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Abstract: This article proposes a pulse-coupled neural network based on an adaptive Gabor filter for 
pavement crack segmentation in digital images. By estimating the image noise, the filter parameters 
that convolves the neurons of the model are adjusted. As a result, iterations were reduced to 2% with 
≈ 90% precision. The algorithm was parallelized on GPU and the processing time was reduced to 𝑛𝑛

𝑁𝑁𝑁𝑁
 

regardless of the M and N dimensions of the image. 
 

∗Corresponding author. 
E-mail address: dante.mv@cenidet.tecnm.mx (D. Mújica Vargas). 
Peer Review under the responsibility of Universidad Nacional Autónoma de México. 
 

https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
mailto:dante.mv@cenidet.tecnm.mx
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.unam.mx/


 
 

 

A. Luna Álvarez et al. / Journal of Applied Research and Technology 102-110 

 

Vol. 22, No. 1, February 2024    103 
 

1. Introduction 
 
To automate the crack detection task, solutions have been 
proposed based on artificial vision implemented in the 
monitoring vehicles (Shao et al., 2019; Yang et al., 2019). These 
solutions are made up of combinations of preprocessing, 
feature extraction and classification methods (Amhaz et al., 
2016a; Cubero-Fernandez et al., 2017; Yang et al., 2019), 
segmentation through filters (Li et al., 2017; Li et al., 2020) or 
through training and testing of deep learning neural network 
model (Gopalakrishnan et al., 2017; Pauly et al., 2017; Zhang et 
al., 2018; Zhang et al., 2016). 

Although the methods guarantee accuracy close to 90%, they 
have disadvantages. Methods that rely on the image processing 
chain take the longest time, which requires the monitoring 
vehicle to stop (Amhaz et al., 2016b). Filter-based methods are 
mostly affected by noise captured by the device, as well as minor 
imperfections in the pavement texture. Deep learning methods 
are shown to be the most dependable (Lau et al., 2020), however 
these depend on training and the image quality for this task, in 
addition to requiring a specialized team to implement them. 

As an alternative to these methods, this article proposes a 
pulse-coupled neural network (PCNN) (Wang et al., 2010) model 
that bases its operation on a Gabor filter (Mukherjee & Das, 2021) 
that adjusts its parameters automatically from the noise 
estimate in the input image. This model has the advantages of 
being adaptive, without training and notably faster than the 
original PCNN model in terms of iterations, in addition to being 
parallelized in a graphic processing unit in CUDA language. 
     This document details in Section 2 the theoretical concepts 
necessary to understand the PCNN model and the Gabor filter, 
in Section 3 the proposed model is presented, in Section 4 the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

test data, metrics and experiments are presented to validate 
the proposal. Finally, Section 5 shows the results obtained and 
the conclusions in Section 6. 
 

2. Background 
 

2.1. Pulse-coupled neural network 
Pulse-coupled neural networks are biometric models inspired 
by the visual cortex of mammals, developed for image 
processing (Zhan et al., 2017), applicable to segmentation, 
feature generation, face extraction, motion detection, region 
growth and noise reduction tasks (Wang et al., 2010). As shown 
in Figure 1, the PCNN model is made up of four main 
components: the dendritic tree that contains an input 𝑆𝑆 of size 
𝐼𝐼 × 𝐽𝐽, the neuron 𝑊𝑊𝑖𝑖𝑖𝑖and its neighbors, the membrane 
potential 𝑈𝑈, the dynamic threshold 𝛩𝛩 and the outputs 𝑌𝑌 that 
become inputs for subsequent iterations. In general, the 
dendritic tree represents the data input filtered by a Gaussian 
matrix 𝑊𝑊 that smooths the edges of each 𝑆𝑆 window, then the 
dynamic threshold 𝛩𝛩 is initialized, scaled by the parameters 𝛿𝛿 
y 𝑣𝑣𝜃𝜃 with respect to the output of each neighboring neuron 𝑌𝑌𝑘𝑘𝑘𝑘 
in an iteration 𝑛𝑛 − 1, which for 𝑛𝑛 = 0: 𝑌𝑌𝑖𝑖𝑖𝑖 = 0, 𝛩𝛩𝑖𝑖𝑖𝑖 = 0 (Lian et 
al., 2021). In the pulse generation block, the membrane 
potential 𝑈𝑈𝑖𝑖𝑖𝑖  is updated by 𝑈𝑈𝑖𝑖𝑖𝑖 ← 𝑆𝑆𝑖𝑖𝑖𝑖�1 + 𝛽𝛽𝐿𝐿𝑖𝑖𝑖𝑖� where 𝐿𝐿 
represents the input filtered and 𝑆𝑆 the original, it is 
recommended for the hyperparameter 𝛽𝛽 = 2. The membrane 
potential is activated in a binary way at the output 𝑌𝑌𝑖𝑖𝑖𝑖  through 
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑈𝑈𝑖𝑖𝑖𝑖 > 𝛩𝛩𝑖𝑖𝑖𝑖, this process is repeated until 𝑌𝑌𝑖𝑖𝑖𝑖(𝑛𝑛) ≠
𝑌𝑌𝑖𝑖𝑖𝑖(𝑛𝑛 − 1), otherwise the image is filtered again. Finally, for 
the outputs of each neuron to be projected in a segmented  
image, a time matrix 𝑇𝑇 is updated by 𝑇𝑇𝑖𝑖𝑖𝑖(𝑛𝑛) < 𝑇𝑇𝑖𝑖𝑖𝑖(𝑛𝑛 − 1) + 
𝑛𝑛𝑌𝑌𝑖𝑖𝑖𝑖, in this way the time matrix is filled with values [0,255]  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1. Simple PCNN scheme. 
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that can be represented as an 8-bit grayscale image. In a 
simplified way, the operation of the PCNN model for 
segmentation in the Algorithm 1 is detailed (Nie et al., 2020), 
considering as initialization of the matrices in 𝑛𝑛 = 0, 𝑌𝑌 = 0, 
𝑇𝑇 = 0, 𝛩𝛩 = 255. 
 

 
 
2.2. Gabor filter 
In image processing, it is a linear filter used for texture analysis 
(Mukherjee & Das, 2021), it analyzes the specific frequencies 
and directions in a certain region. A 2D Gabor filter is a 
Gaussian filter function modulated by a plane sine wave. In 
general, the function of the Gabor filter for a two-dimensional 
image is defined as: 
 

𝐺𝐺𝑥𝑥𝑥𝑥 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑥𝑥′2+𝛾𝛾2𝑥𝑥′2

2𝜎𝜎2
� 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋 𝑥𝑥′

𝜆𝜆
+ 𝜑𝜑�      (1) 

 

where 𝑒𝑒′ = 𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 𝑦𝑦 𝑐𝑐𝑠𝑠𝑛𝑛 𝜃𝜃 y 𝑦𝑦′ = −𝑒𝑒 𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃 + 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 is 
defined, in addition the function parameters are defined as: 

● Standard deviation 𝜎𝜎 of the Gaussian envelope. 
● Wavelength 𝜆𝜆, is the length of the filter cosine factor 

specified in pixels 2 ≤ 𝜆𝜆 < 𝑋𝑋 
● Orientation θ, specifies the normal to the parallel fringes 

of a Gabor function specified in degrees 0≤θ<360. 
● Phase offset ϕ, specified in degrees [-180,180]. 0 and 180 

correspond to symmetric functions. 
● Aspect ratio γ, specifies the ellipticity of the function 

support. 
 

3. Proposed method 
 
To improve the cracks segmentation, an adaptive PCNN 
model is proposed with the following characteristics: (1) the 
Gaussian filter is replaced with a Gabor filter to enhance the 

textures and obtain segmentation based on frequency and 
direction. (2) The filter requires a wavelength λ and standard 
deviation σ setup, therefore an automatic tuning based on 
noise estimation is proposed. (3) The PCNN structure 
processes each image pixel as an independent neuron, but 
depends on the surrounding region, therefore it is 
implemented in a parallelized methodology using GPU. 

 
3.1. Noise estimation 
For PCNN purposes, the pixel range should be [0,255]. The 
noise estimation requires an interval [0,1], therefore the 
normalization is performed by: 

 

𝑒𝑒′𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖−𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥)
𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥)−𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥)

       (2) 

considering that 𝑚𝑚𝑠𝑠𝑛𝑛(𝑒𝑒) and 𝑚𝑚𝑚𝑚𝑒𝑒(𝑒𝑒) in a normal case can be 
0 and 255, however the intervals are closed as the iterations 
progress, and this must be adjusted according to the image 
values. Grayscale pavement images are altered by additive 
Gaussian noise, which is represented as 𝐹𝐹𝑛𝑛𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑖𝑖. The 
standard deviation of the additive noise distribution can be 
estimated by: 

 

𝜎𝜎 = �∑ �|𝐹𝐹 × 𝜎𝜎𝐸𝐸|���𝜋𝜋
2

1
6(𝑁𝑁−2)(𝑁𝑁−2)

    (3) 

where 𝑀𝑀 and 𝑁𝑁 represent the size of the image, and 𝜎𝜎𝐸𝐸  is the 
Laplacian convolution operator (Kim & Shamsi, 2018) defined 
as: 

     (4) 

The Laplacian of an image highlights regions of rapid 
intensity change. From this, the standard deviation of additive 
Gaussian noise is estimated to be in the range of 3% to 21%. 
With this estimated level it is possible to adjust the deviation 
of the Gabor filter in 𝜎𝜎 ∈ [0.03, 0.21]. 

 
3.2. Model adaptation 
From the noise estimation, the Gabor filter becomes adaptive 
and must be updated every time that 𝐿𝐿 image is filtered and 
gets a pulse 𝑄𝑄 ≠ 𝑌𝑌 , so in Algorithm 1, Step 1 must be replaced 
by the estimate and update function of the filter to obtain the 
initial noise, as well as adding this function prior to Step 16. In 
Algorithm 2 the update function is detailed. 

For this experimentation, the parameters for the Gabor filter 
detailed in (Khan et al., 2016) were followed, specifically: 𝜃𝜃 = 0, 
𝜆𝜆 = 1

𝜎𝜎
, 𝜑𝜑 = 0 and 𝛾𝛾 = 1. The filter G was defined as an array of 

5 × 5. Figure 2 shows the flowchart detailing the PCNN 
algorithm with adaptive filter. Receives the original image 𝑆𝑆 and 
returns the time matrix 𝑇𝑇 , which are structured in grayscale in 
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Figure 3. Proposed adaptive PCNN algorithm flowchart. 
 

the value interval [0,255]. The 𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝑒𝑒𝐹𝐹 𝑈𝑈𝑒𝑒𝑈𝑈𝑚𝑚𝐹𝐹𝑒𝑒(⋅) blocks refer 
to the Algorithm 2, which receives as a parameter an array 𝐼𝐼 ∈
𝑍𝑍𝑁𝑁×𝑁𝑁 returns the filter 𝐺𝐺 The proposed model is formalized 
in the diagram in Figure 3, where the filter update is 
highlighted at the top with the use of the external filter 𝜎𝜎𝐸𝐸 . 

These modifications allow the PCNN to converge in 
fewer iterations, the recurring update allows to obtain 
better delimited regions. The extra function adds a linear 
complexity 𝑂𝑂(𝑛𝑛), where 𝑛𝑛 = 𝑀𝑀 ⋅ 𝑁𝑁. However, the 
operations of the data structures are performed in a 
linear process, therefore this algorithm is easily 
parallelized to speed up the response time. 

 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Proposed adaptive PCNN algorithm flowchart. 
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3.3. Parallelization 
To perform GPU acceleration, the algorithm was written in 
CUDA kernels using vectorized data structures. This means that 
the image 𝑆𝑆 was reduced to a vector of size 𝑀𝑀 ⋅ 𝑁𝑁 , therefore the 
matrices used have the same structure. In Algorithm 3 the 
sequential and parallel processing blocks are detailed. 

Although 𝐿𝐿, 𝑌𝑌 𝑄𝑄, 𝑈𝑈, 𝑌𝑌 and 𝛩𝛩 are defined as 𝑀𝑀 ⋅ 𝑁𝑁 vectors, 
as well as 𝐺𝐺 and 𝜎𝜎𝐸𝐸  as 𝐾𝐾2 vectors, the image 𝑆𝑆 is read as a two-
dimensional structure. To process it, it is necessary to perform 
vectorization from a queued transformation. That is, every 𝑀𝑀 
value is stacked in the 𝑁𝑁 + 1 row. 

For parallel kernels, an index 𝑠𝑠 is defined within each 
procedure referring to the GPU processing thread. In the 
algorithm, Step 5 indicates that 𝑠𝑠 is obtained from the block index 
with respect to the total blocks and the processing thread. In 
practice 𝑠𝑠 ∈ [0,𝑛𝑛], where n represents the kernel threads used, 
calculated from the grid parameters product << 𝑒𝑒1,𝑒𝑒2 >> in 
the main thread. For each kernel, 𝑠𝑠 represents a PCNN neuron, so 
that each operation can be performed at the same time unlike the 
original algorithm, except for the sequential procedure since it 
requires a scan of the image. For convolution, the surrounding 
region is necessary, for this reason the local sub-indexes are 
calculated. Is it possible to reduce the processing time from 𝑛𝑛 to 
𝑛𝑛
𝑁𝑁𝑁𝑁

, without affecting the quality of the segmentation. 
 

4. Experimentation 
 
The model was evaluated on a Nvidia Jetson Nano embedded 
card with 4 ARM @ 1.43 GHz Cores, 4GB RAM and 128 GPU 
Cores, to validate its viability for an embedded system. The 
source code and some experiments of this implementation 
can be accessed in the public repository of the project (Luna, 
2022). To validate the segmentation, specialized metrics in the 
segmentation detailed in Section 4.2 were used and it was 
evaluated on the images detailed below. 
 

4.1. Data 
Two databases were used: AigleRN (Amhaz et al., 2016), 
consisting of a compendium of 5 pavement crack databases, 
including 132 samples with hand-created ground truth and 149 
unlabeled samples. All images are in 8-bit ppm format and range 
in size from 311 × 462 to 991 × 462. Figure 4 shows two 
samples. 

 

 
 

Figure 4. AigleRN samples with ground truth. 
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CrackForest (Shi et al., 2016) consists of 155 images with 
ground truth, including a. seg format file with the 
segmentation performed by its method (Shi et al., 2016), some 
images include urban scene objects such as sewers and cones. 
Each image is in 8-bit format of size 480 × 320. Figure 5 shows 
three examples from this database with their ground truth. In 
the most complex cases, the reference is shown as a stain 
indicating the crack area. 

 

 
 

Figure 5. CrackForest samples with ground truth. 
 

4.2. Metrics 
To evaluate the intersection between the obtained and 
expected results, metrics derived from the confusion matrix 
precision, recall and F-score are calculated. The maximum 
signal to noise ratio (PSRN) (Setiadi, 2021) was used as the 
second metric, it defines the relationship between the 
maximum possible intensity of an image and the noise that 
affects it. To calculate, is necessary the mean squared error 
(MSE) and the maximum intensity, higher values represent 
better encoding. 

 

𝑃𝑃𝑆𝑆𝑁𝑁𝑃𝑃 = 10 ⋅ 𝐹𝐹𝑐𝑐𝑜𝑜10 �
𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥)2

𝑁𝑁𝑀𝑀𝐸𝐸
�     (5) 

 
The third metric used is the Structural Similarity Index 

(SSIM) (Setiadi, 2021), is a quality metric used to measure the 
similarity between two images. 

 

𝑆𝑆𝑆𝑆𝐼𝐼𝑀𝑀(𝑒𝑒,𝑦𝑦) = �2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1��2𝜎𝜎𝑥𝑥𝑦𝑦+𝐶𝐶2�
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2�

    (6) 

where 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑥𝑥 are the means of 𝑒𝑒 and 𝑦𝑦 respectively, 𝜎𝜎𝑥𝑥2 and 
𝜎𝜎𝑥𝑥2 the variances, 𝜎𝜎𝑥𝑥𝑥𝑥  covariance between 𝑒𝑒 y 𝑦𝑦, y 𝐶𝐶1 =
(𝑘𝑘1, 𝐿𝐿)2 , 𝐶𝐶2 = (𝑘𝑘2, 𝐿𝐿)2 are variables to stabilize the division, 
𝐿𝐿 is the range of pixel intensity and the constants 𝑘𝑘1 = 0.01 
and 𝑘𝑘2 = 0.03. 

 
5. Results  

 
As a first observation, the proposed model shows an iterations 
reduction in the PCNN algorithm. This is not obtained by 
parallelization, but rather because the adaptive Gabor filter is 

more suitable than the Gaussian filter to extract textures, 
allowing faster convergence. Figure 6 shows the average 
iterations in the experimentation. 

As seen in Figure 6, the proposed model takes 1.6% of 
iterations than the original PCNN. In addition to the 
acceleration of the convergence of the algorithm, the quality 
of the crack segmentation is improved. Figure 7 shows the 
segmentation of an image from the CrackForest database. 

 

 
 

Figure 6. Iterations by the original and proposed PCNN. 
 

 
 

Figure 7. Output segmented image. 
 
Segmentation showed that it is not affected by variations in 

the pavement texture, even in small regions and considering 
the filter size and the wavelength 𝜆𝜆. 

To compare, some implementations were replicated: the 
Otsu threshold proposed by Akagic et al. (2018), triple Canny 
threshold (Wang et al., 2018), optimized version of Gabor filter 
(Khan et al., 2016) and neural network DeepCrack (Liu et al., 
2019). All methods were designed for pavement cracks 
detection. As a first comparison, the convergence time on the 
embedded card was recorded. For the proposed model, its 
sequential and parallel implementation was evaluated 
separately to show the improvement without hardware 
acceleration. Figure 8 shows the graph of the time consumed 
by each algorithm. 

In this comparison, it should be noted that the methods do 
not require training except for the DeepCrack network, for this 
the pre-trained and parallelized GPU model was used, so 
training is not considered and presents hardware advantages. 
Even so, the parallel implementation of the proposed model 
requires ≈ 45 ms less for each image. Even so, the metrics  
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indicated that the proposed model presents the best quality  
of segmentation in most cases. In summary, Table 1 shows the 
quantitative comparison from the metrics obtained by the 
methods, as well as graphically in Figure 9 a qualitative 
comparison is shown. 

 

 
 

Figure 8. Convergence time graph of the evaluated methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Finally, in some experiments segmentation behaviors by 
regions are presented. As can be seen in Figure 10, the 
proposed model generates two regions delimited by the 
detection of a transverse fracture in the image. 

This result is obtained by the intensity variations between 
both regions of the image. To solve this, the model can be 
complemented with a filter that matches the intensities. This 
also shows that the proposed model is not only functional for 
detection but can also be applied in non-binary segmentation 
by correctly implementing the adjustment of the parameters. 
This idea can be raised as future work. 

 

 
 

Figure 10. Segmentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Conclusion  

 

Table 1. Summary of segmentation metrics obtained from the experimentation. 

Method Precision Recall F-score SSIM PSNR MSE 

CrackForest 
Canny 0.126 0.238 0.129 0.573 51.200 0.068 

Otsu 0.050 0.650 0.085 0.062 54.347 0.245 

Optimized Gabor 0.375 0.042 0.088 0.829 56.170 0.023 

Optimized PCNN 0.431 0.192 0.232 0.879 51.262 0.058 

CNN DeepCrack 0.911 0.882 0.896 0.920 58.599 0.018 

Proposed method 0.911 0.897 0.903 0.946 58.020 0.018 

AigleRN 

Canny 0.006 0.263 0.011 0.126 54.284 0.414 
Otsu 0.013 0.391 0.025 0.325 51.992 0.294 

Optimized Gabor 0.026 0.257 0.044 0.526 57.782 0.281 

Optimized PCNN 0.043 0.286 0.079 0.336 56.899 0.151 
CNN DeepCrack 0.855 0.792 0.822 0.896 60.154 0.105 

 

 

Figure 9. Images segmented by a) Canny, b) Gabor filter, c) Otsu, d) PCNN, e) DeepCrack f) Proposed PCNN. 
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An adaptive pulse-coupled neural network based on noise 
estimation was proposed. The model can adapt to the type of 
image to obtain the best segmentation by filtering textures 
without prior training. Compared to the original model, it 
reduces to 2% of the iterations it would take. The algorithm 
was parallelized on the GPU, reducing the response time in an 
embedded system from 𝑒𝑒𝑛𝑛 to 𝑒𝑒. It is capable of processing 10 
images in ≈ 0.8 seconds, which makes it feasible to 
implement in a real-time system. 
     Classic and recent methods specialized in the pavement 
crack segmentation were evaluated, the proposed method is 
60% faster in a simple implementation and +90% parallelized, 
preserving the quality of the segmentation, which in most cases 
is superior. As future work, it is proposed to create the system in 
real time embedded in a vehicle. 
 
Conflict of interest 
 
The authors have no conflict of interest to declare. 
 
Acknowledgements 
 
The authors thank Consejo Nacional de Ciencia y Tecnología 
and Tecnológico Nacional de México/Centro Nacional de 
Investigación y Desarrollo Tecnológico for the support of this 
research. 
   
Funding   
 
The authors received no specific funding for this work. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 
Akagic, A., Buza, E., Omanovic, S., & Karabegovic, A. (2018). 
Pavement crack detection using Otsu thresholding for image 
segmentation. In 2018 41st International Convention on 
Information and Communication Technology, Electronics and 
Microelectronics (MIPRO) (pp. 1092-1097). IEEE. 
https://doi.org/10.23919/MIPRO.2018.8400199 
 
Amhaz, R., Chambon, S., Idier, J., & Baltazart, V. (2016a). 
Automatic crack detection on two-dimensional pavement 
images: An algorithm based on minimal path selection. IEEE 
Transactions on Intelligent Transportation Systems, 17(10), 
2718-2729. 
https://doi.org/10.1109/TITS.2015.2477675 
 
Amhaz, R., Chambon, S., Idier, J., & Baltazart, V. (2016b). 
Automatic crack detection on 2D pavement images: An 
algorithm based on minimal path selection. online; Accessed 
30 9 2021 
https://www.irit.fr/~Sylvie.Chambon/Crack_Detection_Datab
ase.html 
 
Cubero-Fernandez, A., Rodriguez-Lozano, F. J., Villatoro, R., 
Olivares, J., & Palomares, J. M. (2017). Efficient pavement crack 
detection and classification. EURASIP Journal on Image and 
Video Processing, 2017, 1-11. 
https://doi.org/10.1186/s13640-017-0187-0 
 
Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. 
(2017). Deep convolutional neural networks with transfer 
learning for computer vision-based data-driven pavement 
distress detection. Construction and building materials, 157, 
322-330. 
https://doi.org/10.1016/j.conbuildmat.2017.09.110 
 
Khan, H. A., Salman, M., Hussain, S., & Khurshid, K. (2016). 
Automation of optimized gabor filter parameter selection for 
road cracks detection. International Journal of Advanced 
Computer Science and Applications, 7(3). 
https://u-bourgogne.hal.science/hal-01431337 
 
Kim, D. G., & Shamsi, Z. H. (2018). Enhanced residual noise 
estimation of low rank approximation for image 
denoising. Neurocomputing, 293, 1-11. 
https://doi.org/10.1016/j.neucom.2018.02.063 
 
Lau, S. L., Chong, E. K., Yang, X., & Wang, X. (2020). Automated 
pavement crack segmentation using u-net-based 
convolutional neural network. Ieee Access, 8, 114892-114899. 
https://doi.org/10.1109/ACCESS.2020.3003638 
 

https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.23919/MIPRO.2018.8400199
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/TITS.2015.2477675
https://www.irit.fr/%7ESylvie.Chambon/Crack_Detection_Database.html
https://www.irit.fr/%7ESylvie.Chambon/Crack_Detection_Database.html
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1016/j.conbuildmat.2017.09.110
https://u-bourgogne.hal.science/hal-01431337
https://doi.org/10.1016/j.neucom.2018.02.063
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/ACCESS.2020.3003638


 
 

 

A. Luna Álvarez et al. / Journal of Applied Research and Technology 102-110 

 

Vol. 22, No. 1, February 2024    110 
 

Li, S., Cao, Y., & Cai, H. (2017). Automatic pavement-crack 
detection and segmentation based on steerable matched 
filtering and an active contour model. Journal of Computing in 
Civil Engineering, 31(5), 04017045. 
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000695 
 
Li, Z., Xu, G., Cheng, Y., Wang, Z., & Wu, Q. (2020). Pavement 
crack detection using progressive curvilinear structure 
anisotropy filtering and adaptive graph-cuts. IEEE Access, 8, 
65020-65034. 
https://doi.org/10.1109/ACCESS.2020.2985216 
 
Lian, J., Yang, Z., Liu, J., Sun, W., Zheng, L., Du, X., ... & Ma, Y. 
(2021). An overview of image segmentation based on pulse-
coupled neural network. Archives of Computational Methods in 
Engineering, 28, 387-403. 
https://doi.org/10.1007/s11831-019-09381-5 
 
Liu, Y., Yao, J., Lu, X., Xie, R., & Li, L. (2019). DeepCrack: A deep 
hierarchical feature learning architecture for crack 
segmentation. Neurocomputing, 338, 139-153. 
https://doi.org/10.1016/j.neucom.2019.01.036 
 
Luna, A. (2022) Pcnn with adaptive gabor filter. 
https://github.com/TonnyLuna/PCNN_AdaptiveGabor_segm
entation 
 
Mukherjee, D., & Das, A. (2021). Gabor filter based automated 
enhancement of brain tumors. In Advances in Medical Physics 
and Healthcare Engineering: Proceedings of AMPHE 2020 (pp. 
71-80). Springer Singapore. 
https://doi.org/10.1007/978-981-33-6915-3_8 
 
Nie, R., Cao, J., Zhou, D., & Qian, W. (2020). Multi-source 
information exchange encoding with PCNN for medical image 
fusion. IEEE Transactions on Circuits and Systems for Video 
Technology, 31(3), 986-1000. 
https://doi.org/10.1109/TCSVT.2020.2998696 
 
Pauly, L., Hogg, D., Fuentes, R., & Peel, H. (2017). Deeper 
networks for pavement crack detection. In Proceedings of the 
34th ISARC (pp. 479-485). IAARC. 
https://doi.org/10.22260/isarc2017/0066 
 
Setiadi, D. R. I. M. (2021). PSNR vs SSIM: imperceptibility quality 
assessment for image steganography. Multimedia Tools and 
Applications, 80(6), 8423-8444. 
https://doi.org/10.1007/s11042-020-10035-z 
 
 
 

Shao, C., Chen, Y., Xu, F., & Wang, S. (2019). A kind of pavement 
crack detection method based on digital image processing. 
In 2019 IEEE 4th Advanced Information Technology, Electronic 
and Automation Control Conference (IAEAC) (pp. 397-401). IEEE. 
https://doi.org/10.1109/IAEAC47372.2019.8997810 
 
Shi, Y., Cui, L., Qi, Z., Meng, F., & Chen, Z. (2016). Automatic road 
crack detection using random structured forests. IEEE 
Transactions on Intelligent Transportation Systems, 17(12), 
3434-3445. 
https://doi.org/10.1109/TITS.2016.2552248 
 
Wang, G., Peter, W. T., & Yuan, M. (2018). Automatic internal 
crack detection from a sequence of infrared images with a 
triple-threshold Canny edge detector. Measurement Science 
and Technology, 29(2), 025403. 
https://doi.org/10.1088/1361-6501/aa9857 
 
Wang, Z., Ma, Y., Cheng, F., & Yang, L. (2010). Review of pulse-
coupled neural networks. Image and vision computing, 28(1), 
5-13. 
https://doi.org/10.1016/j.imavis.2009.06.007 
 
Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., & Ling, H. 
(2019). Feature pyramid and hierarchical boosting network for 
pavement crack detection. IEEE Transactions on Intelligent 
Transportation Systems, 21(4), 1525-1535. 
https://doi.org/10.1109/TITS.2019.291059 
 
Zhan, K., Shi, J., Wang, H., Xie, Y., & Li, Q. (2017). Computational 
mechanisms of pulse-coupled neural networks: a 
comprehensive review. Archives of Computational Methods in 
Engineering, 24, 573-588. 
https://doi.org/10.1007/s11831-016-9182-3 
 
Zhang, A., Wang, K. C., Fei, Y., Liu, Y., Tao, S., Chen, C., ... & Li, B. 
(2018). Deep learning–based fully automated pavement crack 
detection on 3D asphalt surfaces with an improved 
CrackNet. Journal of Computing in Civil Engineering, 32(5), 
04018041. 
https://doi.org/10.1061/(ASCE)CP.1943-5487.00007 
 
Zhang, L., Yang, F., Zhang, Y. D., & Zhu, Y. J. (2016). Road crack 
detection using deep convolutional neural network. In 2016 
IEEE international conference on image processing (ICIP) (pp. 
3708-3712). IEEE. 
https://doi.org/10.1109/ICIP.2016.7533052 
 
 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000695
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/ACCESS.2020.2985216
https://doi.org/10.1007/s11831-019-09381-5
https://doi.org/10.1016/j.neucom.2019.01.036
https://github.com/TonnyLuna/PCNN_AdaptiveGabor_segmentation
https://github.com/TonnyLuna/PCNN_AdaptiveGabor_segmentation
https://doi.org/10.1007/978-981-33-6915-3_8
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/TCSVT.2020.2998696
https://doi.org/10.22260/isarc2017/0066
https://doi.org/10.1007/s11042-020-10035-z
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/IAEAC47372.2019.8997810
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/TITS.2016.2552248
https://doi.org/10.1088/1361-6501/aa9857
https://doi.org/10.1186/s13640-017-0187-0
http://dx.doi.org/10.1016/j.imavis.2009.06.007
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/TITS.2019.2910595
https://doi.org/10.1007/s11831-016-9182-3
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775
https://doi.org/10.1186/s13640-017-0187-0
https://doi.org/10.1109/ICIP.2016.7533052

