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ABSTRACT 
Effective planning of a transportation network influences tactical and operational activities and has a great impact on 
business. Planning typically considers multiple aspects such as variable transportation costs, various levels of 
customer service offered, security of goods, and traveling time. These aspects often vary with time. Although the 
minimum cost flow problem is a widely seen approach to configure a transportation network, there is no much work 
considering variations on arcs; even more, the problem with varying nodes has hardly been addressed. In this work is 
developed a mathematical model for the multi-objective minimum cost flow problem, applied in networks with varying 
attributes on arcs. The model finds the set of non-dominated solutions for a multi-objective stochastic network having 
variations in attributes of its arcs and nodes, such as cost or transportation time. A modified version of the two-stage 
method was used to address the stochastic nature of the problem combined with the epsilon-constraint method, which 
is used for building the set of non-dominated solutions.  
 
This paper presents the main features of the model, the theoretical bases and a computational implementation. 
Experiments were applied in a transport network for the exportation market of ornamental flowers as perishable goods 
from Mexico to the United States, which considered variations in border crossing times. 
 
Keywords: Multi-objective optimization; Minimum cost flow; stochastic network; perishable goods. 
 
RESUMEN 
Una planeación eficaz de una red de transporte tiene un gran impacto en las empresas, al considerar múltiples 
aspectos como costos de transporte, seguridad de las mercancías, tiempo de viaje y demás niveles de servicio 
ofrecidos. Atributos que frecuentemente varían con el tiempo. Aunque el problema de flujo a costo mínimo (MCF) ha 
sido ampliamente visto para configurar redes de transporte, no hay muchos trabajos que consideren variaciones en 
los arcos. En este trabajo se desarrolla un modelo matemático para el problema MCF multi-objetivo, aplicado en 
redes con atributos variantes en los arcos. El modelo encuentra la Frontera Pareto para una red estocástica con 
variaciones en los atributos de costo o tiempo de transporte. Para enfrentar  la naturaleza estocástica del problema 
se utiliza Descomposición de Benders para el problema estocástico de dos etapas, posteriormente se conjunta con el 
método ε-restricción, que es utilizado para la construcción del conjunto de soluciones no dominadas. 
 
Este artículo presenta las principales características del modelo, las bases teóricas y una implementación 
computacional. Los experimentos fueron aplicados en una red de transporte para el mercado de exportación de flores 
ornamentales como productos perecederos desde México a Estados Unidos, considerando las variaciones en los 
tiempos de cruce de fronteras. 
 

 
1. Introduction 
 
According to the Strategic Technology 
Observatory of the Tecnologico de Monterrey in 
Mexico [1], the State of Mexico has shown growth 
rates below the national average in recent years, 
despite this, the agricultural sector showed an 
average annual growth of 3.1% to 2011. In the  

 
 
agricultural sector, an opportunity is in the 
planting of ornamental flowers. Planting of 
chrysanthemum, rose and carnation in the south 
and east of the state represents the 19.33% of 
the total value of production using only 0.38% of 
the sown area. 
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While is globally recognized that Mexican flower 
quality is excellent, the main challenge for all 
actors involved in the floriculture industry is to take 
them to the homes, and promote consumption as a 
frequent habit. 
 
Proximity of Mexico to the United States, the main 
buyer of flowers outside Mexico, gives the country 
a competitive advantage in this market relative to 
its competitors like Colombia and Ecuador, 
allowing better travel times for trucking transport 
and the resulting cost savings compared to air 
mode, a condition that can only be used by 
Mexican producers [2, 3]. 
 
Despite its contribution to the transport network 
design, the Minimum Cost flow problem (MCF) is 
far from adapting to the needs of transport that 
companies may have, which routes need to select 
suppliers from different objectives, not only from 
choosing the lowest cost or the shortest time 
separately. In various applications in real problems 
of route selection are considered other targets, so 
that the identification of a unique solution that is 
better to others with respect to all objectives is 
often impossible, rather than a single solution is 
sought a set of Pareto optimal solutions. This 
problem is known as Multi-Objective Minimum Cost 
Flow (MMCF). 
 
In MMCF, [4] found that the majority of the 
approaches are of theoretical interest. It was also 
found that although for continuous MMCF, 
approximate algorithms for finding a representative 
set of all efficient flows generate good quality 
results, the appropriate approach to the entire case 
(MMCIF) has hardly been addressed by current 
literature in [5, 6, 7, 8, 9]. 
 
Unlike deterministic models, this paper considers 
variations in transportation time attribute on arcs 
corresponding to the crossing borders. In this arcs 
were considered three possible states for crossing 
times (low, medium, high) with its respective 
probability of occurrence. The resulting problem 
grows exponentially according to the number of 
variant arcs with respect to deterministic model.  
 
The kind of problem to be solved relates to the 
determination of an efficient curve that provides 
various appropriate routes optimizing interest 
objectives for the distribution of perishable goods 

in constrained networks, where the time 
dependence and the stochastic nature of attributes 
on arcs and capabilities are explicitly mentioned. 
The resulting model will serve to solve the Multi-
objective Minimum Cost Flow problem for 
stochastic networks (SMMCF).  
 
In [10] was proposed to test this model the 
International Trade U.S. - Mexico for perishable 
products, in a particular problem of exportation 
from a Mexican region to destinations in the U.S., 
where there are variations in arc attributes such as 
travel time, mainly due to delays in nodes. This is a 
problem of multi-objective minimum cost flow, with 
time variations in arcs and in certain nodes, which 
may result from the congestion, it is applied to the 
case of flower export market, having its origin in 
the State of Mexico and Puebla, and identifying 
different possible destinations in the U.S. It's about 
finding the flows of merchandises minimizing costs 
in both, monetary and time terms. 
 
In Section 2, concerning the description of the 
problem, will deal with the nature of the problem to 
solve, which by its nature is considered a minimum 
cost flow problem with multiple objectives and 
stochastic variations in their arcs. To deal with 
variations in arcs, is proposed the use of the two-
stage method, which will be solved by Benders 
decomposition, these techniques are described in 
Section 3. Later, in Section 4 is developed a model 
to deal with the stochastic multi-objective minimum 
cost flow problem. Finally, Section 5 discusses the 
work done, explaining the application instance and 
the characteristics of the developed program for its 
solution, presented difficulties and solutions found. 
 
2. Multi-objective minimum cost flow problem 
 
According to [11] the group of problems currently 
known as transport problems was first studied in 
[12].  In turn, another seminal work [13] described 
the standard form of transport problem. Here was 
proposed a method for finding the fixed points in 
this border, called vertices, to generate better 
solutions iteratively expressing the objective 
function in terms of zero-valued variables.  
 
Much of the development known as minimum cost 
flow problem (MCF) and network-based methods 
are attributed to [14]. MCF has been studied by 
many authors as in [15, 16, and 17]. 
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A multi-objective linear problem (MOLP – multi 
objective linear problem) is given by 
 
Min Cx 
  s.t. x X    (1) 
 
where C= (c1,…, cp) with rows C1,... , CP denotes a 
linear matrix p × m 
 
In MOLP conflicting objective functions are 
assumed, i.e., excluding the existence of an ideal 
solution x ∈ X that minimizes all objectives p 
simultaneously. According with [18, 19 and 8] a 
solution y'  Y is not dominated if no other solution 
y  Y such that y  y' and y  y'.  

 
There is a variety of available methods to solve 
multi-objective problems; many of them involve 
converting this in one or a series of single-
objective problems [20, 21, 22, 23 and 24]. 
 
-constraint method is proposed to solve the 
MMCF problem because, within scaling methods is 
the best suited to mixed integer programming 
problems and guarantees to obtain all Pareto 
border points (as a trade-off with run time). 
 
2.1 -constraint method 
 
-constraint method was proposed in [25, 26], 
where this method is based on an escalation 
where one of the objective functions is bounded by 
additional restrictions 
 
Min fk(x) 

s. t.      
     (2) 

fi(x) ≤εi,   i≠k 
xX 

      
Where k = (1, 2, k-1, k+1, p)

T Rp-1 and 
k{1,…,p}. The feasible set of the problem is given 
as: 
 
Xk

 :={x{X:fi(x)≤ i,   i≠k 
 
Theorem 1. x* is an efficient solution of a 
biobjective problem if and only if 2 such that x 
solves P1(2) or 1 such that x* solves P2(1). 
 

Theorems 1 has been demonstrated for general 
multi-objective problems in [25]. This means that 
efficient solutions can always be found by -
constraint method. 
 
Theorem 1 indicates that, for every efficient 
solution x*, can be found a j such that x* can solve 
P1(j) or P2(j), with this, the complete Pareto 
frontier can be found by solving -constraint 
problems. 
 
According to [27], calculating the range of the 
objective functions on the efficient set is not a 
trivial task, while the best value is easily accessible 
as the individual optimum, the worst value in the 
efficient set (nadir value) is not. The most common 
approach is to calculate a set of these ranges from 
a trade-off table (the table with the results of 
individual optimization of the objective functions p), 
where nadir value is usually approximated with the 
minimum column. 
 
In [27] was proposed a transformation of equality 
constraints on the objective function by explicitly 
incorporating the appropriate slack. At the same 
time, the sum of these slack variables is used as 
secondary terms (lower priority) in the objective 
function to force to only produce efficient solutions. 
The new problem becomes: 
 
Min fk(x) + δ (si)   i≠k 
      s.t. 
 
fi(x) + si ≤εi  i≠ k     (3) 
xX 
 
where  is a small number (usually between 10-3 
and 10-6) 
 
In [27] was also performed and demonstrated the 
following proposition: the above formulation of the 
ε-constraint method produces only efficient 
solutions (avoiding the generation of weakly 
efficient solutions). 
 

-constraint method works predefining a virtual grid 
in the objective space and solving different single 
objective problems restricted in each grid cell. All 
of Pareto optimal solutions can be found only if  
grid is fine enough that at most one Pareto optimal  
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solution is found in every cell. For a general 
problem, the choice of the grid size parameter is 
therefore very difficult besides, but influences also 
the execution time of the algorithm. 
 
The steps to follow in the -constraint method are: 
 
Algorithm 1. -constraint method 
 
1. Set k1 (k) as the first target to consider, km1(k) 
to other objectives. 
 
2. Set kk(k) to the objective function as a constraint 
in a single expression, this is done with objective 
functions different to k1(k). 
 
3. Optimize the first objective and the others are 
set as constraints.  
 
4. Generate the trade-off table with lexicographic 
optimization. 
 
5.-Release the fixed values of the objective 
functions for a new iteration. 
 
6. Define different grid intervals for different targets. 
 
7. Walk the grid points and take shortcuts, if the 
model becomes feasible. 
 
8. Keep going on the net. 
 
9. Get unique solutions from the point file. 
 
3. Consideration of changes in arcs 
 
To solve problems with variations in the arcs is 
proposed the two-stage method [28]. 
 
According to [29] a linear stochastic two-stage 
program with stochastic fixed resource is a two-
stage program with the following form: 
 
minx cT x + IE[Q(x, ξ)] 

s.t. Ax= b, x ≥ 0                 (4) 
 
where Q(x, ξ) is the optimum value of the second 
stage problem. 
 
miny q(ω)T y 
s.t. T(ω)x + Wy = h(ω), y ≥ 0                               (5) 
 

The second stage problem depends on the data ξ 
(ω) ≡ (q (ω), h (ω), T (ω)), which elements can be 
random, while the matrix W is known beforehand. 
Matrices T(ω) and W are called matrices of 
technology and resource, respectively. 

 
The expectation IE [Q (x, ξ)] is taken with respect 
to the random vector ξ = ξ(ω) whose probability 
distribution is assumed to be known. The above 
formulation was originated in [30]. 

 
Whereas the optimal solution y* = y*(ω) of the 
second stage of (5) may depend on the random 
data ξ = ξ (ω), and hence is random, it has 
 
Q (x, ξ (ω)) = q (ω) T y * (ω).    (6) 
 
If the random data have a discrete distribution with 
a finite number K of possible realizations ξk = (qk, 
hk, Tk), k = 1, … , K, (scenarios) with their 
corresponding probabilities p(k). Then 
 
IE[Q(x, ξ)] =nK pkQ(x, ξk),    (7) 
 
where 
Q(x, ξk) = min 
 
qT

k yk : Tkx + Wyk = hk, yk ≥ 0 
 
Therefore, the problem of two stages can be 
formulated as a big linear problem: 
min cT x +nKpkq

T
k yk 

 
s.t. Ax= b 
Tkx + Wyk = hk 
x ≥ 0, yk ≥ 0, k = 1, . . . ,K                (8) 
 
Linear problem (8) has a concrete block structure 
that makes it susceptible to various decomposition 
methods. 
 
The above numerical approach works reasonably 
well if the number of scenarios is not too large. 
However, if the random vector ξ has m 
components independently distributed with only 3 
possible realizations. Then the total number of 
different scenarios is K = 3m. That is, the number of 
scenarios grows exponentially with the number m 
of random variables. In that case, even for a 
moderate number of random variables, for  
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example m = 100, the number of scenarios 
becomes so large that even modern computers 
cannot deal with the required calculations. To deal 
with exponential growth in the number of scenarios 
is proposed using Benders decomposition method. 
 
3.1 Benders Decomposition 
 
A major concern regarding the building and solving 
of optimization problems is that the computational 
effort required to solve such problems grow 
significantly with the number of variables and 
constraints. The traditional approach, which 
involves making all decisions simultaneously by 
solving a monolithic optimization problem quickly, 
becomes intractable because of the increase in the 
number of variables and constraints. The multi-
stage algorithms for optimization, such as Benders 
decomposition [31], have been developed as an 
alternative approach to palliate this problem. 
 
Unlike the traditional approach, these algorithms 
split the decision making process in several 
stages. In Benders decomposition, a main problem 
is solved in its first stage for a subset of variables, 
while values of the remaining variables are 
determined by a subproblem of the second stage, 
given the values of variables of the first stage. If 
the subproblem determines that the proposed 
decisions in the first stage are not feasible, it 
generates one or more constraints and added to 
the main problem, which is then solved. Thus, a 
series of smaller problems are solved instead of 
one big problem, which can be justified by the 
increase in computational resource requirements 
associated with the solution of larger problems. 
 
The MIP problem can be set as [32]: 
 
 min cTx + fTy     
Ax + By b                   
y  Y                                                                    (9) 
x 0 
 
If y is attached to a feasible integer configuration, 
the resulting model to solve is: 
 
min cTx   
Ax b – By’                                                  (10) 

x 0                
 
 

Full minimization problem thus can be written as: 
 
Min [fTy + min x0{c

Tx | Ax b – By}]            (11) 
 
Then, the dual internal LP problem is: 
 
Max (b – By’)T u               
AT u  c                                                   (12) 
u  0   
 
Under Benders decomposition two distinct 
problems are solved. A major problem which has 
the form: 
 
min y z 
z  fT y + (b - By)T u’k,  k = 1,…,K 
(b - By)T u’l  0; l = 1,…,L                                   (13) 

y  Y                            
 
and subproblems with the form: 
 
max u f

Ty + (b - By)T u 
AT u c                                                               (14) 

u  0                
 
The dual subproblem is a linear programming 
problem, and the main problem is a pure IP 
problem (no continuous variables). Benders 
Decomposition for MIP is of particular interest 
when the Benders subproblems and the relaxed 
master problem are easy to solve, while the 
original problem is not. 
 
4. Models 
 
As mentioned, in this paper is proposed to add the 
component of variation in attributes of certain 
nodes at the multi-objective minimum cost flow 
problem. Since it has been seen that in current 
state of art there are few studies that take into 
account changes in attributes on arcs and this is 
compounded if there are problems with variations 
of attributes in nodes. 
 
The proposed model to work with multi-objective 
minimum cost flow problems adapted to deal with 
variations in the attributes of the arcs and nodes, 
was based on the classic MMCF models. With this, 
the two-stage model applied to a MCF problem 
would be as follows: 
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i Set of node indices of arc source, iV 
 
j Set node indices of arc destination, jV 
 
cij

p Relative cost to use the arc from i to j in 
accordance with criterion p, p=1,2,…,r, (i,j)A 
 
xij Flow from i to j nodes, i,jV 
 
bi Capacity/ demand of node i,   iV 
 
E[cij

p ]  Expected value of relative cost to use the 
arc from i to j in accordance with the criterion p, 
p=1,2,…,r, (i,j)A 
 
Pq   Probability of scenario q, q=1,2,…,Q 
 
Cqij

p Relative cost to use the arc from i to j in 
accordance with the criterion p in a scenario q, 
p=1,2,…,r, (i,j)A, q=1,…,Q 
 
P[cqij

p ]  Probability of cost value for using arc (i,j) 
for criterion p on scenario q, p=1,2,…,r, (i,j)A, 
q=1,…,Q 
 
xqij Cargo flow from I to j for scenario q, (i,j)A, 
q=1,…,Q 
 

)][...][(min
,(

1



Vji

ij
p

ijijij XCEXCEZ  

)][,...,][( 1
qijq

p
qijqqijq qijq XCPXCP                      (15) 

 
s.t. 
 





n

kj
iqji

n

kj
qij

k

j
ji

k

j
ij bXXXX

1111

                        (16) 

 
For all i=1,…,g (second stage) 
 
i= 1,…k in deterministic arcs 
i= k+1,…m in stochastic arcs 
q=1,…,Q scenarios 
 
xij ≥ 0 
 
xqij ≥ 0 
 
The first set of terms in (15) represents the 
expected values already known and which fall in 
the first stage of the problem. This has the classic 

form of the multiobjective minimum cost flow 
problem as in (1), where the objective is to 
minimize the cost of for the p attributes of sending 
the merchandises from a set of origins to a set of 
destinations. This set includes the objectives for 
which all values are deterministic and the known 
values of stochastic objectives. The flow 
conservation constraints on nodes connected by 
arcs with known values are defined in first group of 
terms of (16). 
 
On the other hand, the second set of terms in (15) 
represents the data of which there is uncertainty in 
the values it takes, but where are known both the 
possible values that could be taken as the 
probability that these values are presented.  
Formulation is similar to first group of terms, but 
considering the probability of each scenario. 
Second group of terms in (16) refers to the flow 
conservation in those nodes connected by arcs 
with non-deterministic values, where probability of 
scenarios affects the expected flow. 
 
Selected methodology includes the two-stage 
method to develop scenarios that could arise 
depending on the state of time on the variant arcs 
and their respective probabilities. Once scenarios 
are generated, the method applies -constraint to 
solve the MMCF problem, using Benders 
decomposition in stochastic arcs as in Figure 1. 
 
It is noteworthy that objectives which all arcs are 
deterministic are optimized to generate the trade-
off table as described in Section 2. To generate the 
trade-off table should minimize the first goal and 
the resulting value is used as a restriction to 
minimize the second objective, this procedure is 
repeated but the second objective is minimized at 
first and it is used as a constraint in minimizing the 
first objective. 
 
To estimate each grid value on all objectives with 
stochastic arcs, Benders decomposition is applied 
in step 9 of Algorithm 1 when k1(k) corresponds to 
objectives with variations in arcs. 
 
5. Application 
 
The problem is exemplified by a dealer of flowers 
located in Tenango, State of Mexico and 
Tecamachalco, Puebla. Its main client is in 
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Chicago, Illinois, so that the transport of flowers is 
of great importance.  
 
The goal is to bring flowers on a weekly basis, so 
is being looking to choose the best route. To 
illustrate the process were considered three 
transport companies on the Mexican side, which 
can use two different types of transport units: 
 
carrier  Vehicle description 
A   C2  
B   C2  
C   T3S2 53' trailer 
 
Each path is characterized by the transport 
provider company, the type of vehicle used by the 

operator, the transshipment center (or if is a direct 
ride to the border) and the border crossing point 
used. This instance considers only one transport 
service provider in the United States.  
 
In turn, can be used four transfer centers which are 
located in Queretaro, San Luis Potosi, 
Aguascalientes and Zacatecas, and four border 
crossings: Colombia in Nuevo Leon, and Nuevo 
Laredo, Reynosa and Matamoros in Tamaulipas. 
 
At each border crossing there is the option of hiring 
a specialized carrier to cross the merchandise from 
one side to another of the border (transfer), or do 
so directly by a Mexican or American vehicle 
having the proper permits to cross the border. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. Benders Decomposition on multi-objective -constraint method. 
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Within bilateral initiatives developed to ensure safe 
and efficient flow of goods is that of FAST/Express 
lanes, applicable to Mexican companies that have 
been certified in the Customs-Trade Partnership 
Against Terrorism program (C-TPAT). This is 
aimed at reducing waiting times at the common 
border creating a more streamlined flow of vehicles 
in both directions. 

 
Figure 2 summarizes the activities carried out on 
the border between Mexico and the U.S. and 
displayed the characterization of a border crossing.  
 
• Where the same border crossing (formed by the 
dotted box) consists of nodes A, B, C on the 
Mexican side and 1, 2 on American side. 
 
• From an origin Oi vehicles can travel directly to the 
Mexican border or through a distribution center c.  
 
• The arcs that reach nodes A and B represent two 
different C2 vehicles while C comes by T3S2.  
 
• Arc A-1 represents the border crossing by means 
of "transfer" service, while in C-1 is performed by 
T3S2 and C-2 by T3S2 using the "Fast" lane. 
 
Transport attributes considered in the study are the 
following: 
 
Cost. This refers to the amount of resources used 
to carry out the transport given its efficiency, as the 
generation of wealth and income by transporting 
goods.  
 

 
 

Figure 2. Process Simplified at the border crossing. 

In the case of perishable goods, since they have a 
limited lifetime, is establishing a minimum lifetime 
shelf. To be able to complying with the shelf life 
time, transport time should not exceed a value Tan, 
as each unit of time is exceeded in transport 
represent deterioration in the condition of the 
goods. The deterioration of the goods can be 
considered as an increase in the total cost of 
transport, so that the total transportation cost in 
(17) for the objective of cost would be represented 
as follows: 
 
Σ(i,j) PCijXij + Σ(i,j) PDijXij                                                          (17) 

 
     

Where: 
 
Cij is the price of transport service incurred when 
crossing an arc in the network. 
 
Dij  is the cost due to deterioration of goods due to 
excessive transportation time. 
 
Time. One of the objectives to be considered is to 
minimize the total transportation time from the 
beginning to the final destinations. For this, the 
time data for arcs are considered deterministic, 
except for the arcs corresponding to border 
crossings, in which time will have three states that 
may occur (low, medium, high) and the likelihood 
that they will arise. 
 
For the travel time attribute in (16) shows the 
modification to the time objective: 
 
Σ(i,j) PE[tij]Xij + Σ(i,j,q) PP(q)[tqij]Xqij                       (18) 
  
Where: 

 
E[tij]Xij Is the expected value (considered as 
deterministic) of time to cross an arc within the 
network 
 
[tqij]Xqij Is the time to cross an arc in the network 
given the scenario q 
 
P(q) Is the probability that arc (i, j) is in the state q 
 
Under these conditions was formed a network of 
29 nodes and 158 arcs, of which 12 arcs depicts 
activities at border-crossings and can take three 
states of time: low, medium, high. Cost data are 
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taken as deterministic, while time is considered as 
stochastic since it was considered variability in 
time to cross some arcs. 

 
In implementing Benders decomposition, cost 
attribute and constraints corresponding to 
equilibrium at nodes connected by arcs with 
deterministic times, are reported in the first stage, 
while those elements that represent uncertainty as 
the time attribute and equilibrium constraints on 
nodes where involved arcs have varying times, are 
reported in the second stage. This will generate 
time and cost options that subsequently feed the -
constraint method. Figure 3 shows the Pareto 
frontier obtained with the results of non-dominated 
routes for the exporting perishable products. 

 
Tests were conducted to the same network where 
was considered that all arcs have deterministic 
times, for which the expected values  E [tij] were 
used. While in these arcs the maximum times were 
around 2.5 to 10 times the mean time, the results 
obtained for routes on the Pareto frontier, times 

showed values around 0.14% higher than the 
deterministic equivalent problem. The problem in 
stochastic version has the advantage that it 
provides the flexibility to consider variations in 
arcs, while the resulting paths are slightly higher in 
transport time. 

 
In the attribute of time, given the ranges in the 
stochastic model as in the deterministic model, 
which intersect at most of them, from T test to 
compare means, does not give elements to reject 
H0 given the level of significance shown. 
Furthermore, a Levene analysis were performed 
for equal variances, the result is that the time for 
variances obtained by stochastic and deterministic 
models are different with a significance level of 
0.128, therefore, there are evidence to reject the 
null hypothesis. Table 1 shows the results of tests 
for equality of mean and variance. This 
comparison between means and variances shows 
that Pareto frontiers generated by stochastic 
models have a different distribution to those 
generated by deterministic models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Figure 3. Non-Dominated solutions of the export of perishable goods problem. 
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6. Conclusion 
 
It has been shown that the -constraint method can 
be efficiently used to find the exact Pareto multi-
objective problem. Benders decomposition is 
useful to solve problems with variations in arcs.  

 
In SMMCF instances, when comparing the ranges 
on the Pareto Fronts, results show that this type of 
model tend to generate slightly higher values of 
time and cost in stochastic version than in 
deterministic version in which were used expected 
values. This same behavior should occur in 
different networks, although the degree of variation 
between stochastic and deterministic curves 
depends on the difference between the values of 
time state in arcs (low, medium and high). 
 
The approach developed for SMMCF is 
generalizable to problems with the following 
characteristics: 
 
•.Perishable products, in which the time of 
transport has a significant impact. 
 
•.Export products where congestion at border 
crossings produces variations on service times, 
which can be discretized. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Markets with multiple origins and destinations. 
 
• Selecting routes based on suppliers with different 
capacities, costs and time services, depending on 
the characteristics of its fleet 
 
The proposed approach works with the probability 
of occurrence of each scenario, so that gives the 
set of routes with shortest probable time, rather 
than working with expected times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 1. Comparison of time in case of application for stochastic vs. deterministic model. 

F Sig. t gl

assuming equal 

variances 2,531 0,128 6,805 19

without assuming 

equal variances 7,584 18,957

Low Up

assuming equal 

variances 0,000 1304,769 191,741 903,451 1706,087

without assuming 

equal variances 0,000 1304,769 172,052 944,605 1664,933

levene test for equality 

of variances

levene test for equality 

of means

T test for equality of means

confidence interval for 

the difference 95%Sig. 

(bilateral)

difference 

of means

standard 

error of the 

difference
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