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ABSTRACT 
This work deals with the light pipe problem. In this problem it is necessary to both put circles inside circles and circles 
inside a rectangle. A mathematical model that considers the thickness of the pipes is introduced. This generates a 
new optimization problem that is harder to solve than other packing problems. The mathematical description of the 
problem is introduced and some ideas of how to solve the problem are explained. 
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1. Introduction 
 
The distribution of products from the factory to 
the consumers is a very important issue in 
logistics [1]. In fact, the transportation of a 
product represents 40% of its cost [2]. This 
means that a more efficient packing and route 
tracing have a great impact in the 
competitiveness of a company. 
 
The light pipes distribution problem has some 
special characteristics that make it different from 
classics distribution problems. For example, the 
weight of the pipes does not represent a 
constraint. Therefore, many pipes can be 
stacked one over the other without damaging the 
pipes at the bottom. Another characteristic of 
this problem is that the pipes can be introduced 
one inside the other when the internal radius of 
one of them is greater than the external radius of 
the other one.  This can be done several times, 
in such a way that it can be a pipe inside another 
pipe that, at the same time, is inside a greater 
pipe and so on. 
 
Another important point to consider is that the 
truck carrying the pipes may be loaded with 
pipes of several different clients from different 
locations. Then, whether the pipes for the first 
client are at the bottom of the truck, an additional  

 
 
cost for relocations of pipes must be considered. 
Furthermore, an additional way to reduce the 
cost of transportation is to load the truck in such 
a way that the reload is minimized. 
 
In this work, the problem of maximizing the load 
of pipes in a truck is analyzed, disregarding 
other aspects of the problem that will be treated 
in a future work. 
 
The main goals of this paper are to introduce a 
mathematical model for this problem, and to 
propose some potential ways to solve it. In the 
next Section, a mathematical formulation of the 
problem is presented. In Section 3, a description 
of Evolutionary Strategy, a powerful optimization 
algorithm, is explained. In Section 4, the result of 
the experiments are reported. Finally, in Section 
5 the conclusion and some ideas for future work 
are presented. 
 
2. Materials and methods 
 
2.1 The packing problem 
 
Packing a set of light pipes is related to several 
other problems in literature, for example the 
Circle Packing in a Square (CPS) [3]. In CPS, 
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there is a set of n circles whose centers have 
coordinates (xi, yi), for i = 1, 2, 3, …, n. All circles 
have the same radius rn, but this radius is 
unknown a priori. The centers of the circles are 
located inside a square whose sides have a 
length S. The solution of the problem consists of 
locating the centers of the circles in such a way 
that the radius rn is maximal, the circles do not 
overlap and all circles are contained inside the 
square of side S. 
 
Another similar problem is packing Unequal 
Discs in a Circle (UDC) [4]. In this problem, there 
are n disks of different fixed radius ri and centers 
with coordinates (xi, yi), for i = 1, 2, 3, …,n. The 
solution of the problem consists of locating the 
center of the circles in such a way that the radius 
rn of a circle that contains all disks is minimized. 
 
In this work, we study the case where the 
transversal area of the pipes is used in the 
optimization, ignoring the length of the pipes. 
The objective is to maximize the sum of the 
transversal areas of the pipes that are loaded in 
the truck.  The rear view of the box of the truck is 
rectangular. So, the light pipes packing problem 
(LPP) has characteristics of both CPS and UDC. 
For example, it is necessary to put several 
circles inside a rectangular area, and at the 
same time to put circles inside other circles. 
 
The LPP has differences with respect the other 
problems. For example, in the LPP the radii of 
the circles are fixed from the start and cannot be 
modified like in CPS. Another difference is that 
in the LPP, when circles are put inside a circle, 
the radius of the containing circle is fixed, unlike 
the UDC. Moreover, in the LPP it is needed to 
carry the set of pipes is as small as possible, but 
in this work the focus is in the problem possible 
that not all the pipes can be loaded in the truck, 
and must be loaded in another truck. The ideal 
result is that in which the number of trucks of 
loading a single truck with as many pipes as 
possible. Figure 1 shows an example of a truck 
loaded with a light pipes. The rectangle 
represents the rear view of box of the truck. The 
circles represent the transversal view of the 
pipes loaded in the truck. 
 
 
 

 
Figure 1. An example of a truck  

loaded in the LPP problem. 
 
2.2 Mathematical model for LPP 
 
In this subsection, a mathematical model for the 
LPP problem is presented. There is some 
terminology that will be used for the rest of the 
paper. First, the transversal area of a pipe is a ring, 
so the terms ring and transversal area of a pipe 
are used as equivalents, and the demonstrations 
and definitions given for one of them is valid for the 
other one. 
 
A ring is a geometric figure formed by two 
concentric circles of different diameter. In this 
paper, a ring is represented with the letter P. For a 
set of n rings the i-th element is called Pi.  The 
radius of the greater circle of Pi is denoted by Ri 
and the radius of the smaller circle of Pi is denoted 
by ri  (see Figure 2). The greater circle of Pi is 
denoted by PRi and the smaller circle of Pi is 
denoted by Pri . 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Radius of a ring. 
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A general description of the LPP is as follows: given 
a set of n rings Pi with an external radius Ri and an 
internal radius ri and centers (xi, yi) for i=1,2,3,…, n, 
and a rectangular box B of width W and height H. 
Put as many rings inside B in such a way that there 
is not intersections between the rings and the area 
of B occupied by the circles is maximal. 
 
The description above gives a clear idea of what 
the LPP consist of, but in order to use an 
optimization procedure, a mathematical model is 
necessary. In order to have a more precise 
definition of the problem and create a mathematical 
model, further concepts and calculations must be 
introduced. First, the area Ai of a ring Pi can be 
calculated with the formula: 
 
Ai = π·(Ri

2
 – ri

2)                                                     (1) 
 
Where Ri and ri are the external and internal radius 
of Pi, respectively. Another important calculation 
that will be very useful in this work is the area of 
intersection of two rings. In order to make this 
calculation, consider Figure 3. 
 
In Figure 3 there are two rings, Pi (solid lines) and 
Pj (discontinuous lines). The intersection of these 
rings defines several regions of interest. Let call 
these regions a, b, c, d and e. The intersection of 
the two rings is regions b and c, so calculating the 
area of these regions is necessary to obtain the 
area of intersection of two rings. An explicit formula 
to calculate these areas is very complicated to 
obtain, but a formula based in the intersection of 
two circles can be deduced. In order to deduce this 
formula, the following definitions are introduced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The intersection of two rings. 

Define the PRi as the external circle of Pi, Pri as 
the internal circle of Pi, PRj as the external circle of 
Pj, Prj as the internal circle of Pj. Finally, let A(x) 
denotes the area of region x, for example A(d) 
represents the area of region d, A(Prj) represents 
the area of the internal circle of ring Pj, etc. 
 
Regions b and c can be obtained with the following 
formula:  
 
A(b U c) = A(PRi ∩ PRj) – A(PRi ∩ Prj)  
                 – A(Pri ∩ PRj) + A(Pri ∩ Prj)                (2) 
 
Where ∩ denotes intersection and U denotes 
union. The demonstration of the formula above is 
easy to figure out. From Figure 2, it is evident that: 
 

A(PRi ∩ PRj) = A(a U b U c U d U e) 
                      =A(a)+ A(b)+ A(c)+  

                         A(d)+ A(e)                                   (3) 
 
In a similar way: 
 

A(PRi ∩ Prj) = A(a U e)  
                    = A(a) + A(e)                                    (4) 
 

A(Pri ∩ PRj) = A(a U e)  
                    = A(a) + A(d)                                    (5) 
 
A(Pri ∩ Prj)  = A(a)                                                (6) 
 
When (2), (3), (4), (5) and (6) are combined: 
 
A(PRi ∩PRj)–A(PRi ∩Prj)–A(Pri ∩ PRj)+A(Pri ∩Prj) 
 = A(a)+A(b)+A(c)+A(d)+A(e)–(A(a) + A(e)) 
                 – (A(a) + A(d))+ A(a) = A(a)+ A(c) 
               =A(b U c)                                              (7) 
 
The formula above allows us to calculate the 
intersection of a pair of rings using the intersection 
of four pairs of circles. The formula to calculate the 
intersection of two circles with radii Ri and Rj is: 
 
A = 0.5·(θ·Ri

2
 –Ri

2·sin θ+φ·Rj
2–Rj

2·sin φ)              (8) 
 
Where: 
 
θ =2· acos((Ri

2 + dij
2 

 – Rj
2) / (2· Ri · dij))                (9) 

 
φ =2· acos((Rj

2 + dij
2 

 – Ri
2) / (2· Ri · dij))            (10) 

Pi Pj 

a 

b 

c 

d e 
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And dij is the Euclidean distance between the 
centers of the circles. Another important 
calculation is if two circles have an intersection. 
This calculation is very simple: if 
 
dij >

 Ri + Rj                                                          (11) 
 
then the circles do not intersect. An important 
characteristic of the LPP is that not necessarily all 
the pipes will be put inside the truck. This is 
evident when the area of the box of the truck (W·H) 
is smaller than the sum of the transversal areas of 
the pipes that must be distributed. Even in some 
cases where the area in the box is greater, it will 
not be possible to put all pipes inside the truck. It is 
important to introduce a way to reflect this inside 
the model of the problem. A way to do this is to 
introduce some artificial variables bi for i = 1, 2,…, 
n, where n is the  number of pipes to distribute, 
with the following property: 
 
bi =       1,  if pipe Pi is loaded in the truck 
            0, other wise                                          (12) 
 
This variable is an artifact that allows us to activate 
and to deactivate a pipe in order to avoid violating 
a constraint. The utility of this can be seen in 
following example: Figure 4 shows a set of pipes 
inside a truck. The arrangement of the pipes is not 
feasible, because two of the pipes (the ones in 
discontinuous lines) intersect other pipes. But if 
these pipes are deactivated, an arrangement as 
the one shown in Figure 4 is obtained, where the 
solution is feasible. This mechanism is a way to 
“left pipes out of the truck”, if bi=0 then the pipe Pi 
is not loaded in the truck. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Intersections in a solution 
 can be avoided eliminating pipes. 

Now, a mathematical model for the LPP problem is 
presented. Given a set of n rings Pi with an 
external radius Ri and an internal radius ri and 
centers (xi, yi) for i=1,2,3,… ,n, and a rectangular 
box B of width W and height H:  
 
Maximize 
 
Σn

i=1 bi ·π·(Ri
2
 – ri

2)                                              (13) 
 
Subject to: 
 
bi · bj ·((xi – xj )

2 + (yi – yj )
2) ≥ bi · bj · (Ri + Rj)

2    (14) 
 
Or 
 
bi · bj ·((xi – xj )

2 + (yi – yj )
2) ≤ bi · bj · (ri – Rj)

2 

                          if  ri ≥ Rj                                    (15) 
 
bi · bj ·((xi – xj )

2 + (yi – yj )
2) ≤ bi · bj · (Ri – rj)

2 

 

                          if  rj ≥ Ri                                    (16) 
 
for i = 1, 2, …, n - 1 and j = i + 1, …, n. 
 
0 ≤ xi – Ri                                                           (17) 
 
xi + Ri  ≤  W                                                        (18) 
 
0 ≤ yi  – Ri                                                           (19) 
 
yi  + Ri ≤ W                                                          (20) 
 
for i = 1, 2, …, n       
 
bi is binary                                                          (21) 
 
for i = 1, 2, …, n     
 
Formula (13) is the objective function to maximize, 
and it consists of the sum of the areas of the rings 
inside the box. In (14), the constraint for no 
overlapping circles is presented. A ring can be 
completely contained inside another ring; this 
situation is expressed in (15) and (16). Constraints 
(17), (18), (19), (20) and (21) impose the condition 
that all circles must be contained inside the box.  
 
In constraints (14), (15) and (16), the term bi bj is 
present in both sides of the inequality. The 
reason to have this term is to prevent the 
evaluation of intersections between rings that 
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are not loaded in the truck. If bi is equal to zero, 
or bj is equal to zero, then both sides of the 
inequality in (14), (15) and (16) are equal to zero 
and the constraint is not violated. 
 
The model for the LPP is very complex to solve; 
the objective function is not linear and contains 
binary variables. Constraints are both linear and no 
linear and contain binary variables. It is difficult to 
adapt this model to gradient methods or other 
classical optimization techniques. A viable option is 
to use evolutionary strategies (ES), because these 
optimization methods are able to work with very 
complicated objective functions. In the next section 
an introduction to ES is provided. 
 
3. Evolutionary Strategies 
 
Evolutionary Strategies (ES) [5] is a paradigm of 
Evolutionary Computation (EC)[6]. Other paradigms 
are Genetic Algorithms [7], Differential Evolution 
and many others [8]. Evolutionary Computation has 
been used to solve several problems in the industry. 
For example, in [9] the authors use a Particle 
Swarm Optimization Algorithm to optimize networks 
of mobile devices. In [10] the author uses a Memetic 
Algorithm to solve mixed-integer constrained 
optimization problems. 
 
EC is inspired in the Theory of Evolution of 
Species by Natural Selection, and takes many 
concepts such as mutation, the survival of the 
fittest, population, etc, in order to create powerful 
methods of optimization. In EC a candidate 
solution for the problem is coded as a vector of 
numbers, and several of these vectors are 
generated at random. A set of these vectors is 
known as a population and a single vector is 
usually known as an individual. The elements of a 
population are mutated and recombined in order to 
obtain new vectors that represent a better solution 
of the problem. The vectors that are mutated and 
recombined are a selection of the best elements of 
the population. The idea is that the best elements 
of a population can be used to obtain new 
solutions that are even better than their “parents”. 
The methods used to represent a solution as a 
vector of numbers, to select the best individuals, to 
mutate them and recombine them differ among the 
different Evolutionary Algorithms. 
 

In Evolutionary Strategies, a candidate solution for 
the problem is coded as a vector of real numbers, 
the process of mutation is more important than the 
process of recombination. Mutations are performed 
adding a random vector to an individual; this 
random vector is generated based on exponential 
functions. The recombination process consists on 
a weighted sum of two individuals. In order to 
select the best individuals of a population, the 
value of the objective function of the optimization 
problem is used. The elements of the population 
are sorted and those with the highest value of the 
objective are chosen. The general algorithm for ES 
is as follows: 
 
1. Generate an initial population randomly. 
 
2. Evaluate the objective function for each element 
of the population. 
 
3. Select the best individuals of the population. 
 
4. Recombine the best elements of the population. 
 
5. Mutate the recombination of the best elements 
of the population to create a new population. 
 
6..Substitute the old population with the new 
population. 
 
7. Repeat from Step 2 until the stop criterion is 
reached. 
 
Every cycle in which new population is created 
from the old one is called a generation. The 
number of individuals selected for recombination is 
usually 1/7th of the original population. The stop 
criterion is a maximum number of generations. 
 
Evolutionary Strategy was designed for 
unconstrained global optimization. In order to 
work with problems with constraints, several 
approaches have been proposed. One of the 
most successful approaches is Stochastic 
Ranking (SR) [11]. In SR, in order to select the 
best individuals of a population, the population is 
sorted either based in the objective function and 
in the degree of violation of the constraints, based 
on chance. Two individuals are compared based 
on the objective function or based on the  
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constraint depending on a random number. This 
method has been very successful solving 
complicated problems with constraints.  
 
ES combined with SR is used in order to optimize 
the LPP problem. The experiments are presented 
in the next section. 
 
4. Experiments and Results 
 
In order to test the effectiveness of the ES 
combined with SR, three instances of the LPP 
problem were used. A box with width of 400 cm. 
and height of 300 cm. was considered. There are 
three sizes of pipes: pipe one with external radius 
of 50 cm. and internal radius of 45 cm. pipe two 
with external radius of 25 cm. and internal radius of 
20 cm. and pipe three with external radius of 10 
cm. and internal radius of 8 cm. The differences 
between the instances of the problem are the 
number of pipes. The numbers of pipes for each 
instance of the problem are shown in Table 1. 
 
ES is a stochastic algorithm, as a consequence of 
that different results may result for different runs of 
the algorithm. For this reason, 30 runs were 
performed for each instance of the problem in 
order to check the consistency of the algorithm. 
The parameters for the algorithm are the following: 
size of the population = 40, number of individuals 
chosen for reproduction = 6, maximum number of 
generations = 2000. The results of the experiments 
are presented in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows that the number of feasible 
solutions reported by the Evolutionary Strategy 
depends on the size of the problem. For the fist 
instance of the problem, the ES is time. But, in the 
second instance the algorithm, ES finds feasible 
solutions in half of the runs. For the most difficult 
instance of the problem (the third instance), no 
feasible solution was found. Figure 5 shows an 
example of a solution for the second instance of 
the problem obtained by ES. 
 
5. Conclusions 
 
In this work, the light pipe packing problem LPP is 
studied. This problem has important applications in 
practice. A mathematical model for the problem 
was elaborated in order to handle it as an 
optimization problem. This mathematical model 
can be useful both to solve the practical LPP 
problem and to be use as a benchmark to test new 
optimization algorithms. 
 

 
 

Figure 5. A solution reported by an experiment. 
 
An Evolutionary Strategy was used, combined with 
Stochastic Ranking in order to find a solution for 
the problem. The results were not satisfactory, 
because the optimization algorithm is not 
consistent finding feasible solutions. For the most 
complex of the instances of the problem it was not 
able to find a feasible solution. And it is important 
to note that practical problems are more complex 
than the ones tested here. In practice there may be 
more than one hundred pipes to distribute. 
 
It is also important to remark that this is a research 
in progress and very little has been tried yet. 
These are the initial experimentations and many 

Instance 
# Pipe 

one 
# Pipe 

two 
# Pipe 
three 

1 3 5 5 
2 5 5 10 
3 10 10 15 

 
Table 1. Number of pipes for  
each instance of the problem. 

Instance 
Total number 

of Runs 

Number of 
feasible 

solutions 
found 

1 30 27 
2 30 15 
3 30 0 

 
Table 2. Results of the experiments. 
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more approaches can be used to solve the 
problem. Some ideas to solve the problem are 
presented in the next paragraph. 
 
We conjecture that one of the reasons the ES 
cannot find better solutions is the design of the 
objective function. Formulas (13)-(21) were used 
directly in the algorithm, but it is possible to use 
some modification to objective function and 
constraints can be done in order to guide the 
exploration to the desire solution. It is desirable to 
give a stronger penalization to circles that intersect 
with other circles, and that the objective function 
must be designed to give a better score to 
solutions that completely contain rings inside 
another one. 
 
Another idea for research is the use of other 
algorithms, such as Genetic Algorithms, 
Simulated Annealing, etc. There are many options 
to test and to evaluate their performance. 
Moreover, a combination of different algorithms 
and heuristics may result in better solutions. For 
example, an evolutionary algorithm can be used 
to find the best arrangement for the pipes with the 
greatest radius, to fix their position and then to 
use again the evolutionary algorithms to arrange 
the pipes with the second to the biggest radius, 
avoiding intersection with the pipes already in the 
box. This procedure may be repeated until all the 
pipes are located. 
 
The efficiency of the algorithm can be improved 
too. In order to calculate the value of the 
constraints, each pipe is compared with all the rest 
of them. This procedure is quadratic with respect 
to the number of pipes and is very expensive in 
computational time. Looking for a faster way to 
calculate the intersection may be very useful. A 
possible solution is the use of a Voronoi diagram in 
order to be able to identify what ring is closer to the 
other and calculate intersection only with the 
closest rings. 
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