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ABSTRACT 
The production of soft drinks involves two main stages: syrup preparation and bottling. To obtain the lots sequence in 
the bottling stage, three approaches are studied. They are based on the sub-tour elimination constraints used in 
mathematical models for the Asymmetric Traveling Salesman Problem. Two of the mathematical models are from the 
literature and use classical constraints. The third model includes multi-commodity flow constraints to eliminate 
disconnected subsequences. The computational behavior of the three models is studied using instances generated 
with data from the literature. The numerical results show that there are considerable differences among the three 
models and indicates that the multi-commodity formulation provides good results but it requires far more 
computational effort when the instances are solved by a commercial software. 
 
Keywords: Production planning, integrated lot sizing and scheduling models, asymmetric travelling salesman problem, 
multi-commodity flow. 
 

 
1. Introduction 
 
Supply chains management has received a lot of 
attention by practitioners as well as by the 
research community. The speedup of the 
computational technology has allowed the 
incorporation of several aspects of a supply chain 
into a single model. Chiu et al. [1] studies 
Economic Production Quantity problem 
considering multiple or periodic deliveries of 
finished items. Vanzela et al. [2] address the 
integration of the lot sizing and the cutting stock 
problem in the context of furniture production. 
Another recent trend has been on mathematical 
models that capture the relationship between the 
lot sizing and scheduling problems [3]. The so 
named lot-scheduling models have been proposed 
for several industrial contexts. For example, the 
glass container industry [4] and the animal feed 
supplements industry [5]. It is also considered in 
the design of virtual cellular manufacturing systems 
(e.g. [6]). 
 
Two main approaches have been used to model 
the scheduling decisions. The first one is a small  

 
 
bucket approach in which each period of the 
planning horizon is divided into sub-periods. For 
each sub-period only one item can be produced. 
This approach is based on the GLSP model [7]. 
The second approach is a big bucket one that 
allows the production of several items in a given 
period. Sub-tour Elimination Constraints (SEC) 
from the Asymmetric Travelling Salesman Problem 
(ATSP) are added to the lot sizing formulation to 
obtain the production sequence. 
 
The small and big bucket approaches have been 
used to model the lot-scheduling problem in the 
context the soft drink production ([8], [9], [10], 
[11]). The objective of this work is present a multi-
commodity formulation to model the scheduling 
decisions considering a big bucket strategy. The 
computational behavior of the proposed model 
using data from the literature is compared with 
two other big bucket models presented in the 
literature, one that uses the SEC proposed by 
Miller, Tucker and ZEMLIN [10] denominated here 
by MTZ, and another that uses the SEC proposed 
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by Dantzig, Fulkerson and Johnson [11] 
denominated here by DFJ. 
 
The paper is organized as follows. In Section 2 the 
soft drink process and a mathematical model 
according to literature review are presented. In 
Section 3 the alternative formulation to model the 
sequences of lots and an adapted strategy from 
the literature are presented. Section 4 describes 
the computational studies and in Section 5 the final 
remarks are discussed. 
 
2..Brief description of previous work for 
planning the soft drink production process 
 
The production process of soft drinks in different 
sizes and flavors is carried out in two stages: liquid 
flavor preparation (Stage I) and bottling (Stage II). 
The model considers that there are J soft drinks 
(items) to be produced from L liquid flavors (syrup) 
on one production line (machine). To model the 
decisions associated with Stage I, it is supposed 
that there are several tanks to store the syrup and 
that it is ready when needed. Therefore, it is not 
necessary to consider the scheduling of syrups in 
the tanks, nor the changeover times since it is 
possible to prepare a new lot of syrup in a given 
tank, while the machine is bottling the syrup from 
another tank. However, the syrup lot size needs to 
satisfy upper and lower bound constraints in order 
to not overload the tank and to guarantee syrup 
homogeneity. In Stage II, the machine is initially 
adjusted to produce a given item. To produce 
another one, it is necessary to stop the machine 
and make all the necessary adjustments (another 
bottle size and/or syrup flavor). Therefore, in this 
stage, changeover times from one product to 
another may affect the machine capacity and thus 
have to be taken into account. In Section 2.1, we 
review the single stage, single machine model 
proposed in [10] to define the lot size and lot 
schedule taking into account the demand for items 
and the capacity of the machine and syrup tanks, 
minimizing the overall production costs. It assumes 
that there is an unlimited quantity of other supplies 
(e.g. bottles, labels, water). 
 
2.1 The lot-scheduling model from literature 
 
In the model proposed in [10] the decisions 
associated with lot sizing are based on the  
Capacitated Lot Sizing Problem (CLSP) (e.g. [12]). 

The scheduling decisions use the ATSP approach 
with the MTZ [13] constraints to eliminate 
subsequences. 
 
To present the model, let the following parameters 
define the problem size: 
 
J  number of soft drinks (items). 
 
L  number of syrup flavors. 
 
T  number of periods in the planning horizon; 
 
and the following index: 
 
i, j, k   {1, ..., J}; l  {1, ..., L}; t  {1, ..., T}. 
 
Also consider that the following data are known, 
superscript I relates to stage I (syrup preparation) 
and  superscript II relates to stage II (bottling). 
 
Data: 
 
aj

II

  
production time for one unit of the item j. 

 
bij

II

  
changeover time from item i to j. 

 
djt   

demand for item j in period t. 

 
gj   

backorder cost for one unit of the item j. 

 
hj   

inventory cost for one unit of the item j. 

 
I j 0


  
initial inventory for item j. 

 
I j 0


  
initial backorder for item j. 

 
K j

II

  
total time capacity of the machine in t. 

 
sij

II

  
changeover cost from item i to j. 

 
St   maximum number of tank setups in t. 

 
K I

  total capacity of the tank. 
 
ql   minimum quantity of l necessary. 
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rlj   
quantity of l for the production of one lot of j. 

 
 l   set of items that need syrup l. 

 
Define the following set of variables: 
 
I jt


  
inventory for item j at end of period t. 

 
I jt


  
backorders for item j at end of period t. 

 
xjt

II

  
production quantity of item j in t. 

 
zijt

II

  
changeover from item i to j in t. 

 
ujt  

might be used to indicated the production    

order of j in t. 
 
wlt   number of tanks prepared with l in t. 

 
nlt   fraction of tank capacity used to produce l in t. 

 

ylt
I

  is equal to 1 if the tank is setup for l in t. 

 
The optimization criterion, Eq. 1, is to minimize the 
overall costs taking into account inventory, 
backorder and machine changeover costs. 
 

Min  Z  (hj I jt
  gj I jt

 ) sij
II zijt

II

j1, ji

J


i1

J


t1

T


t1

T


j1

J


                   

(1) 

 
The lot sizing decisions in Stage I, as defined by 
constraints Eq. 2 – Eq. 5 control the syrup 
production. Constraints Eq. 2 guarantee that if the 
tank is ready to produce syrup l, then there will be 
production of item j and the lot produced uses all 
the syrup prepared in that period. The variables  
allow partial use of the tank and controls the 
minimum amount needed to ensure syrup 
homogeneity, as specified by constraints Eq. 3. 
Constraints Eq. 4 ensure that there is syrup 
production only if the tank is prepared. According 
to constraints Eq. 5, the total quantity of syrup (in 
number of full tanks) produced in period t is limited 
by the maximum number of tank setups. 
 
Stage I - Syrup preparation: 
 

rlt xjt
II  K I (wlt nlt )

j l


                                

l,t    

 

                                             l,t  

 
                                           l,t  

 
                                                      t  

 
The lot sizing decisions in Stage II are defined by 
constraints Eq. 6 – Eq. 9. Constraints Eq. 6 
represent the balance among production, inventory 
and backorders of each item in each time period. 
Constraints Eq. 7 represent the machine capacity 
in each time period. Constraints Eq. 8 guarantee 
that there is production of item j only if the machine 
is prepared. Note that the setup variable is 
considered implicitly in terms of the changeover 
variables and that production may not occur 
although the machine might be prepared. 
Constraints Eq. 9 control the maximum number of 
setups in each period. 
 
Stage II (bottling) - lot sizing: 
 
I j (t1)
  I jt

  xjt
II  I jt

  I j (t1)
  djt               

j , t     

 

aj
II

j1

J

 xjt
II  bij

II zijt
II  Kt

II

j1, ji

J


i1

J


                            

t  

 

aj
II xjt

II  Kt
II zijt

II

i1,i j

J


                                  

j ,  t  

 

zijt
II

j1, ji

J


i1

J

  St

                                             
t     

 
Constraints Eq. 10 – Eq. 14 model the order in 
which the items will be produced in a given period 
t. They are based on the ATSP model. Constraints 
Eq. 10 considers that in each period the machine 
is initially setup for a ghost item i0 . The changeover 

costs associated with the ghost item are zero and 
do not interfere in total solution cost. Constraints 
Eq. 11 guarantee that each item j is produced at 
maximum once in each period t.  Constraints Eq. 
12 ensure that if there is a changeover from an 

nlt 1 ql

K I









ylt
I  wlt  Stylt

I

wlt  St

lL



(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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item i to any item k then there is a changeover 
from that item k to an item j. 
 
Constraints Eq. 10 and Eq. 12 alone might 
generate sub-tours, that is disconnected 
subsequences, and thus do not guarantee a 
proper sequence of the items. The MTZ type SEC, 
constraints Eq. 13, avoid this situation. With the 
inclusion of constraints Eq. 15 the variable ujt  

gives the order position in which item j is produced 
in period t. Finally constraints Eq. 15 define the 
variables' domain. 
 
Stage II (bottling) - scheduling: 
 

zi0 jt
II  zikt

II

i1,ik

J


j1, ji0

J


                                

k , t     

 

1
,1




J

j

II
ijtz

                                          

i , t     

 

zikt
II

i1,ik

J

  zkjt
II

j1, jk

J


                                 

k , t  

 
ujt  uit 1 (J 1)(1 zijt

II )
             

i, j;i  j,t  

 
1 ujt  J 1

                                      
j , t  

 
I jt
 , I jt

 , xjt
II ,nlt  0, zijt

II , ylt
I  0 /1,wlt  Z

 

j,i,l,t  

 
The complete description of the model, named 
here as LSMTZ, is given by expressions Eq. 1 – 
Eq. 15. More details about this model can be 
obtained in [10]. 
 
3. Other strategies to solve the one machine 
soft drink lot scheduling model 
 
In the model LSMTZ the constraints associated 
with the scheduling decisions are formulated 
based on the MTZ SEC, constraints Eq. 13 and 
Eq. 14. These constraints are of polynomial order, 
thus allowing their inclusion a priori. However, the 
MTZ constraints produce a weak linear relaxation 
of the associated formulation. Motivated by this 
fact, several authors have proposed different 
approaches to strengthen the ATSP mathematical 
formulation. In the review presented in [14], 

several mathematical formulations for the ATSP 
are presented and compared. The focus is on 
how these formulations compare to one another 
as regard to the strengthen of the associated 
linear relaxation. 
 
The multi-commodity-flow formulation proposed by 
[15] as SEC is equivalent to the classical DFJ ones 
in terms of the linear relaxation value, and both are 
better than the MTZ. However, the former, as the 
MTZ, has polynomial size, while the latter has an 
exponential size. Next, we explore these two types 
of constraints to model the ILSP in the soft drink 
context described in Section 2. 
 
3.1 The multi commodity flow based model 
 
The Multi-Commodity Flow (MCF) formulation is 
used in [16] to model the scheduling decisions in the 
presence of non-triangular setups times and costs, 
and in situations in which the same product can be 
produced more than once in the same time period.  
 
In this work the MCF formulation is also used to 
eliminate subsequences in presence of non-
triangular setup times, however, as described in 
Section 2.1 each item can be produced at most 
once in each time period. The main idea of using 
the multi-commodity SEC is to obtain a formulation 
that is stronger than others from the literature, and 
thus it is expected to have a better computational 
behavior when solved by general purpose 
software. A preliminary study of this approach in 
the soft drink context was presented in [17].  
 
To define the multi-commodity flow formulation, it 
is necessary to define a new index r  {1, ..., J} to 
represent the commodities and a new set of 
continuous variables, mrijt

II , to represent the flow of 

the commodity r. The idea behind this formulation 
is that there are J commodities (items) available at 
node i0 , and a demand of one unit of commodity j 

at node j. Setting mrijt
II 1 implies that if product r is 

included in the production sequence, then product j 
follows product i in such sequence. That is, the 
flow of commodity r flows from node i0  to node r 

through arc (i, j). 
 
The constraints Eq. 16 – Eq. 19 eliminates 
disconnected subsequence of items. Since only 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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the items that can be produced should be 
sequenced, constraints Eq. 16 and Eq. 17 take 
place when the machine is prepared for item r. 
These constraints guarantee that if product r is 
included in the sequence at least one other item 
should be also included. 
 

mri0 jt
II  mrji0t

II  zjrt
II

j1, jr

J


j1

J


j1

J


                       

r,t  

 

mrjrt
II  mrrjt

II  zjrt
II

j1, jr

J


j1

J


j1

J


                          

r,t  

 
Constraints Eq. 18 are the flow conservation 
constraints, for all but product r in node r. And 
constraints Eq. 19 states that item j should follow 
item i in the sequence that includes item r only if 
there is a changeover from product i to product j. 
 

mrijt
II

i1

J

  mrjit
II

i1

J


                            

r, j; j  r,t   
 

 
mrijt

II  zijt
II

                                          
i, j, r,t    

 
The multi-commodity-flow model for the single 
stage single machine lot-scheduling problem 
(LSMCF) is defined by the objective function Eq. 1, 
the Stage I constraints Eq. 2 – Eq. 5, the Stage II 
constraints Eq. 6 – Eq. 12, the sub tour elimination 
constraints Eq. 16 – Eq. 19 and the domain 
constraints Eq. 20. 
 

  I jt
 , I jt

 , xjt
II ,mrijt

II ,nlt  0, zijt
II , ylt

I  0 /1, wlt  Z  
i, j, r, l, t    
 
3.2 The DFJ strategy 
 
Besides the MTZ inequalities, the DFJ inequalities 
[18] were successfully applied to solve a multi 
machine soft drink process problem. Here, the 
approach used in [11] is adapted to the single 
stage, single machine case presented in Section 2. 
Let  be a set of items that forms a disconnected 
subsequence. The DFJ type constraints, Eq. 21, 
eliminate them. 
 

zijt

jJ \C
  zi0 jt

jC

  zikj

iJ


iC


              

t,kC,C J    

 

Constraints Eq. 11 ensures that each item is 
produced at most once per period (i.e., the flow in 
and flow out of each node (item) is equal to zero or 
one). For all disconnected subsequences, the 
following holds: 
 

0
\

 
 Ci CJj

II
ijtz  and 0

0


Cj

II
jtiz t  so that 0  zikt

II

iJ



but zikt
II 1 i C  and kC . Hence, a solution with a 

disconnected subsequence does not satisfy 
constraint Eq. 21.  
 
The LSDFJ model for the single stage single 
machine lot scheduling problem is defined by the 
objective  function Eq. 1, the  Stage I constraints Eq. 
2 – Eq. 5, the Stage II constraints Eq. 6 – Eq. 12, the 
disconnected subsequence elimination constraints 
Eq. 21 and the domain constraints Eq. 15. 
 
In [4] it is shown that a formulation with this type of 
constraints is at least as strong as a formulation 
with the MTZ-type constraints. However, there are 
an exponential number of constraints Eq. 21. In the 
computational study presented in Section 4, the 
DFJ constraints are generated and introduced in 
the model in a dynamic way (Strategy 2). At first a 
relaxation of the LSDFJ built by removing 
constraints Eq. 21 is solved. If the best solution 
obtained has disconnect subsequences, the 
constraints Eq. 21 that are violated by this solution 
are included in the relaxation and it is solved 
again. Otherwise, the optimal solution has been 
found and the algorithm halts. The algorithm might 
also halt if the maximum cpu time allowed is 
achieved, in this case only a lower bound to the 
optimal solution is obtained. A feasible solution can 
be built using heuristics, for example the patching 
heuristic described in [11]. 
 
4. Computational Study 
 
The three models presented in Sections 2.1, 3.1 
and 3.2, and the cutting plane algorithm to solve 
the LSDFJ model have been codified in the AMPL 
syntax [19]. Two strategies were used to solve the 
instances of the three models. In Strategy 1 the 
LSMTZ and LSMCF model’s instances are solved 
by the branch and cut algorithm of Cplex 12.5 [20].  
 
 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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In the Strategy 2 the LSDFJ model’s instances 
are solved by the cutting plane method described 
in Section 3.2. The mixed integer relaxations in 
each iteration of the Strategy 2 were also solved 
by the Cplex 12.5. All the runs were executed on 
a computer Intel Core i7-2600 CPU, 3,4 GHz, 16 
GB RAM. 
 
4.1 Instances 
 
Twenty instances (S1-S20) of each one of the 
three models were used in the computational tests. 
The data is related to one machine that can 
produce 27 items of different flavors and bottle 
sizes. Ten different flavors are necessary to 
produce this set of items. A planning horizon of five 
weeks (periods) was considered.  
 
The Table 1 presents the main characteristics of 
the instances. The instances S1-S10 are from [6]. 
They have the changeover costs higher than the 
inventory and backorder costs, even when they are 
reduced  in 25%. To analyze scenarios in which 
the sequencing decisions are less important than 
the lot sizing decisions, ten new instances were  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

generated. The changeover costs of instances  
S1–S10 were reduced, while the inventory and 
backorder costs were left unchanged. 
 
4.2 Results 
 
Two tests were conducted by changing the Cplex 
stopping criterion, Test 1 and Test 2. The goal of the 
Test 1 is to analyze if the use of the multi-commodity 
SEC constraints (Section 3.1) in a Lot-Scheduling 
model is better than the MTZ SEC constraints 
(Section 2.1) to obtain good linear relaxation values 
and to find good feasible solutions when solved using 
Strategy 1. So, the runs in Test 1 were interrupted 
after examining 500 nodes of the Branch and Cut 
tree. The LSDFJ model was not included in the Test 
1 because, as mentioned in Section 3.2, it is has an 
exponential number of constraints and could be 
solved only by a cutting plane algorithm. 
 
In the Test 2, the goal is to study the performance 
of the three models when used as tool to solve the 
ILSP problem in the soft drink context, and so a 
maximum of 3 hours of CPU time was allowed in 
each run. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Instance Modifications 
S1 (S6) Plant data. 
S2 (S7) Machine capacity of S1 (S6) reduced by 25%. 
S3 (S8) Inventory costs of S1 (S6) doubled. 

S4 (S9) 
Machine capacity of S1 (S6) reduced by 25%. 
Changeover costs of S1 (S6) reduced by 1/3. 

S5 (S10) 
Machine capacity of S1 (S6) reduced by 25%.Inventory costs of S1 (S6) doubled. 
Changeover costs of S1 (S6) reduced by 1/3. 

S11 (S14) Changeover costs of S1 (S6) are the changeover times reduced by 1/100,000. 

S12 (S15) 
Machine capacity of S1 (S6) reduced by 25%. 
Changeover costs of S1 (S6) are the changeover times reduced by 1/100,000. 

S13 (S16) 
Machine capacity of S1 (S6) reduced by 25%. Inventory costs of S1 (S6) doubled. 
Changeover costs of S1 (S6) are the changeover times reduced by 1/100,000. 

S17 (S19) Changeover costs of S1 (S6) are the changeover times reduced by 1/100. 

S18 (S20) 
Machine capacity of S1 (S6) reduced by 25%. 
Changeover costs of S1 (S6) are the changeover times reduced by 1/100. 

 
Table 1. Main characteristics of the instances.
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4.2.1 Test 1: maximum 500 nodes 
 
The value of the linear relaxation associated to all 
the 20 instances of the LSMTZ and LSMCF 
models were the same. However, the time spent to 
solve them is longer for the LSMCF instances (0.2 
seconds) than for the LSMTZ ones (0.02 second). 
 
After examining 500 nodes of the branch and cut 
tree, the Cplex returned solutions for the S1-S10 
instances of the LSMTZ model with average gap of 
82.55% and for 90% of the instances the 
confidence interval of the gap is [68.65% – 
96.46%]. Cplex returned better solutions for all the 
ten instances of the LSMCF model. The average 
gap  is 14.38% and for 90% of the instances the 
confidence interval is [7.99% – 20.77%], which 
represent an important reduction in the gap value. 
However, in relation of the cpu time, Cplex spent 
more time with the LSMCF instances (1,530.50 
seconds in average) than with the LSMTZ 
instances (an average of 2.82 seconds). 
 
As for the instances S11-S20, the average gap of 
the solutions obtained with the LSMTZ model is 
99.53% and with the LSMCF model is 0.34%. The 
computational time of Cplex for the instances of 
both models is smaller than the computational time 
of the first set of 10 instances solved, but the time 
for the instances of LSMTZ model is smaller, 1.32 
seconds in average, while the average for the 
LSMCF instances is 499 seconds. This results 
shows that the LSMCF model is better than the 
LSMTZ model in terms of solution quality and 
worse in terms of computational effort. 
 
4.2.2 Test 2: maximum cpu time of three hours 
 
In the Test 2, cpu time limit of a maximum of 3 
hours, the Cplex Branch and Cut algorithm 
examined an average of 3 million nodes to solve 
the LSMTZ instances against 7 thousand nodes for 
the LSMCF instances. As a result, more cuts were 
generated and applied when solving the LSMTZ 
instances (an average of 15,043 cuts) than when 
solving the LSMCF instances (an average of 
4,392). This performance of the models was 
expected because of the Test 1 results in which for 
the instances of the LSMTZ models, Cplex  
 
 
 

examined 500 nodes in 2.82 seconds on average 
while for the LSMCF instances it took much longer. 
The fact that the LSMTZ instances can be solved 
easily using the Cplex’s branch and cut algorithm 
might be connected to the fact that the linear 
relaxations involved are solved 10 times quicker 
than the ones associated to the LSMCF instances. 
The same maximum cpu time was imposed for 
solving the LSDFJ instances using Strategy 2.  
 
Given that the Strategy 2 provided the optimal 
solution for 19 of the 20 instances of the LSDFJ 
model, it is possible to compare the models in 
terms of best solution quality as well as the gap 
and cpu times. The solution quality is computed as 
((Best solution value) – (optimal solution value))/ 
optimal solution value) * 100), in which the best 
solution value accounts the best feasible integer 
solution value found with Strategy 1 for the LSMTZ 
and for the LSMCF instances. These results were 
compiled in Table 2. The first column shows the 
name of each instance, the next two columns show 
the gap associated to the LSMTZ and LSMCF 
solutions respectively. The following two columns 
show the quality of the solutions obtained using 
Strategy 1 to solve the LSMTZ and the LSMCF 
instances respectively. The last three columns 
show the cpu times in seconds to obtain the best 
solution for all the three model instances. Given 
that for all but one instance (instance S18), the 
Strategy 2 provided the optimal solution, the gap is 
not show for the LSDFJ solutions. 
 
The results shown in Table 2 suggest a superiority 
of the LSDFJ model when compared to the  
LSMTZ and LSMCF models. The Strategy 2 
proved the optimality for 19 instances of the LSDFJ 
model while the Strategy 1 proved the optimality 
for  13 instances of the LSMTZ model and 6 
instances of the LSMCF model. However, the gap 
for the instances S18 and S20 of the LSMTZ 
model are smaller than 0.3% and the solution 
quality smaller than 0.27% suggesting that these 
solutions can be considered optimal. The same 
happens with the instances S14, S15, S16, S18 
and S19 of the LSMCF model. The Strategy 2 
used to solved the instance S18 of the LSDFJ 
model halted after three hours without a feasible 
solution, although the lower bound is 2,371.33. 
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If we consider the convergence of the solution 
process used to solve the models instances, the 
LSMTZ model is better. The Figure 1 shows the 
solution values for the S3 instance obtained halting 
the strategies applied to solve it after 10, 20, 30, 
40, 50 and 60 minutes of cpu time. The vertical 
axis shows the solution value, and the horizontal 
axis shows the cpu time. The LSMTZ solution, for 
example, provided the optimal solution in 40 
minutes but the associated gap is still 4.82%. The 
LSMCF solution values are far from the optimal 
value and the gap is still 17.58% after 1 hour. The 
LSDFJ solution values are close to the optimal 
value. However, it is important to remember that 
these solutions are not necessarily feasible or 
provided a dual bound. For example, when the run  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
was interrupted after 30 minutes, the current 
relaxation was not solved to optimality. A guaranty 
of feasibility can obtained at the end of the 
Strategy 2, when no more subsequences 
elimination constraints are violated. 
 
To analyze the effect of the changeover costs on 
the solution process of the three models, it is 
shown in Table 3 the solution values in terms of 
the changeover costs (columns 2 to 4) and the 
inventory costs (columns 5 to 7). There are 
backorder costs only for the instances S6-S10. As 
they are very similar to each other they were not 
presented in the table. Because of the high 
changeover costs in the instances S6 to S10 there 
are backorder costs, even in the optimal solutions. 
 
 
 

Instance Gap Solution Quality (%) Time (Seconds) 

 LSMTZ LSMCF LSMTZ LSMCF LSMTZ LSMCF LSDFJ 

S1 0.00 13.99 0.00 6.71 2,014.04 * 112.42 
S2 1.86 10.14 0.00 3.33 * * 2,368.66 
S3 2.54 8.30 0.00 3.47 * * 6,734.79 
S4 1.67 9.30 0.00 3.79 * * 2,168.05 
S5 2.32 6.55 0.27 2.34 * * 2,488.37 
S6 0.00 0.00 0.00 0.00 193.71 948.64 28.16 
S7 0.00 7.78 0.00 0.30 4,306.11 * 2,976.92 
S8 0.00 0.00 0.00 0.00 231.13 * 26.13 
S9 0.00 4.40 0.00 0.37 7,999.69 * 2,747.70 

S10 1.49 5.14 0.00 0.64 * * 3,167.58 
S11 0.00 0.00 0.00 0.00 6.35 722.24 10.67 
S12 0.00 0.00 0.00 0.00 6.22 722.30 10.83 
S13 0.00 0.00 0.00 0.00 7.77 679.12 11.78 
S14 0.00 0.15 0.00 0.00 298.17 * 40.33 
S15 0.00 0.15 0.00 0.00 299.08 * 40.03 
S16 0.00 0.17 0.00 0.00 143.01 * 31.61 
S17 0.00 0.00 0.00 0.00 140.18 311.53 8.97 
S18 0.04 0.45 0.07 0.08 * * * 
S19 0.00 0.15 0.00 0.00 763.20 * 19.36 
S20 0.02 0.00 0.00 0.00 * 4,721.81 35.22 

Average 0.50 3.33 0.02 1.05 4,600.43 7,965. 1 1,686.38 

 
Table 2. Results for the LSMTZ, LSMCF and LSDFJ models – gap, solution quality and cpu time. 
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The decrease in changeover times and absence of 
backorder costs in the optimal solution shows that 
there is capacity available to attend the demand. 
Moreover, from the results compiled in tables 2 and 
3, we note that when changeover costs are smaller 
(instances S11 to S20) the strategies used to solve 
the models instances are more efficient and the 
computational times are significantly reduced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions 
 
In this paper we studied three formulations for the 
single stage, single machine lot scheduling 
problem in the context of soft drink production. The 
models differ by the set of constraints used to 
eliminate disconnected subsequences. The 
models LSMTZ and LSDFJ are from the literature 

 
 

Figure 1. Convergence of the solution strategies for the S3 instance. 
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Instance Changeover costs Inventory costs 
 LSMTZ LSMCF LSDFJ LSMTZ LSMCF LSDFJ 

S1 45,937.00 51,291.00 45,937.00 7,077.02 5,280.11 7,077.02 
S2 50,367.00 52,938.00 50,367.00 6,785.87 6,117.00 6,785.87 
S3 50,366.99 55,525.00 50,367.00 13,571.75 10,629.94 13,571.70 
S4 17,646.02 18,881.69 17,646.00 5,502.53 5,145.29 5,502.53 
S5 18,661.02 20,346.03 18,515.70 9,951.10 8,855.77 10,018.80 
S6 45,937.00 45,937.00 45,937.00 7,090.70 7,090.70 7,090.70 
S7 52,801.00 52,938.00 52,801.00 5,558.22 5,612.98 5,558.22 
S8 45,937.00 45,937.00 45,937.00 14,181.41 14,181.41 14,181.40 
S9 20,549.69 20,346.03 20,549.70 10,107.35 10,628.65 10,107.40 

S10 20,300.36 20,595.36 20,300.30 5,355.98 5,228.34 5,355.98 
S11 0.03 0.02 0.03 1,851.25 1,851.25 1,851.25 
S12 0.03 0.02 0.03 1,851.25 1,851.25 1,851.25 
S13 0.02 0.02 0.03 3,702.49 3,702.49 3,702.49 
S14 0.03 0.03 0.03 1,319.23 1,319.23 1,319.23 
S15 0.03 0.03 0.03 1,319.23 1,319.23 1,319.23 
S16 0.03 0.03 0.03 2,638.47 2,638.47 2,638.46 
S17 25.10 25.10 25.10 1,851.25 1,851.25 1,851.25 
S19 30.78 30.78 30.78 1,319.33 1,319.33 1,319.33 
S20 28.38 28.38 28.38 1,509.03 1,509.03 1,509.03 

 
Table 3. Solution value in terms of changeover and inventory costs. 
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and are based on the classical subtour elimination 
constraints used in the ATSP models. The LSMCF 
model is a new contribution and uses the multi-
commodity flow constraints to model the lots 
sequence. The LSMCF model has a higher 
number of constraints to eliminate subtours than 
the LSMTZ model, but both have a polynomial 
number of constraints while the LSDFJ model has 
an exponential number of constraints. 
 
The computational results obtained when the 
branch and cut tree of the Cplex was limited to 
500 nodes shows that the LSMCF model is better 
than the LSMTZ model in terms of solution quality 
and worse in terms of cpu time. The difficulty of 
the LSMCF model is that the time spent to solve 
the associated linear relaxation is 10 times longer 
than the time necessary to solve the LSMTZ 
linear relaxation.  
 
The results obtained allowing 3 hours of cpu time 
to solve the models instances show that the 
LSMTZ model provides better solutions than the 
LSMCF model. This is explained considering that 
with this time limit it is possible to examine a higher 
number of nodes in the branch and cut tree of the 
LSMTZ instances. The results obtained using the 
LSDFJ model are even better. It was possible to 
prove optimality to all but one of the 20 instances 
tested when solving the LSDFJ model instances by 
the cutting plane method. A disadvantage of this 
strategy is that there is guarantee of feasibility only 
at the end of the procedure. Considering these 
results, the LSMTZ model can be considered the 
best one. It provided competitive solutions in a 
reasonable computational time. For scenarios in 
which the changeover costs are small the 
strategies used to solve the three models 
instances are efficient and the computational times 
are significantly reduced when compared to 
scenarios with high changeover costs. 
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