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Abstract: In this work, a new intelligent identification technique of the cutting temperature based on 

the fuzzy set theory has been proposed to replace the strategy based on the operator qualification. 

This technique uses a fuzzy multiple input inference system to determine the influence of the cutting 

parameters on the cutting temperature. The fuzzy modeling is based on an experimental database 

resulting from the non-contact measurement of cutting temperature using an infrared camera with an 

emissivity setting adapted to the material. The results of the fuzzy system show that the fuzzy model is 

able to specify results providing a very good correlation between the experimental data and those 

predicted. The average error of the model was approximately 2.242%. The parameters used for the 

validation of the model were different from the data used for the construction of the fuzzy rules. The 

accuracy of the technique used is compared to previously published results available in the literature. 

The technique proposed in this work has been proven to compete robustly with a wide range of 

prediction techniques. 
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1. Introduction 
 

Milling is still one of the most used processes in manufacturing 

technology, it plays a crucial role in the field of mechanical 

manufacturing and, therefore, it is an open process to cope 

with various types of improvements. Because of the 

complexity and the optimization objectives, a large number of 

researches are guided towards new technologies in order to 

improve the productivity, the quality of the machined parts 

and minimize the production costs. 

In the milling process, cutting parameters such as cutting 

speed, feed per tooth and depth of cut, as well as the cutting 

environment, material and tool geometry play a very 

important role in deciding the performance of quality. 

To achieve the required quality performance, it is 

necessary to take into account an optimal selection of cutting 

parameters. This selection not only guarantees a reduction in 

costs and production times, but also guarantees control of the 

phenomena accompanying cutting, which directly affect the 

quality performance of the machined parts. 

During milling operations, the part is heated by the 

phenomena associated with the formation of the chip and 

undergoes exchanges with the environment which results in 

high temperatures. 

The cutting temperature causes heat generation and local 

heating linked to the tool-material pair present. These 

overheating lead to plastic deformation, during the formation 

of chips, and the increase in friction forces and the cohesion of 

the cutters on the cutting face. These overheating are local 

and strongly linked to the tool-material pair present. They can 

lead to the appearance of geometric and / or dimensional 

defects on the parts. 

The heat generation mechanisms are linked to the plastic 

deformations generated in the primary shear zone by the 

conversion of a large amount of energy into heat and the 

secondary deformation at the chip-tool interface by the 

generation of heat by friction and / or shearing. 

Increasing the cutting temperature during milling operations 

causes several problems, including rapid tool wear and thermal 

damage and fracturing of the inserts, which leads to a reduced 

service life and therefore a high production cost (Abukhshim et al., 

2006; Majumdar et al., 2005; Young et al., 1996 ). 

The increase in cutting temperature also affects the 

integrity of the machined surface and the dimensional 

accuracy of the workpiece. 

Several relevant researches have been carried out on the 

cutting temperature during machining operations. This 

research can be divided into three main areas: experimental, 

analytical and numerical methods. 

 

The experimental methods for measuring the cutting 

temperature during machining can be mainly classified into 

two groups: direct and indirect methods. 

Indirect methods of locating high temperature points across 

the entire device and only provide post-processing information 

and calibration is tedious. The most widely used direct method 

for measuring cutting temperature in research is the 

thermocouple method (El-Wardany et al., 1996; Kitagawa et al., 

1997; Le Coz et al., 2012; McFeron & Chao, 1958; Wang et al., 

1968). This method consists in placing thermocouples as close 

as possible to the analysis area requested. 

The advantage of thermocouples is the simplicity and 

flexibility of use for simple acquisition and this at lower cost, 

but this type of methods does not effectively give precise 

temperature values, it mainly depends on the position of 

installation of thermocouples. They also present enormous 

difficulties in mounting the measuring devices, especially 

when using rotary cutting tools. 

Another type of direct method for measuring cutting 

temperature is infrared thermography (IR), which has become 

a widely accepted and mature monitoring tool, where 

temperature is measured without contact. This technique is 

used in some research to determine the cutting temperature: 

(Saez-de-Buruaga et al., 2018) used infrared thermography 

to determine tool temperatures and thermal fields in near real 

time. In their study, the temperatures are measured on the 

side faces of the tool normal to the cutting edge. They then 

used analytical theories to calculate the tool / chip contact 

temperatures. 

(Abrão & Aspinwall, 1997) used a single-color infrared 

thermometer to measure the cutting temperature during filming 

operations. In their work the emissivity has not been calibrated. 

(Zhao et al., 2018) used a two-color infrared thermometer 

to measure the cutting temperature during the turning of the 

Inconel 718 with a ceramic tool. In this work, the authors tried 

to eliminate the emissivity effect in order to improve the 

authenticity of the measured cutting temperature. 

(Sato et al., 2011) developed an infrared radiation 

pyrometer for measuring the cyclic cutting temperature under 

the cutting face of a milling tool. 

(Soler et al., 2015) used an infrared camera to measure the 

tool / chip contact temperature. In this work the camera was 

placed orthogonally to the flow of the chip. The work 

presented by Soler et al. 2015 is based on an estimate of the 

heat distribution between the tool and the workpiece. 

Despite the many advantages of this type of method, they 

remain linked to the calibration technique used, which in turn 

is linked by the estimation of emissivity. 

Analytical methods based on the study of the mechanisms  
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that affect cutting operations. Much research has been done 

with analytical methods for decades: 

The work presented by  Hahn 1951, Trigger and Chao 1951, 

on a semi-ifini medium, is based on the approach of the 

mobile heat source with explicit hypotheses. They assumed 

that the heat source was due to shear. 

(Komanduri & Hou, 2001) followed the same steps as 

(Trigger & Chao, 1951; Hahn, 1951) but with the introduction of 

another heat source due to friction. 

(Stephenson & Ali, 1992) used the green functions to solve 

a model that takes into account the cutting tool like a 

rectangular prism with a time-dependent heat flow. 

(Feng et al., 2015) studied the cutting temperature by a 

thermal conduction model by introducing the fundamental 

principles of the milling process. 

(Baohai et al., 2016) used an analytical model-based 

method to predict the cutting temperature during milling, 

taking into account the actual friction of the tool-chip 

interface and the cutting temperature drop phase. 

(Radulescu & Kapoor, 1994) Calculated the cutting 

temperatures on the tool from a heat flow which takes into 

account convection in ambient air. 

This type of method is affected by the shapes and geometries 

and the boundary conditions considered which must simplify in 

most cases which leads to imprecision of the results. 

Numerical methods provide solutions for complex cases 

through known numerical methods for example: the finite 

element method (FEM) and the finite difference method (FDM). 

In the literature there has been much research using 

numerical methods. 

(Hoyne et al., 2015) applied the finite element method to 

determine the cutting temperature in the tool. The results of 

this study showed difficulties in determining the actual cutting 

temperature field. 

(Strenkowski & Moon, 1990) developed a finite element model 

based on Euler's theory to predict the temperature distribution in 

the cutter, tool and workpiece during cutting operations. 

(Lazoglu & Altintas, 2002) used the finite difference method 

to model the cutting temperature. This study addresses the 

effect of cutting parameters on the wear of cutting tools and 

the relationship between wear and cutting temperature. 

(Jen et al., 2003) studied temperature as a function of time 

using a volume control method based on the conduction 

phenomena. 

(Cui & Guo, 2017) used the finite element method to 

determine the average value of the transient temperature of 

the tool and to study the effect of the cutting parameters on 

the cutting temperature. 

Numerical methods are difficult to simulate and require 

relatively long computation time. 

 

From the literature search presented above it can be 

concluded that there is a need for the development of precise 

methods for determining the cutting temperature during milling. 

It is also clear that the development of models for predicting the 

cutting temperature during milling depends not only on the 

method used for modeling but also on the experimental 

procedure used. Most of the scientific work in this subject is based 

on data inspired by the literature, which requires experimental 

development for the measurement of temperature. 

In most of the work carried out, the thermal camera and 

the two-color infrared pyrometer have been considered as 

useful means for measuring the cutting temperature. Unlike a 

pyrometer, a thermal camera not only determines the 

temperature but also tracks the evolution of heat in the tool 

and in the workpiece. 

This is why, in this paper, on the basis of tests of 

measurement of the cutting temperature with a thermal 

camera, the effects of the cutting parameters on the 

temperature of the tool are predicted with an intelligent 

method based on a fuzzy inferences system. The prediction 

results obtained by this model have been verified by other 

experimental tests. 

. 

2. Experimental procedure 

 

2.1. Materials and Equipment 
All milling tests were carried out under dry cutting conditions 

on a Knuth cnc mill Rapimill 700 type milling machine having 

a maximum spindle speed of 10,000 rpm and a maximum feed 

of 157 mm / min. Figure 1 shows the experimental 

configuration used. 

The tests were carried out by surfacing prismatic parts in 

AISI 1060 carbon steel. The chemical composition of AISI 1060 

carbon steel is described in table 1. A Sandvik 490R-08T308E-

ML 1040 insert end mill was used to carry out all the tests. 

 
Table 1. Chemical composition of AISI 1060 steel. 

 

Element Content % 

Fe 98.35-98.85 

Mn 0.60-0.90 

C 0.55-0.660 

S ≤ 0.050 

P ≤ 0.040 

 

2.2. Cutting temperature measurement 
Measuring the cutting temperature in milling operations is too 

difficult due to obstructions to chips and the rotary movement 

of the cutting tool. Among the measurement techniques used 

for determining the cutting temperature during milling are: the  
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infrared camera technique which is one of the most effective 

techniques. It has many advantages, such as: rapid 

measurement without contact with the heat source. With this 

method, the temperature is varied as a function of the thermal 

energy emitted by the surface of the body measured. However, 

the emissivity of a body depends on several factors such as: 

the emperature, the measurement configuration, the 

composition and the geometry of the surface measured, 

which makes the accuracy of this technique depends on the 

calibration technique used, essentially related to the 

estimation of emissivity. In addition, with infrared cameras, all 

materials do not have the same capacity to absorb or emit 

infrared energy by radiation: Emissivity. It is therefore essential 

to adjust the emissivity to adapt to the material to be 

measured to obtain a more precise measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this work, a FLIR A325 infrared thermography camera 

was used to measure the cutting temperature. In order to 

determine the emissivity, a matt black paint is applied to an 

area of the surface of the work-piece in order to display an 

emissivity greater than 0.95. 

The temperature of the area thus painted is measured 

having set the emissivity to 0.95. At the end, the temperature of 

a neighboring surface located on the part is measured by 

modifying the emissivity until the same temperature is 

obtained. 

The FLIR A325 infrared thermography camera is placed 

orthogonally to the flow of the chip, to measure the 

temperature on a side face of the tool. The measured 

temperature is the maximum cutting temperature. The 

configuration of the tests is presented in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The steps to follow for measuring the cutting temperature. 
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The experimental conditions used are presented in Table 2. 
 

Table 2. Experimental conditions. 
 

Fz (mm/ tooth) Vc (m/min) a (mm) 

0.09 100 0.25 

0.12 150 0.5 

0.15 200 0.75 

0.18 250  

 300  

 

The results of the cutting temperature measurement are 

obtained in the form of thermal radiation images. These 

images are analyzed by FLIR Tools control software to 

determine the maximum temperature of the cutting area. 

 

2.3. Study of fidelity measurement system 
In order to study the precision of our measurement system, we 

carried out temperature measurement tests, with the same 

cutting conditions three times in succession. Figure 2 illustra- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tes the evolution of the cutting temperature for the three tests 

carried out. 
 

The results of the reproducibility tests are grouped in table 3. 
 

Table 3. Result of reproducibility tests 
 

Tests Temperature (°C) 

Test 1 69.188 

Test 2 69.255 

Test  3 69.046 

Average 30.3225 

Standard Deviation   0.087 

 

The standard deviation is given by the equation (1) 
 

( )
=

= −
4

2

1

1
i

i

T T
n

                (1) 

 

The deviation is around 0.087 so the temperature values are 

grouped around the average, so it can be said that the 

temperature measurement is homogeneous for the three tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Study of fidelity measurement system. 
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3. Results of experimental tests 
 

Through tests carried out in this work, it is noticed that the 

cutting temperature increases with the increase in the cutting 

time, then it stabilizes and in the end it decreases when the 

machining operation is finished, which is clear in figure 3. This 

variation of the cutting temperature takes the same shape for 

all the tests and whatever the cutting parameters used. 

Each curve goes through three stages: an ascending temperature 

phase, then stability and finally the decrease in temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The peaks observed in the curve, intermittently, are the 

result of the crushing of the chips between the tool and the 

workpiece, which leads to an overheating of the chips, as 

illustrated by the thermographies appended to the curve of 

the Figure 4 (the zones of maximum temperature are 

surrounded by circles). 

The study of the variation of the cutting temperature as a 

function of the cutting parameters leads to finding the values 

of the cutting temperature mentioned in table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

 

 

           

 

 

 

Figure 3. Variation of the cutting temperature as a function of time. 

 

Cutting temperature as a function of time for V 

c = 300 m / min, f = 0.09 mm / tooth and a  

= 0.5 mm 

Cutting temperature as a function of time for 

Vc = 100 m / min, f = 0.09 mm / tooth and a = 

0.25mm 

Cutting temperature as a function of time for 

Vc = 250 m / min, f = 0.09 mm / tooth and a 

 = 0.25 mm 

Cutting temperature as a function of time for 

Vc = 300 m / min, f = 0.12mm / tooth and a = 

0.5 mm  
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Figure 4. Temperature change phases and associated thermographies. 
 

Table 4. Experimental results. 

a (mm) 

0.25                  0.5             0.75 fz 

(mm/tooth) 

Vc 

(m/min) 

0.09 

100 74,73 101,00 91,55 

150 91,62 101,50 117,80 

200 90,10 107,90 112,00 

250 99,54 114,60 125,50 

300 101,40 119,30 127,30 

0.12 

100 79,23 88,59 105,40 

150 85,59 98,96 114,10 

200 93,00 102,40 117,00 

250 96,65 109,40 120,80 

300 101,50 113,00 123,10 

0.15 

100 78,46 86,33 104,20 

150 83,90 97,00 112,20 

200 91,14 100,20 122,60 

250 94,49 102,90 118,10 

300 101,60 104,30 122,40 

0.18 

100 80,39 88,83 103,00 

150 84,25 97,83 110,20 

200 94,59 102,10 120,50 

250 91,50 102,90 123,00 

300 99,65 105,80 126,10 
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4. Fuzzy model for milling 

 

In this work, the fuzzy model designed to predict the 

cutting temperature for milling operations uses three 

inputs and one output (Figure 5). Cutting speed, feed 

per tooth and depth of cut are the inputs and the 

cutting temperature is the output of the system. 

The process of the fuzzy logic technique gathers fuzzy 

logic operators, membership functions, managed by a 

set of rules. A fuzzy inference system is structured in 

three components: a fuzzy rule base; membership 

functions developed from a database; and a reasoning 

mechanism executing the rules to give an answer. The 

parameters used in fuzzy if/then rules define the fuzzy 

region of the inputs, while the output parameters 

provide the corresponding response. 

The Mamdani type fuzzy inference system is used in 

this study. 

 

 
 

Figure 5. Fuzzy system. 

 

Deux bases de données différentes sont utilisées 

pour le développement du système d’inférence flou ; 

une base de données est composée de 50 essais  pour la 

conception du modèle flou, tandis que la deuxième base 

de données est composée de 10 essais  pour la 

confirmation.  

The first step in the study of the cutting temperature 

prediction algorithm is to choose the forms of the 

membership functions for the process variables 

according to the experimental database, which were 

used on the machine tool. Fuzzy expressions for cutting 

speed, feed per tooth, depth of cut, and cutting 

temperature are shown in Figures 6-10, respectively. 

 

4.1. Fuzzy expressions 

The numerical values of the input and the output are 

linked to a set of language variables, these connections 

are made by designing membership functions 

composed of several fuzzy values. 

The numerical values of the depth of cut are linked by 

linguistic variables as shown in Figure 6. 

 

 
 

Figure 6. Linguistic variables for depth of cut. 

 

The numerical values of the feed per tooth are linked 

by linguistic variables as shown in Figure 7. 

 

 
 

Figure 7. Linguistic variables for feed per tooth. 

 

Numerical cutting speed values are linked by 

linguistic variables as shown in Figure 8. 

 

 
 

Figure 8. Linguistic variables for cutting speed. 

 

In order to determine the link between the numerical 

values and the linguistic variables associated with the 

cutting temperature, a representation in the form of a 

point (figure 9) cloud was proposed to determine the 

linguistic variables, taking into account the distribution 

of the values of cutting temperature obtained 

experimentally and ensuring optimal determination of 

the domain of each linguistic variable. 
 

 
 

Figure 9. Values of the cutting temperature for all the tests. 
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The numerical values of the cutting temperature are linked 

by linguistic variables as shown in Figure 10. 

 

 
 

Figure 10. Linguistic variables for cutting temperatue 

 

Membership functions come in many forms. In this study, 

triangular, trapezoidal and Gaussian membership functions were 

used for the input variables (cutting speed, feed per tooth and 

cutting depth) and the output parameter (Cutting temperature). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Six membership functions are used for the output 

response (cutting temperature). Increasing the number of 

membership functions leads to more accurate results, but at 

the same time, it leads to the use of a larger number of rules, 

which requires more computation time. Therefore, six 

membership functions were selected for this work. All fuzzy 

sets are defined by distinct membership functions. The output 

of the fuzzy inference system is visualized into fuzzy values that 

need to be defuzzified in the last step. 

The triangular membership functions for the input and 

output parameters are illustrated in Figure 11. 

The trapezoidal membership functions for the input and 

output parameters are illustrated in Figure 12. 

The Gaussian membership functions for the input and 

output parameters are illustrated in Figure 13. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

 

 

           

 

 

Figure 11. Membership functions for input and output parameters using triangular membership 

Depth of cut Feed per tooth 

Cutting speed Cutting temperature 
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Figure 12. Membership functions for input and output parameters using trapezoidal membership. 

 

Depth of cut 

Cutting speed 

Feed per tooth 

Cutting temperature 

       
 

 

 

     
 

 

Figure 13. Membership functions for input and output parameters using Gaussian membership. 
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4.2. Fuzzy rules for cutting temperature 

The fuzzy model was created using fifty fuzzy rules defined on 

the basis of experimental work, among the sixty experiments 

carried out. The remaining ten experimental data will be used 

later to confirm the fuzzy model. The experimental database in 

Table 4 is used for the generation of the set of fuzzy rules. Table 

5 illustrates the set of rules for the fuzzy system. 

The fuzzy system created has three input parameters to 

produce an output, the fuzzy rules can be described in matrix 

form. Table 5 shows the set of matrix rules between cutting 

speed, feed per tooth, and depth of cut and corresponding 

cutting temperatures. 

The first line indicates the fuzzy sets for the depth of cut (P: 

small depth, M: medium depth, G: great depth) from small 

depth to great depth. The first column indicates the fuzzy sets 

for the feed per tooth varying from low feed to high feed (P: low 

feed per tooth, M: average feed per tooth, M +: feed per tooth 

more than average G: high feed per tooth) , the second column 

indicates the fuzzy sets for the cutting speed varying from very 

low speed to very high speed (TP: very low speed, P: low speed, 

M: average speed G: high speed, Tg: very high speed) contents 

of the matrix is the result obtained, which is the cutting 

temperature for this study. The fuzzy  operators used in the  

rules will apply are "" and "" and "" or "". Some examples of 

fuzzy rules in linguistic form are presented below: 

1. If fz is (P: small) and Vc is (TP: very low) and a is (P: small) 

Then T is (TP: very low) 

2. If fz is (P: small) and Vc is (TP: very low) and a is (M: 

average) Then T is (M +: more than average) 

3. If fz is (P: small) and Vc is (P: low) and a is (P: small) Then 

T is (M: average) 

  

50. If fz is (G: great) and Vc is (TG: very high) and a is (G: great) 

Then T is (TG: very high) 

 

4.3. Defuzzification 
The constructed model uses a continuous universe for all the 

input and output variables. So the input can be any 

combination of three variables (cutting speed, feed per tooth 

and cutting depth) and the output is the cutting temperature. 

Defuzzification makes it possible to merge the different rules 

generated by the inference engine to give it only one cutting 

temperature value and to transform this linguistic output 

variable into digital data by calculating the abscissa of the 

center of gravity of the membership function. 

The output of the fuzzy inference system is defuzzified. The 

produced fuzzy sets are combined using aggregation operators 

from the input fuzzy rules. The fuzzy knowledge base system 

illustrated in Table 5 is trained based on expert knowledge, 

which leads to the generation of rules based on the 

experimental data in Table 4. 

 

Centroid defuzzification method is used for defuzzification. 

The results of defuzzification, which is the last step in fuzzy 

logic, are shown in Figure 14. 

The results of the ten remaining experiments that did not 

enter the model creation process will be used to verify the 

model. These experiments were carried out under the same 

conditions as the previous experiments, but with different 

cutting parameters. 

Table 6 groups together the fuzzy logic model predictions 

for the ten new tests. 

To choose between the membership functions of type: 

triangular, trapezoidal and Gaussian, we propose to use the 

standard deviation in order to define the values closest to the 

experimental results. 

The standard deviation is given by the equation 2: 
 


=

= − 2
exp

1

1
( )

N

pred
i

T T
N

               (2) 

 

In our case N = 10 tests. 

The standard deviation of the triangular membership 

functions is of the order of 2.2871 

The standard deviation of the trapezoidal membership 

functions is of the order of 4.4359 

The standard deviation of the Gaussian membership 

functions is around 2.3071 

Then the results of the Triangular type membership 

functions are closest to the experimental results. 

Study of the precision and the error of the fuzzy system. 

To calculate the error percentage of the 10 tests equation (3) is used: 
 

 −
 = 
 
 

exp

exp

100
pred

i

T T
e

T
               (3) 

 

Equation (4) is used to calculate the percentage of the 

accuracy of the 10 tests: 

 

=

 −
 = − 
 
 


exp

exp1

1
1 100

N
pred

i

T T
A

N T
              (4) 

 

The precision of the fuzzy model and the error rate are 

collated in Table 7. 

The Figure 15 compare the predictions of the fuzzy logic 

model with the temperature measured experimentally during 

the surfacing operation 

Figure 15 shows that the proposed model was able to 

accurately predict the cutting temperature during milling 

operations. The similarities between the cutting temperature 

values mean that the fuzzy logic model is an effective solution 
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that can be used to predict the cutting temperature values for 

a specific range of cutting parameters. 

The concordance of the results obtained by the fuzzy 

inference  model  developed with  the  experimental results re- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reflects the correct choice of membership functions, the 

adequacy of the reasoning mechanism and the selected 

defuzzification method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Inference table. 

 

a (mm)  

P  M  G  fz 

(mm/tooth) 

Vc 
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TG - TG TG 

M 
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M - M+ TG 

G M+ G TG 

TG M+ G TG 
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TP P - M+ 

P - M+ - 

M M M+ - 

G M M+ TG 

TG M+ M+ TG 
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TP P M - 
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M M M+ TG 

G M M+ TG 

TG M+ G TG 

 

 
 

Figure 14. Variation of the experimental and predicted temperature as a function of the number of tests. 
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Table 6. Confirmation tests. 

Tests 
Cutting parameters Cutting temperature 

Vc fz a Texp Ttriang Ttrapez TGauss 

1 100 0,12 0,50 88,59 90 87,5 90 

2 150 0,15 0,25 83,90 81,7 87,5 81,5 

3 150 0,09 0,50 101,5 100 92,5 100 

4 200 0,12 0,25 93,00 90 97,5 90 

5 100 0,15 0,50 86,33 90 87,5 90 

6 300 0,09 0,25 101,4 100 97,5 100 

7 100 0,09 0,75 91,55 90 87,5 90 

8 100 0,18 0,75 103,0 100 108 100 

9 150 0,15 0,75 112,2 110 108 110 

10 200 0,15 0,75 122,6 121 125 121 

 

Table 7. Fuzzy system error and precision for the ten verification tests 

Tests 

Cutting parameters Cutting temperature 

Vc fz a Texp Ttriang 
Error % Accuracy % 

1 100 0.12 0.5 88.59 90 1.5916 98.4083 

2 150 0.15 0.25 83.9 81.7 2.6221 97.3778 

3 150 0.09 0.5 101.5 100 1.4778 98.5221 

4 200 0.12 0.25 93 90 3.2258 96.7741 

5 100 0.15 0.5 86.33 90 4.2511 95.7488 

6 300 0.09 0.25 101.4 100 1.3806 98.6193 

7 100 0.09 0.75 91.55 90 1.6930 98.3069 

8 100 0.18 0.75 103 100 2.9126 97.0873 

9 150 0.15 0.75 112.2 110 1.9607 98.0392 

10 200 0.15 0.75 122.6 121 1.3050 98.6949 

     Average accuracy  97.7579 

 

 
 

Figure 15. Comparison of predicted and experimental cutting temperature. 
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Table 8 illustrates a comparison of different works on the 

prediction of cutting temperature using empirical methods. 

From this comparison it is clear that the chosen technique 

succeeded in predicting the cutting temperature with a very 

low prediction error compared to the published works. Works 

that should be considered competitive with the literature are 

the RSM method of (Tamilarasan et al., 2016), the RSM method 

coupled with gray relational analysis of (Tamilarasan & 

Marimuthu, 2014) and Polynomial Regression by Ji et al. 2021, 

and the ANN-GA method of (Kumar et al., 2018). 

However, fuzzy logic (the present study) outperformed the 

other  methods  because its  high accuracy  was proved  by ten  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

confirmation experiments, while the other methods were 

confirmed by five confirmation experiments at most which may 

affect its accuracy in case of an increase in the number of 

confirmatory experiments. 

The high accuracy of the proposed technique was 

demonstrated by several different values of the cutting 

conditions. 
 

4.3. Graphical representation of the fuzzy cutting 

temperature 
Figure 16 shows a graphical representation of the fuzzy 

cutting speed as a function of the three cutting parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Comparison of different work on the prediction of cutting temperature. 
 

Authors 
Modelling 

methods 

Workpiece 

Material / tool 

material 

Model parameters 

Number 

of 

confirmati

on tests 

Deviation 

(modeled / 

measured 

cutting 

temperature) 

Remarks 

(Sivasakthive & 

Sudhakaran, 

2012) 

RSM Al-6060/HSS 

Helix angle, Spindle 

speed, Feed rate, Axial 

depth of cut, Radial 

depth of cut 

0 ~ 5% 

The most 

influencing 

parameter is the 

helix angle 

(Chawale et al., 

2013) 
Taguchi 

Mild steel and 

cast 

iron/not 

specified 

work piece metal, 

cutting speed, depth 

of cut, feed rate 

0 Not specified 

The most 

influencing 

parameter is the 

feed rate 

(Al Hazza et al., 

2012) 

RSM 

AISI H 

13/coated 

carbide 

cutting speed, depth 

of cut, feed rate 
0 9.6% - 

(Kovac et al., 

2014) 

Fuzzy 

logic 

AISI 1060/ 

SPAN 12 03 ER 

(P25) 

cutting speed, depth 

of cut, feed per tooth, 

Flank wear 

5 3.28% 

The most 

significant factor 

on the cutting 

temperature is the 

depth of cut. 

(Patel et al., 

2014) 

RSM 
Mild 

steel/carbide 

Cutting speed, Feed 

rate,  Depth of cut 
0 Not specified 

The most 

influencing 

parameter is the 

depth of cut 

(Sun et al., 2013) 

Orthogon

al 

array 

Ti-6Al-

4V/carbide 

Cutting speed, Feed 

per tooth, Axial depth 

of cut, Radial depth of 

cut 

0 Not specified 

The most 

influencing 

parameter is the 

cutting speed 

(Tamilarasan & 

Marimuthu, 

2014) 

RSM 

coupled 

with grey 

relational 

analysis 

11MnCrW4/co

ated 

carbide 

Workmaterial 

hardness, Nose 

radius, Feed, Radial 

depth of cut, Axial 

depth of cut 

1 1.28% 

The most 

influencing 

parameter is the 

feed rate 

(Santhanakrishn

an et al., 2015) 

RSM Al-6351/HSS 

Rake angle, Nose 

radius, Cutting speed, 

Axial depth of cut 

0 ~ 5% 

The most 

influencing 

parameter is the 

cutting angle 

the effect of feed 

rate is not 

considered 

(Tamilarasan et 

al., 2016) 
RSM 

11MnCrW4/co

ated 

carbide 

Cutting speed, Feed 

per tooth, Axial depth 

of cut, Radial depth of 

cut 

4 ~ 0.64% 

The most 

influencing 

parameter is the 

cutting speed and 

feed per tooth 

Polynomi
cutting speed, feed 
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 (Tamilarasan et 

al., 2016) 

RSM 

11MnCrW4/co

ated 

carbide 

Cutting speed, Feed 

per tooth, Axial depth 

of cut, Radial depth of 

cut 

4 ~ 0.64% 

The most 

influencing 

parameter is the 

cutting speed and 

feed per tooth 

(Pabst et al., 

2010) 

Polynomi

al 

regression 

Grey cast iron/ 

Coated 

carbide 

cutting speed, feed 

rate depth of cut, 

width of cut, rake 

angle, cutting edge 

radius 

0 3% - 

(Kumar et al., 

2018) 

ANN-GA 
Al 6061 T6/ 

carbide 

cutting speed, depth 

of cut, feed, step over 
4 ~ 0.91% 

The most 

influencing 

parameter is the 

depth of cut 

(Zhu et al., 2020) RSM 
Stone–Plastic 

Composite 

taper angle, spindle 

speed, feed rate, 

cutting depth 

1 4% - 

(Ji et al., 2021) 

Polynomi

al 

regression 

aluminum 

alloy 7050/ 

Ultrafine 

grained 

carbide 

Cutting speed, Feed 

per tooth, Axial depth 

of cut, Radial depth of 

cut, Tool diameter, 

Blunt radius, Helix 

angle, Rake angle 

5 ~ 1.6% - 

(Kumar et al., 

2022) 

GMEG-

fuzzy 

Inconel 625/ 

cemented 

carbide 

cutting speed, depth 

of cut, feed, step over, 

Tool diameter 

5 5.85% 

The most 

influencing 

parameter is the 

feed 

Present study 
Fuzzy 

logic 

AISI 1060/ 

Sandvik 490R-

08T308E-ML 

1040 

cutting speed, depth 

of cut, per tooth 
10 2.24% 

The most 

influencing 

parameter is the 

depth of cut 

 

 

 
 

 
 

Figure 16. Variation of the temperature predicted by fuzzy logic according to the cutting parameters. 
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Figure 16 (a) shows that the value of the cutting 

temperature becomes maximum for average values of the 

cutting speed (200 m / min) and maximum values of the depth 

of cut. While the minimum values of the cutting temperature 

are obtained for minimum values of the cutting speed and the 

depth of cut. 

On the other hand, a higher depth of cut leads to an 

increase in the cutting temperature. Figures 16 (a) and (b) show 

how the temperature increases due to the increased depth of 

cut regardless of the values of the other two parameters. 

From Figure 16 (b) we see that the value of the cutting 

temperature becomes maximum for high values of the depth 

of cut and minimum values of the feed per tooth. 

Feed per tooth has a limited effect on the cutting 

temperature for minimum depth of cut values. 

In figure 16 (c) the increase in the cutting speed leads to an 

increase in the cutting temperature regardless of the value of 

the feed per tooth. 

The influence of the feed per tooth is not important, except 

for maximum values of the cutting speed. 

The most important factor on the cutting temperature is 

the depth of cut. From FIG. 16 it is clearly observed that the 

depth of cut strongly affects the cutting temperature. The 

depth of cut has an increasing effect. 

 

Conclusions 
 

In this study, the infrared camera is used to accurately 

measure the cutting temperature in the cutting area as a 

function of time. The profile of the cutting temperature with 

the variation of the cutting time is recorded simultaneously. 

This experimental approach can be used in a practical way. It 

is useful to be an economical way to keep track of the cutting 

temperature of milling AISI 1060 steel with carbureted tools 

because it is easy to implement and use. The response of the 

measurement system to the nature of the milling operation is 

adequate and the results show that the cutting temperature 

and heat distribution were sensed satisfactorily regardless of 

the cutting speed used. In a second part of this study, a fuzzy 

inference model is developed to predict the cutting 

temperature during milling operations. The adequacy of the 

fuzzy model was checked and found to be adequate at an 

accuracy level of 97,757%, demonstrating that the model can 

be used to predict cutting temperature when milling AISI 1060 

steel. The comparison and the validation of the fuzzy results 

with the results of the experimental tests confirmed the high 

accuracy of the model. The fuzzy modeling technique could be 

an economical and effective method to predict other 

parameters during milling operations based on cutting condi- 

 

 

tions. The results found showed that when machining AISI 

1060 steel, the cutting temperature increased with increasing 

depth of cut and cutting speed while the feed per tooth had 

less influence. on the cutting temperature. 
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