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ABSTRACT 
This paper describes the simulation of movement control of a one-degree-of-freedom articulated robot arm SCARA 
actuated by a pair of McKibben pneumatic artificial muscles. The pneumatic artificial muscle is the actuator and 
emulates the behavior of biological muscles; due to its nonlinear behavior, there is also a need to develop control 
systems for robot arms using this type of actuator. Research begins with the transfer function that represents, in 
mathematical language, the movement of the robot arm’s joints; this allows using a PID controller on the transfer 
function and generating data to train the Multilayer Perceptron Artificial Neural Network (RNAPM). So far, the PID 
control system has been able to control the movement of robot arms but, based on experimental tests, the RNAPM 
has proved to outperform the PID control’s response time by up to 2.95 seconds, minimizing the angular error by 1.3° 
and avoiding the oscillation problem due to its continuous, constant behavior. 
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1. Introduction 
 
The evolution of robot arms actuated by pneumatic 
artificial muscles has its origin in the 1950s with 
physicist Joseph L. McKibben [1], who designed 
and developed the first prototype of an artificial 
muscle for the pneumatic control of an orthosis 
that would expand and contract like an actual 
human arm; this artificial device is a close 
emulation of biological muscles [2]. 
 
The pneumatic artificial muscle is amongst 
several types of actuators that have been used 
in robotic arms; others are the hydraulic, 
electronic and pneumatic (pneumatic cylinder) 
actuators. However, the pneumatic artificial 
muscle has advantages with respect to more 
classic actuators: great initial force, high 
acceleration capacity, steady movement; it is 
both lightweight and sturdy, it may be positioned 
in different angles without losing properties, 
which makes it appropriate for hazardous 
environments [3], and it can be actuated directly 
or controlled with open loop, as hysteresis in the 
theoretical-mathematical behavior is close to the 
behavior observed during experimental physical 
tests [1]. 
 

 
 
Strictly, the control of a pneumatic artificial muscle-
actuated robot arm, composed by several 
connected joints, has highly nonlinear dynamics 
with strong couplings between joints [4]. The robot 
arm developed by Tondu et al. [5] at the Robotics 
Laboratory of the National Institute of Applied 
Sciences (INSA) in Toulouse, France, is one of the 
McKibben pneumatic artificial muscles that 
behaves the most like human arms. 
 
Tondu states that one of the drawbacks of this 
actuator is the nonlinearity of the artificial muscle 
due to hysteresis, the reason being the effect of 
friction between fibers inside the woven shell [2]. 
 
Caballero et al. [3] consider that the nonlinearity of 
the pneumatic artificial muscle results from the 
actuators’ mathematical models not considering 
that the section of the inner tube is not a cylinder at 
the muscles’ ends; they agree with Tondu in that 
the woven shell-inherent distortions result in a 
nonlinear contraction repetitiveness. 
 
Pneumatic artificial muscle-actuated robot arms 
have been developed, like the one by Situm et al.  
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[6], who built the arm segment using a Festo 
Pneumatics antagonist pair of muscles, or that of 
Choi et al. [7], a robot arm driven by two pairs of 
pneumatic artificial muscles. The purpose of both 
designs is to diminish the risks to humans in 
hazardous industrial environments; both scientific 
teams agree that the main problem of 
incorporating pneumatic artificial muscle actuators 
is the difficulty to develop control systems due to 
their nonlinearity. 
 
This points to one of the biggest obstacles of 
control systems: the nonlinear behavior of 
pneumatic artificial muscles. PID control 
techniques have been proposed to solve the 
nonlinearity issue [5] with acceptable results and, 
therefore, learning-oriented alternatives are also 
being considered, like Artificial Neural Networks, 
which have the main advantage of incorporating 
nonlinear effects during the training stages [8], 
allowing for the construction of network topologies 
that resemble this behavior to develop an 
intelligent control system that improves response 
times and PID control stabilization. 
 
This paper describes the control simulation of a 
one-degree-of-freedom, RNAPM-actuated SCARA 
(Selective Compliance Assembly Robot Arm) robot 
using PID control-obtained data. This PID 
controller has been used to control a seven-
degree-of-freedom robot arm built at the National 
institute of Applied Sciences in Toulouse, France 
[5]. Using the RNAPM, response times were 
improved by 2.95 seconds and angular errors were 
optimized by 1.3 degrees. 
 
This paper is structured as follows: Section 2 
describes the physical structure of the pneumatic 
artificial muscle and the transfer function used in 
control simulation; Section 3 offers a visualization 
of the simulation methodology constituted by these 
processes: 1) data collection, 2) RNAPM control, 
3) training, 4) nonlinear approximation. Section 4 
offers simulation tests and results and Section 5 
focuses on conclusions and future projects. 
 
2. Pneumatic Artificial Muscle 
 
Nowadays, the McKibben pneumatic artificial 
muscle has become one of the most used 
actuators amongst researchers to build robot arms 

due to lower costs, construction easiness and 
advantages over classic actuators. 
 
Researchers like Tondu [1], Caballero [3], Situm 
[6], Choi [7] and Selim [9], Lezama [10] and Díaz 
[11] are amongst those that have used this type of 
actuator, which consists of an inner rubber tube 
filled with pressurized air, covered with fibers 
woven to form a mesh. One of the ends has a 
rigid, closed connector, where the muscle exerts 
an outward force, and the other end has a 
connector that allows the entrance of pressurized 
air; this way, the inner rubber tube contracts or 
extends, very much like biological muscles [3]. 
 
Díaz [11] and Tondu [2] agree that the artificial 
muscle’s behavior closely emulates that of human 
muscles. Figure 1 depicts the structure of a 
pneumatic artificial muscle actuator. 
 
 
 
 
 
 
 

 
Figure 1. Structure of a pneumatic 

artificial muscle actuator. 
 
The pneumatic artificial muscle used to simulate 
the RNAPM control is the one proposed by 
Lezama [10], who describes the physical features 
shown on Table 1. 
 
 
 
 
 
 
 
 
 
 
2.1 Transfer Function 
 
In control theory, transfer functions are used to 
represent the input-output relation of components 
or systems that are described through differential 
equations [12]; that is, transfer functions are 
mathematical representations of real life behaviors, 
like the manipulation of a robot arm’s movements. 
 

Closing  Connector

Woven Mesh Rubber Tube

Pneumatic Artificial Muscle 

Initial length 23 cm 

Initial diameter 1.7 cm 

Mesh angle 12° 

 
Table 1. Physical features of the 

pneumatic artificial muscle. 
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System control means applying or exerting forces 
for it to work according to specific instructions, that 
is, the force determines terms like movement, 
velocity and acceleration [13]; therefore, the 
simulation of a robotic arm requires knowing the 
transfer function and a control system acting on it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Elbow joint of a SCARA-type robot arm. 
 
Tondu et al [2] propose the transfer function of a 
joint composed by an antagonist pair of pneumatic 
artificial muscles to represent the behavior of 
elbow movements, as depicted in Figure 2, with 
angle instructions responding at a range between 
0° to up to 55° and the following mathematical 
representation: 
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Where U represents pressure (bars), is the position 
(degrees), K is the static gain, Wn represents the 
undamped angular frequency, Z is the damping 
coefficient and variable T represents time. 
 
Based on experimental tests, Lezama [10] also 
proposes specific values for variables Wn, Z and 
T mentioned previously in equation (1); the 
transfer function is then represented as follows: 
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3. Solution Methodology 
 
3.1 Data Collection 
 
As mentioned earlier, control simulation 
necessarily requires knowing the transfer function 

used by the system control. This paper uses the 
transfer function described in equation (2), 
programmed with the Matlab Simulink simulation 
tool and the PID controller, resulting in a closed 
loop control system that provides input and output 
data to train the RNAPM. Figure 3 shows the PID 
control system diagram. 
 

 
 

Figure 3. PID control system diagram. 
 
Lezama [10] also proposes the PID controller 
values used in the control system diagram of 
Figure 3, like P=0.06, I=0.12 and D=0.0075; the 
Required Position variable provides the angular 
position between 0° and 55° that will define the 
elbow’s range of movement. 
 
Finally, data is collected by measuring the vector 
of the Input variable storing all correction values of 
the angular error and the vector of the Output 
variable, which is in charge of storing the angular 
position values proposed by the PID controller to 
reach the user-specified position at a compilation 
time of 6 seconds. 
 
Based on the data collected, tests were carried 
out at a 5° to 55° angular position at five-degree 
intervals, which allow visualizing only the PID 
controller behavior evolution. Figure 4 depicts the 
PID behavior evolution at a 5° angular position, 
which was used to collect data to train the 
RNAPM. 
 

 
 

Figure 4. PID behavior evolution 
at a 5° angular position. 

 

Elbow Joint 
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3.2 RNAPM Neural Control 
 
Depending on the learning paradigm, artificial 
neural networks can be divided into supervised 
and unsupervised learning paradigms. The 
difference relies on the way in which neural 
networks are designed to recognized and classify 
patterns [14]. 
 
The RNAPM used in this research paper proposes 
a Multilayer Perceptron network topology by 
means of supervised learning, its structure derived 
from experimental testing, formed by one node at 
the input layer, two nodes at the hidden layer and 
one node at the output layer. 
 
Within multilayer neural networks, it is important to 
identify the activation function most adequate for 
this problem. There are different types of functions: 
Step, Sigmoid, Gaussian and Hyperbolic Tangent. 
The core of the RNAPM is based on the 
Hyperbolic Tangent as activation function. 
 
Hyperbolic Tangent is one of the most common 
activation functions used in MLP topology due to 
its output interval (-1 to 1), allowing a 
symmetrical function that permits nonlinear 
trajectories, improving velocity during the 
RNAPM training stage. 
 
3.3 Training 
 
This paper uses the Backpropagation by gradient 
descent training algorithm, which optimizes 
connections between neurons according to the error 
of the neural network – error being the difference 
between the network output and the desired output 
– and minimizes the function calculating the neural 
network error, known as cost function. 
 
The cost function used in RNAPM training is based 
on the method of least squares, which allows 
obtaining the mean-squared error (MSE), 
mathematically represented in equation (3): 
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
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N
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N
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Where N is the total number of training patterns 
and “e” represents the error. 

To train the RNAPM, 489 patterns were used. The 
learning method used was Batch, which defines 
the number of epochs representing the number of 
learning iterations; then, based on the training 
patterns known by the RNAPM, the mean-squared 
error is obtained, allowing to adjust the network 
weights until reaching the last epoch previously 
defined. The graph in Figure 5 shows the RNAPM 
training and a comparison between the value of 
learning epochs in the range of up to 1000 epochs 
and the mean-squared error value. Table 2 shows 
the resulting training values, like the minimum and 
final values of the mean-squared error. 
 

Best Network Training

Number of Epoch 1000 

Minimum MSE 0.004497979 

Final MSE 0.004497979 

 
Table 2. RNAPM training data. 

 

 
 

Figure 5. Training graph of the RNAPM. 
 
3.4 Nonlinear Approximation 
 
The RNAPM used in the proposed network topology 
constitutes an ideal approximation element to 
nonlinear behaviors, like the manipulation of a 
pneumatic artificial muscle-actuated robot arm, due 
to its generalization capacities, that is, its learning 
ability based on input and output data, defined as 
training evidence, and the nonlinear relation 
between them. 
 
The RNAPM approximation technique consists of 
training the network with input and output values 
obtained from the PID control system described in 
Figure 3. Based on the same vector of input values 
used for training, the RNAPM has the capacity to 
propose the vector of output values representing 
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the nonlinear approximation to the behavior 
learned at the training stage. 
 
Figure 6 shows the behavior of the nonlinear 
approximation proposed by the RNAPM based 
on the training that used the PID control system 
behavior. 
 
The evolution of the PID behavior defined by the 
angular error and the value of the angular position 
is equivalent to the evolution of the behavior of the 
proposed RNAPM topology, proving that this 
network is capable of approximating a nonlinear 
behavior like manipulating a McKibben pneumatic 
artificial muscle-actuated robot arm. 
 

 
 

Figure 6. Approximation graph  
of RNAPM to the PID behavior. 

 
4. Tests and Results 
 
The results obtained by the RNAPM up to the 
nonlinear approximation stage provide solid 
evidence of efficiency for being an equivalent 
behavior, according to the results depicted in the 
Figure 6 graph; however, at this stage it is not 
possible to determine if the RNAPM proposed 
values outperform the PID control behavior. To 
determine if the RNAPM is a better controller than 
the PID in a simulated environment, the network-
proposed values were replaced within the control 
system, as shown in Figure 7. 
 

 
 

Figure 7. Diagram of the RNAPM control system. 

The tests aimed to compare the efficiency of the PID 
control system against the RNAPM were carried out 
in the 5° to 55° range, at five-degree intervals. 
 
Figure 8 below shows the result obtained from the 
PID and RNAPM controls at a 5° angular position, 
where the network is more efficient, resulting in a 
stabilization time of 3.8 seconds and no 
oscillations when compared with the PID control, 
which reaches stabilization at 5.8 seconds and 
oscillations of up to 0.001° at its highest level. 
 

 
 

Figure 8. Behavior graph of PID and  
RNAPM control at 5° angular position. 

 
At a 15° angular position, another result was 
obtained, as seen in Figure 9, with the RNAPM 
again proving to be more efficient with a 
stabilization time of 3.25 seconds and no 
oscillations, compared to the PID control, which 
reaches stabilization at 4.73 seconds and 
oscillations of 0.027° at its highest level. 
 

 
 

Figure 9. Behavior graph of PID and  
RNAPM control at 15° angular position. 

 
Figure 10 shows the result at a 30° angular 
position, the RNAPM control system proving to be 
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more efficient, with a stabilization time of 3.1 
seconds and no oscillations, compared to the PID 
control, which reaches stabilization at 4.5 seconds 
and oscillations of 0.17° at its highest level. 
 

 
 

Figure 10. Behavior graph of PID and  
RNAPM control at 30° angular position. 

 
Figure 11 depicts the results at a 45° angular 
position, where a decrease of the RNAPM 
stabilization time is observed when compared to 
the PID control, which conversely requires more 
time to stabilize at the defined angular position. 
 
In this test, the network achieves a stabilization 
time of 3.02 seconds and no oscillations, while the 
PID control reaches stabilization at 5 seconds with 
oscillations of 0.3° at its highest level. 
 

 
 

Figure 11. Behavior graph of PID and 
RNAPM control at 45° angular position. 

 
Finally, Figure 12 shows the results of the test at 
55° angular position, where the RNAPM 
stabilization time further decreases when 
compared to the PID control. In this test, the 
network achieves a stabilization time of 2.95 

seconds and no oscillations, while the PID control 
reaches stabilization at 5.5 seconds with 
oscillations of 1.3° at its highest level. 
 

 
 

Figure 12. Behavior graph of PID and  
RNAPM control at 55° angular position. 

 
5. Conclusions 
 
Based on the results obtained from the tests 
carried out in a simulated environment at an 
angular position range between 5° to 55°, the 
RNAPM proved to outperform the PID control 
system. A decrease of 2 seconds in the 
stabilization time and a 0.001° angular position 
minimization was observed at a 5° position, these 
numbers improving with each of the tests carried 
out at the defined range until reaching the final 
angular position of 55°, which resulted in a 
stabilization time of 2.95 seconds and a 1.3° error 
minimization. Furthermore, with its continuous, 
constant behavior, the RNAPM control system 
shows no oscillations. 
 
It is therefore suggest that the neural network 
topology proposed is capable of learning a 
nonlinear behavior like that of pneumatic artificial 
muscle-actuated robot arms. 
 
Future research work will include physical tests of 
the RNAPM control system on a one-degree-of-
freedom SCARA robotic arm, built with an 
antagonist pair of pneumatic artificial muscles, in 
order to validate if the RNAPM shows the same 
efficiency in a real environment. 
 
 
 
 



 

Simulation of Control of a Scara Robot Actuated by Pneumatic Artificial Muscles Using RNAPM, F. Escobar   et al. / 939‐946

Journal of Applied Research and Technology 945

Acknowledgments 
 
We would like to thank PROMEP [Program for the 
Improvement of the Faculty] for its support and 
sponsorship to carry out this research, which is part of 
the project “Study and Characterization of a Pneumatic 
Artificial Mini-Muscle Prototype under Static and 
Dynamic Conditions”, code ITTOL-PTC-002, from the 
call for proposals “Support to Admit New Full-Time 
Professors, Call for Proposals 2009”. We would also like 
to acknowledge DGEST’s support for the approval of the 
project “Prototype of a virtual system of a McKibben 
antagonist pair of pneumatic artificial muscle mini-
actuators”, code TOL-DCIET-2010-102, which has been 
the basis to continue the research for this project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 
[1] B. Tondu, V. Boitier, P. López., Naturally Compliant 
Robot-Arms Actuated By Mckibben Artificial Muscles, 
IEEE International Conference, October 1994, pp. 
2635-2637. 
 
[2] B. Tondu, P. López., Modeling and Control of 
Mckkiben Artificial Muscle Robot Actuators, IEEE 
Control Systems Magazine, April 2000, pp. 22-29. 
 
[3] Adolfo Hilario Caballero, Pablo Carbonell Cortés., 
Prototipo Experimental para la Identificación y Control 
de Actuadores por Músculo Neumático, Elsevier - 
Revista Iberoamericana de Automática e Informática 
Industrial, Spain 2003, pp. 1-3, 7-8. 
 
[4] Oscar Vivas., Predictive Control of a Scara Robot, 
Ingeniare - Revista Chilena de Ingeniería, Chile 2006, 
pp. 135. 
 
[5] B. Tondu, S. Ippolito, J. Guiochet, A. Daidie., A 
Seven Degrees of Freedom Robot Arm Driven by 
Pneumatic Artificial Muscles for Humanoid Robots, The 
International Journal of Robotics Research, April 2005, 
pp. 268-272. 
 
[6] Zeliko Situm, Srecko Herceg., Design and Control of 
a Manipulator Arm Driven by Pneumatic Muscle 
Actuators, Mediterranean Conference on Control and 
Automation, Centre, Ajaccio, France, June 2008, pp. 
927-929. 
 
[7] Tae-Yong Choi, Joon-Hong Seok, Ju-Jang Lee., Safe 
Robot with Artificial Pneumatic Muscle, IEEE 
International Symposium on Industrial Electronics, July 
2009, pp. 1434-1437. 
 
[8] Javier Trujillano, Jaume March, Albert Sorribas., 
Aproximación Metodológica al uso de Redes Neuronales 
Artificiales para la Predicción de Resultados en 
Medicina, Elsevier - Departament de Ciències Mèdiques 
Bàsiques. Universitat de Lleida, Spain 2004, pp. 59,63. 
 
[9] Selim Eskiizmirliler, B. Tondu, C. Darlot., Motor 
Control of a Limb Segment Actuated by Artificial 
Muscles, Proceedings 23rd Annual Conference IEEE, 
Turkey 2001, pp. 1-2. 
 
[10] Ruth Lezama Morales., Modélisation et 
programmation d’un robot anthropomorphe à 7 degrés 
de liberté actionné par muscles artificiels pneumatiques, 
PhD thesis, Institut National des Sciences appliquées, 
Touluse, France 2008, pp. 10-12,43,63,68-71. 
 
 
 



 

 

Simulation of Control of a Scara Robot Actuated by Pneumatic Artificial Muscles Using RNAPM, F. Escobar  et al. / 939‐946

Vol. 12, October 2014 946 

[11] Sergio Díaz Zagal., Conception et Développement 
d´ un Mini-Actionneur à Muscle Artificial. Application à la 
Robotique Médicale, PhD thesis, Institut National des 
Sciences appliquées, Touluse, France 2007, pp. 44-57. 
 
[12] Katsuhiko Ogata., Ingeniería de Control Moderna, 
Prentice Hall 4ta Ed. 2008, pp. 60. 
 
[13] Subir Kumar Saha., Introducción a la Robótica, Mc 
Graw Hill 1era Ed. 2010, pp. 239. 
 
[14] Kyoung Kwan Ahn, Huynh Thai Chau Nguyen., 
Intelligent switching control of a pneumatic muscle robot 
arm using learning vector quantization neural network, 
Elsevier - Mechatronics 2007, pp. 257-259. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


