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ABSTRACT 
A problem of packing a limited number of unequal circles in a fixed size rectangular container is considered. The aim 
is to maximize the (weighted) number of circles placed into the container or minimize the waste. This problem has 
numerous applications in logistics, including production and packing for the textile, apparel, naval, automobile, 
aerospace and food industries. Frequently the problem is formulated as a nonconvex continuous optimization problem 
which is solved by heuristic techniques combined with the local search procedures. A new formulation is proposed 
based on using a regular grid approximated the container and considering the nodes of the grid as potential positions 
for assigning centers of the circles. The packing problem is then stated as a large scale linear 0-1 optimization 
problem. The binary variables represent the assignment of centers to the nodes of the grid. The resulting binary 
problem is then solved by the commercial software. Two families of valid inequalities are proposed to strengthening 
the formulation. Nesting circles inside one another is also considered. Numerical results are presented to demonstrate 
the efficiency of the proposed approach. 
 
Keywords: Circle Packing, Integer Programming, Large Scale Optimization. 
 
RESUMEN 
Se considera el problema de empaquetar un número limitado de círculos de radios diferentes en un contenedor 
rectangular de dimensiones fijas. El objetivo es maximizar el número (ponderado) de círculos dentro del contenedor o 
minimizar el desperdicio de espacio dentro del mismo. Este problema tiene numerosas aplicaciones dentro de la 
logística, incluyendo la producción y empaquetado para la industria textil, naval, automotriz, aeroespacial y la 
industria de alimentos. Frecuentemente, el problema es formulado como un problema de optimización continua no 
convexo que es resuelto con técnicas heurísticas combinadas con procedimientos de búsqueda local. Se propone 
una nueva formulación basada en el uso de una malla regular que cubre el contenedor y donde se considera a los 
nodos de la malla como posiciones potenciales para la asignación de centros de los círculos. El problema de 
empaquetamiento se escribe entonces, como un problema de optimización 0-1 a gran escala y es resuelto con 
software comercial. Resultados numéricos son presentados para demostrar la eficiencia del enfoque propuesto y 
realizar una comparación con los resultados conocidos. 
 

 
1. Introduction 
 
Packing problems constitute a family of natural 
combinatorial optimization problems, which occur 
in many fields of study such as computer science, 
industrial engineering, logistics and manufacturing 
and production processes. For instance, several 
real life industrial applications require the allocation 
of a set of pieces to a larger standardized 
rectangular stock unit. They generally consist of  

 
 
packing a set of items of known dimensions into 
one or more large objects in order to minimize a 
certain objective (e.g. the unused part of the 
objects or waste). 
 
The circle packing problem is a well studied 
problem [12] whose aim is the packing of a certain 
number of circles, each one with a fixed known  
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radius (not necessary the same for each circle) 
inside a container. The shape of the container may 
vary from a circle, a square, a rectangular, etc. 
 
This problem has been applied in different areas, 
such as the coverage of a geographical area with 
cell transmitters, storage of a cylindrical drums into 
containers o stocking them into an open area, 
packaging bottles or cans into the smallest box, 
planting trees in a given region as to maximize the 
forest density and the distance between the trees, 
and so forth [2,5,8]. Other applications one can 
find in the motor cycle industry, circular cutting, 
communication networks, facility location and 
dashboard layout [5,10,11]. 
 
In this paper we address the problem of packing a 
set of circular items in a rectangular container. 
There are two principal types of objectives that 
have been used in the literature: a) regard the 
circles (not necessary equal) as being of fixed size 
and the container as being of variable size and b) 
regard the circles and the container as being of 
fixed size and minimize “waste”. 
 
Examples of the first approach include [17]: 
 
• For the square container minimize the length of 
the side and hence minimize the perimeter and 
area of the square; 
 
• Minimize the perimeter of the rectangle; 
 
• Minimize the area of the rectangle; 
 
• Considering one dimension of the rectangle as 
fixed, minimize the other dimension. Problems of 
this type are often referred to as strip packing 
problems (or as circular open dimension problems). 
 
For the second approach various definitions of the 
waste can be used. The waste can be defined in 
relation to circles not packed (e.g. the number of 
unpacked circles or the perimeter/area of 
unpacked circles), or introducing a value 
associated with each circle that is packed (e.g. 
area of the circles packed), etc. 
 
Many variants of packing circular objects in the 
plane have been formulated as nonconvex 
(continuous) optimization problems with decision  
 

variables being coordinates of the centres. The 
nonconvexity is mainly provided by no overlapping 
conditions between circles. These conditions 
typically state that the Euclidean distance 
separating the centres of the circles is greater than 
a sum of their radii. 
 
The nonconvex problems can be tackled by 
available nonlinear programming (NLP) solvers, 
however most NLP solvers fail to identify global 
optima. Thus, the nonconvex formulation of 
circular packing problem requires algorithms which 
mix local searches with heuristic procedures in 
order to widely explore the search space.  It is 
impossible to give a detailed overview on the 
existing solution strategies and numerical results 
within the framework of a single short paper. We 
will refer the reader to review papers presenting 
the scope of techniques and applications for the 
circle packing problem (see, e.g. [1,4,17,18] and 
the references therein). 
 
In this paper we propose a new formulation for 
approximate solution of circular packing problems 
using a regular grid to approximate the container. 
The nodes of the grid are considered as potential 
positions for assigning centers of the circles. The 
packing problem is then stated as a large scale 
linear 0-1 optimization problem. Two classes of 
valid inequalities are proposed to strengthening 
the formulation. Nesting circles inside one 
another is also considered. Numerical results are 
presented to demonstrate efficiency of the 
proposed approach. 
 
To the best of our knowledge, the idea to use a 
grid was first implemented by Beasley [3] in the 
context of cutting problems. This approach was 
recently applied in [9,15,16] for packing problems. 
This work is a continuation of [15]. 
 
2. The model 
 
Suppose we have non-identical circles kC  of 

known radius kR , {1,2,... }k K K  . Let at most 

kM  circles kC  are available for packing and at 

least km  of them have to be packed. Denote by 

{1,2..., }i I n   the node points of a regular grid 

covering the rectangular container. Let F I be  
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the grid points lying on the boundary of the 
container. Denote by ijd the Euclidean distance 

between points i and j  of the grid. Define binary 

variables 1k
ix   if centre of a circle kC  is assigned 

to the point i ; 0k
ix  otherwise.  

 
In what follows we will distinguish two cases of 
circle packing, depending on whether nesting 
circles inside one another is permitted o not. To 
the best of our knowledge, nesting problem was 
first mentioned in [10] in the context of packing 
pipes of different diameters into a shipping 
container. Comparing to the standard packing, 
packing with nesting is much less investigated. 
 
Consider first the problem without nesting. In order 
to the circle kC  assigned to the point i be non-

overlapping with other circles being packed, it is 

necessary that 0l
jx   for ,j I l K  , such that 

ij k ld R R  . For any fixed  let 

{ , : , }ik ij k lN j l i j d R R    . Let ikn  be the 

cardinality of ikN : ik ikn N . Then the problem of 

maximizing the area covered by the circles can be 
stated as follows: 
 
Then the problem of maximizing the area covered 
by the circles is as follows: 
 

2max k
k i

i I k K

R x
 


     
(1) 

 

   (2) 

 

    (3) 

 

   (4) 

 
1,  for , , ( , )k l

i j ikx x i I k K j l N       (5) 

 
    (6) 

 
Constraints (2) ensure that the number of circles 
packed is between km  and kM ; constraints (3) that 

at most one centre is assigned to any grid point; 

constraints (4) that the point can not be a centre 
of the circle kC if the distance from i to the 

boundary is less than kR ; pair-wise constraints (5) 

guarantee that there is no overlapping between the 
circles; constraints (6) represent the binary nature 
of variables. 
 
Note that for the particular case of packing equal 
circles of radius we may simply reduce the 
dimensions of the container by and then apply the 
above model to a smaller container dropping the 
boundary conditions (4). 
 
We may expect that the linear programming 
relaxation of the problem (1)-(6) provides a poor 
upper bound for the optimal objective. For example, 
for 1K   and suitably chosen ,k kM m , set 

0.5k
ix  for all .i I  This solution is feasible to no 

overlapping constraints (5) and corresponding 
objective value grows linearly with respect to the 
number of grid points. 
 
To tightening the LP-relaxation of (1)-(6) we 
propose two families of valid inequalities. The first 
ensure that no grid point is covered by two 
circles, while the second guarantee that there is 
at most one centre assigned to the area covered 
by a circle. 
 

To present the first family, define matrix k
ij   as 

follows. Let 1k
ij   for ij kd R ; 0k

ij   otherwise. 

By this definition, 1k
ij  if the circle kC  centered 

at i covers point j . The following constraints 

ensure that no points of the grid can be covered 
by two circles: 
 

1,k k
ij j

k K j I

x i I
 

                                             (7) 

 
Note that (7) is not equivalent to non-overlapping 
constraints (5). Constraints (7) ensure that there is 
no overlapping in grid points, while (5) guarantee 
that there is no overlapping at all. Similar to set-
covering formulations it is natural to refer to (7) as 
point-covering constraints. 
 
The second family of inequalities is stated as 
follows: 

,i k

, ,k
k i k

i I

m x M k K


  

1, \k
i

k K

x i I F


 

min , , ,k
k i ij

j F
R x d i I k K


  

{0,1}, ,k
ix i I k K  

i
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                            (8) 

 
To demonstrate that (8) is valid for the problem (1)-

(6) assume that  in (8). That is the centre of 

the circle  is assigned at i . By (8) we have 

and then it follows that 

0 for :k
j ij kx j d R  . That is there are no other 

centres assigned to points inside the circle centred 

at i . For 0k
ix  we have

:

1
ij k

k
j

j d R

x


 . This means 

that among all grid points covered by the 
(imaginary) circle centred at , at most one point 
can be assigned as a centre. This is true since the 
distance between any pair of these points is less 
than 2 kR and assigning the centres of kC  violates 

non overlapping constraints. 
 
To consider nesting circles inside one another, we 
only need to modify the non-overlapping 
constraints. In order to the circle kC  assigned to 

the point i  be non-overlapping with other circles 
being packed (including circles places inside this 

circle), it is necessary that 0l
jx   for ,j I l K  , 

such that k l ij k lR R d R R    . Note that the later 

condition is always fulfilled for k lR R ( 0ijd  ), 

such that only smaller circles can be placed inside 
a given circle. For fixed let 

{ , : , }ik k l ij k lj l i j R R d R R       . Then the 

problem of packing circles with nesting can be 
stated as follows: 
 
max   

 
subject to 
 

                                      (9) 

 

 

 

 

1,k l
i jx x   for i I , k K , ( , ) ikj l   

In the problem (9) the weighting coefficients k
iw

may be associated with the area of circles and/or 
represent the relative importance of subsets of 
the container. 
 
Note that inequalities (7), (8) in general are not 
valid for the problem (9). 
 
3. Computational results 
 
A rectangular uniform grid was used in numerical 
experiments, such that all grid points are defined by 
the grid points on its edges. Let L be a horizontal 
dimension (length) and be a vertical dimension 
(width) of the container; M be a number of the 
equidistant grid points on the horizontal edge of the 
container, while N  be a number of the equidistant 
grid points on its vertical edge. Hence the grid has 
M N node points  n M N  . 

 
All optimization problems were solved by the 
system CPLEX 12.5. The runs were executed on a 
PC Toshiba Satellite L735, Intel Core I-5, 2.5 Ghz  
and 8Gb RAM.  
 
In the first part of our numerical experiment we add 
valid inequalities (7) or (8) or both to the problem 
(1)-(6) and compare corresponding LP-relaxations. 
Five different relaxations were studied 
corresponding to constraints used/droped: 
 
• LP1: only original constraints (2)-(5); 
 
• LP2: constraints (2)-(5) and (7); 
 
• LP3: constraints (2)-(5) and (8); 
 
• LP4: constraints (2)-(5), (7) and (8); 
 
• LP5: constraints (2)-(4), (7) and (8) 
 
Ten instances with equal circles were used to 
compare relaxations. The first 5 instances were the 
same as in [9, Table 3]: , 6W   and 
radiuses 0.5, 0.625, 0.5625, 0.375 and 0.3125 
correspondingly. The second 5 instances were from  
[6] with L W , R defined as follows: 100x100, 13;  
100x200, 25; 100x100, 18; 100x200, 31; 120x80, 
21. In all instances the objective (1) was to 
maximize the number of circles packed.  

:
1, for , .

ij k

k k
i j

j d R

x x i I k K


   

1k
ix 

kC

:
0, for ,

ij k

k
j

j d R

x i I k K


  

i

,i k

k k
i i

i I k K

w x
 


, ,k
k i k

i I

m x M k K


  

1, \k
i

k K

x i I F


 

min , , ,k
k i ijj F

R x d i I k K


  

W

3L 
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The results of the numerical experiment are 
presented in Table 1. Here the second column 
presents the integer solution of the problem (1)-(6) 
while all the next columns give the optimal 
objectives of the corresponding relaxations. 
 
As we can see form Table 1, valid inequalities 
improve significantly LP1, continuous relaxation 
of the original problem, and provide a very tight 
bound for the optimal objective of the original 
integer problem IP. In many cases rounding 
below the corresponding rational bound results in 
the optimal objective value. Note that if we drop 
the pair-wise non-overlapping constraints (5) and 
use both families of valid inequalities (relaxation 
LP5), the bound is still good. We see that the 
values of LP3-LP5 are very close to each over. 
From computational point of view the relaxation 
LP5 is less expensive since the pair-wise non-
overlapping constraints (5) are relaxed. 
 
In the second part of the experiment packing of 
different circles with nesting was studied. We fixed 
the dimension of the container ( ), 

radiuses of the circles ( , 2 2R  , 3 4R  , 

4 0.7R  ) and vary the bounds  for the 

circles to be packed. 
 
The data for 6 instances of the problem (9) 
considered in the experiment are presented in 
Table 2 together with the number of the circles 
packed and corresponding CPU time. Empty cells 
in this table correspond to the case with no  
lower/upper limits for the circles to be packed. All 6 
problem instances were solved using the grid 
41x41 and with mipgap = 15% for running CPLEX. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The objective was to maximize the total area of the 
circles packed. 
 
 

60L W 
1 12R 

,k km M

 IP LP1 LP2 LP3 LP4 LP5 
1 18 2964.49 18.179 18.123 18.123 18.123 
2 10 2722.493 10.049 10.003 10.003 10.003 
3 13 4788.501 13.957 13.957 13.957 13.957 
4 32 2768.501 34.659 34.535 34.535 34.535 
5 45 4178.501 50.946 50.763 50.763 50.763 
6 13 1799.996 14.462 14.425 14.425 14.425 
7 8 1799.996 8 8 8 8 
8 6 1799.996 6.633 6.632 6.632 6.631 
9 3 1799.996 3.032 3.001 3.001 3.001 

10 4 1799.996 4.367 4.359 4.359 4.359 
 

Table 1. LP bounds for packing equal circles. 

# k  km  kM  
circles  
packed 

CPU (sec.) 

1 

1 
2 
3 
4 

  3 
57 
14 

790 

43207.48 

2 

1 
2 
3 
4 

 5 
30 
30 

120 

4 
30 
28 

120 

17744.27 

3 

1 
2 
3 
4 

4 
25 
25 
50 

5 
30 
30 

120 

5 
30 
30 

120 

29839.04 

4 

1 
2 
3 
4 

3 
30 
25 
80 

 3 
37 
25 

789 

43207.769 

5 

1 
2 
3 
4 

 6 
35 
35 

200 

5 
35 
25 

200 

19639.091 

6 

1 
2 
3 
4 

3 
30 
25 
80 

6 
35 
35 

200 

4 
35 
25 

200 

43207.815 

 
Table 2. Problem instances and numerical  

results for packing with nesting. 

 
 

Figure 1. Packing pattern for instance 1. 
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As we can see from Table 2 the instances with 
lower bounds for the number of circles to be 
packed are mostly expensive computationally. 
 
Figures 1-6 present packing configurations for the 
corresponding instances. We can see that varying 
the limits for the number of circles to be packed 
changes significantly the packing configuration. 
 
 
 

 
4. Conclusions 
 
The plane circle packing problem was 
approximated using integer formulation based on a 
grid approximation of a container. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The case of nesting circles inside one another was 
considered. This problem was mentioned in [10] in  
 
 
 

 
 

Figure 3. Packing pattern for instance 3. 

 
 

Figure 4. Packing pattern for instance 4. 

 
 

Figure 5. Packing pattern for instance 5. 

 
 

Figure 2. Packing pattern for instance 2. 
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the context of packing pipes of different diameters 
into a shipping container and has not received 
much attention so far. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The presented approach can be easily generalized 
to three (and more) dimensional case and to 
different shapes of the container, including 
irregulars. 
 
For the case without nesting two families of valid 
inequalities were introduced to strengthening the 
formulation. Numerical experiment was presented 
to demonstrate the efficiency of the proposed 
approach. 
 
An interesting topic for the future research is to 
study the use of Lagrangian relaxation [14] or 
decomposition techniques [7] to cope with large 
dimension of the problem formulation. The other 
direction for future research is using metaheuristic 
approaches [13]. 
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