
important part of the total water loss. In fact, 
significant part of loss comes from the 
evaporation however seepage takes place on a 
canal even respectively at small amount. The 
correct lining could stop this seepage loss but the 
change over the time in lining makes the finding 
correct lining a difficult problem to solve. Even 
though evaporation loss changes with time 
whether it is winter or summer and also concrete 
lining conditions (cracks etc.) affect the seepage 
loss, they can be estimated under certain 
conditions. Therefore, design of a canal cross 
section should be optimized considering 
minimization of the seepage loss and evaporation 
loss over the time. In this study, a previously 
defined canal cross section problem is solved 
with different techniques. 
 
Minimizing cross section area has already been 
studied by a few researchers [4]. Different cross 
section types are concerned: Triangular [5-6], 
Rectangular [5-6], Trapezoidal [5-9], Parabolic [10-
12], Curvilinear Bottomed Channel [13] and 
Circular [15,21,26,27]. In this study only triangular, 
rectangular and trapezoidal cross-sections are 
concerned due they are much widely used as 
benchmark problems. 
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Different set of conditions are considered. Guo and 
Hughes accounted freeboard as input parameter 
[14]. Aksoy and Altan-Sakarya used Mannig’s 
formula in calculating flow velocity [15]. 
Bhattacharjya combined the critical flow condition 
with other conditions [16]. Jain et al. followed 
Lotter’s approach in defining composite canal 
section [17]. Easa et al. considered the criterion for 
the side slope stability (soil conditions) [18]. 
 
Different optimization methodologies are applied 
(Direct algebraic technique [19], Complex variables 
and series expansions [20], Lagrange’s method 
[21-22], Nonlinear optimization techniques [3,23], 
Sequential quadratic programming [16], 
Lagrange’s undetermined multiplier approach [13], 
a hybrid model of genetic algorithm and sequential 
quadratic programming hybrid model [9], genetic 
algorithm [17], ant colony optimization [24] to 
design open channels. Adarsh modelled 
uncertainty [25]. 
 
Also different topics are taken as objectives. Trout 
considered lining material cost [19]. Das 
minimized the flooding probabilities [8]. However 
studies concerning the minimum seepage loss 
are limited in literature. Kacimov merged seepage 
losses and channel lining [20]. Swamee et al. [26-
27] merged earth work and lining cost. Chahar 
also considered seepage loss [13]. Swamee et al. 
[3, 23] considered the seepage loss in the 
objective functions. 
 
This study aimed to simplify the current canal 
section problem concerning water losses. 
Equations for seepage loss [5], the evaporation 
in flowing channels [28], and the resistance in 
open channel flow [29] are taken from literature. 
Two different algorithms (Genetic Algorithm and 
Sequential Quadratic Program) are applied to 
compare the results with existing literature to 
evaluate their effectiveness. Minimum water loss 
sections have been obtained for three different 
canal sections (triangular, rectangular, and 
trapezoidal). Following section briefly overviews 
water loses. Section 3 presents the problem 
formulation and Section 4 gives brief explanation 
on the methodology used in the study. Section 5 
provides the results and last section presents 
the research conclusions and future work plans. 
 
 

2. Water losses 
 
Water moves continuously on earth by changing 
its phase gas to liquid or to solid and vice versa. It 
flows as rivers and streams, moves in air as 
clouds and is stored in lakes, in oceans, and 
sometimes as icebergs. We use dams to store it 
and canals to distribute to where it is needed. 
Water continues its movement while distributing 
to the target place. It evaporates and goes up 
according to the weather conditions and infiltrates 
and goes down according to condition of soil 
where canal is built. So, particular amount of 
water will be lost in distribution. This section 
explains how to calculate seepage [5] and 
evaporation [28] losses and how much resistance 
[29] occurs in channel. 
 
2.1 Water losses due to seepage 
 
Continuous seepage from canal may results in 
local water-logging problem with salt 
accumulation. There should be regular checking 
in lining to maintain its proper work but many 
unavoidable factors will cause the performance of 
canal gradually decrease even if extreme care is 
taken [30]. 
 
The seepage loss from a canal in a homogeneous 
and isotropic porous medium when the water 
table is at very large depth was written as [3] 
 
qs = kyF                                                                (1) 
 
where qs = seepage discharge per unit length of 
canal (m2/s); k = hydraulic conductivity of the 
porous medium (m/s); y = depth of water in the 
canal (m); F =  function of channel geometry 
(dimensionless); and yF = width of seepage flow 
at the infinity. Hereafter, F will be referred to as 
the seepage function. 
 
2.2 Water losses due to evaporation 
 
Loss due to evaporation depends on the many 
factors. Increase in temperature boosts 
evaporation. Increase in wind velocity also raises 
the amount of evaporation. Evaporation is related 
with the specific humidity gradient in the air and  
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the supplied energy to water. There are many 
equations in the literature to estimate evaporative 
rate. These equations can be classified into three 
categories; (1) energy balance equations; (2) 
mass transfer equations; and (3) combinations of 
the two. It is seen that the mass transfer 
equations are the most appropriate ones for 
determining evaporation for our problem [28]. 
 
The mass transport type equations are 
expressed as 
 
E = (es – ed) fw                                                      (2) 
 
where E = evaporation discharge per unit free 
surface area (m/s); es = saturation vapor pressure 
of the air at the temperature of the water surface 
(Pa); ed = saturation vapor pressure of the air at 
the dew point (Pa); and fw = wind function (m/s/Pa). 
The difference between the saturation vapor 
pressure of the air at the temperature of water 
surface and at the dew point (es – ed) in Pa was 
given by [31].  
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where θw = water surface temperature in °C; θa = 
mean air temperature in °C; and Rh = relative 
humidity expressed as fraction. The wind 
function for a flowing channel in m/s per Pa was 
given as [28]: 
 
fw = 3.704x10−11 (1+ 0.25u2)                                 (4) 
 
where u2 = wind velocity in m/s at 2 m above the 
free surface. Combining Eqs. 2-4, E in m/s is 
obtained as [5] 
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Once E is known the evaporation loss from a canal 
can be expressed as 
 

qe = ET                                                                 (6) 
 
where qe = evaporation discharge per unit length 
of canal (m2/s); and T = width of free surface (m). 
 
2.3 Total water loss 
 
Adding Eqs. 1 and 6, the total water loss qw (m2/s) 
was expressed as: 
 
qw = kynFs + ET                                                     (7) 
 
Using the equations [3] for Fs, Eq. 7 for triangular 
channel section becomes [5] 
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where m=side slope shown in Fig. 1a. Similarly for 
rectangular section Eq. 7 was changed to [5] 
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where b = bed width of the section shown in Fig. 
1b. On the other hand, for trapezoidal section 
shown in Fig. 1c, Eq. 7 was reduced to [5] 
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2.4 Resistance equation 
 
Resistance of flow in canal is used in design of 
uniform open canal. Manning’s equation is the 
mostly used formula in design [32], which turbulent 
flow and relative roughness are taken into account 
[33]. The equation will be used in this study [29] is: 
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where Q = canal discharge (m3/s); A = flow area 
(m2); g = gravitational acceleration (m/s2); R = 
hydraulic radius (m) defined as the ratio of the flow 
area to the flow perimeter (A/P) (m); ε = average 
roughness height of the canal lining (m); and ν = 
kinematic viscosity of water (m2/s); S0 = Bed slope. 
 
3. Design problem 
 
Determination of optimal canal section shape was 
reduced to; 
 
Minimize : qw = kynFs + ET  
 
which is the general Eq. 7 of total water loss. Eqs. 
8-10 is going to be used for triangular, rectangular 
and trapezoidal channel sections. 
 
Subject to: Eq. 11 and V=Q/A 
 
where A = flow area (m2); and V = average velocity 
(m/s). This average velocity has to be less than the 
limiting velocity. Limiting velocities for the different 
lining materials are shown in the table below in 
Table 1 [5]. 
 
 
 
 
 
 
 
 
 
In this optimization, concrete lined canal is 
designed for carrying a discharge of 10 m3/s on a 
longitudinal slope of 0.001. The canal lining has ε = 
1mm. Assume canal lining as cracked; and having 
k = 10-6 m/s. The maximum evaporation loss E was 
estimated as 2.5x10-6 m/s. The water temperature 
is 20°C at which v = 1.1x10-6 m2/s. Limiting 
velocity, VL, is taken 2.5 m/s. 

 
 
 
 
 
 
 
 
 
 
4. Methodology 
 
Genetic algorithm and sequential quadratic 
programming method are applied to solve the 
problem in this study. Matlab Optimization 
Toolbox is used as a solver (Fig.2). Standard 
settings of the toolbox are used except that 
number of generations is defined as 1000000 
instead of 100. This section will only explain the 
basic of the algorithm. The detailed explanation 
can be found in literature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 Genetic algorithm 
 
Genetic Algorithm is a kind of evolutionary 
algorithm which becomes popular by the 
publication of John Holland’s book in 1970’s [34]. 
GA is a method for solving optimization problems 
based on natural selection. It changes the 
population of solutions in a sequence. At each 
step, it chooses individuals as parents randomly 
from the current population. Then, next generation 
is produced by parents. Over successive 
generations, the population "evolves" toward an 
optimal solution. The main advantage of genetic 

 
 
 

Figure 1. Canal Sections: (a) Triangular, (b) Rectangular, (c) Trapezoidal. 

Lining Material Limiting Velocity (m/s) 
Boulder 1.0-1.5 

Brunt Clay Tile 1.5-2.0 
Concrete Tile 2.0-2.5 

Concrete 2.5-3.0 
 

Table 1. Limiting Velocities. 

 
 

Figure 2. Matlab Optimization Tool. 

(a) (b) (c) 
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algorithm is the applicability to optimization problems 
in which the objective function is discontinuous, 
nondifferentiable, stochastic, or highly nonlinear. 
Three main steps of GA generate the solutions [35]. 
Fig. 3(a) shows these following steps: 
 
1) Select the individuals as parents considering the 
best objective value. 
 
2).Crossover the parents to form the next 
generation. 
 
3) Add some random changes to the population 
(Mutation). 
 
4.2 Sequential quadratic programming 
 
Sequential quadratic programming (SQP) is one of 
the most effective methods for nonlinearly 
constrained optimization. It generates steps by 
solving quadratic subproblems. It uses the 
derivative of objective and constraint functions so it 
reaches the global optimum faster. The steps of 
SQP are shown in Fig.3(b). This approach can be 
used both in line search and trust-region 
frameworks, and is appropriate for small or large 
problems. SQP methods show their strength in 
solving problems having nonlinear constraints [36]. 
 
These two algorithms differ mainly in two points: 
GA generates population randomly and the best  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reaches the optimum while SQP generates 
single point in a deterministic computation and 
last single point reaches the optimum. To 
compare the results of the different algorithms 
will help to understand when to use which 
algorithm. 
 
5. Results 
 
Minimum seepage losses of the rectangular, 
triangular and trapezoidal canal sections are 
calculated by using both algorithms and results 
are given in the tables 2, 3 and 4 respectively for 
GA and in the table 5 for SQP algorithm. Results 
of GA are given as three best results because it 
finds different results at each time. Optimum 
sizes of the channels found in literature are 
given in table 6 to compare. 
 
As a result, it is seen that rectangular sections 
have more efficient results where trapezoidal 
sections have less in comparison to triangular 
sections as proven before. From GA and SQP 
algorithms are much faster than previous 
algorithms. They generally have given better 
results than previous studies. SQP seems 
superior when compared with GA since the 
results are more robust and reliable. Results of 
GA can change at each run even though it gives 
reasonable correct results. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
   
 
 
 

                
 
 
 

Figure 3. Flow Chart of (a) Genetic Algorithm and (b) Sequential Quadratic Programming. 

(a) (b) 
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6. Conclusions 
 
This study examined the effectiveness of different 
algorithms in design of minimum water loss canal 
sections. Design problem are solved for three 
different cross sections by using two different 
algorithms. It is shown that an evolutionary 
algorithm (GA) and gradient based optimization 
method (SQP) are also giving reliable results. They 
are also giving reliable results in a quicker time. 
 
These algorithms should be applied the other 
version of open channel problems (having different 
geometries such as parabolic sections or 
considering cost as objective). Also new algorithms 
could be applied (Ant Colony, Artifical Bee Colony 
etc.) in future. 
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