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ABSTRACT 
This research intends to find out any development of a robust multi-objective for lead time optimal control problem in a 
multi-stage assembly system model. Assembly system modeling is possible by the help of the open queue network. A 
working station includes one or infinite servers and just manufacturing or assembly operations are performed therein. 
Each part has a separate entry process and independent of each other. It is completely based upon Poisson 
process.Serving Lead Time of Stations are also independent of each other and therefore exponential distribution of 
each parameter is controllable. All stations have bounded uncertain unrecyclable wastes which are completely 
independent in compliance with Erlang distribution. Uncertainty in the problem parameters has been suggested as 
robust multi-objective optimal control model in which we have three incompatible target functions including cyclic 
operation cost minimization, average lead time minimization and lead time variance. Finally, target progress method 
has been applied in order to achieve serving optimal speeds and solve discrete time of the main problem 
approximately. The proposed model could present a suitable solution even for the same problem as mentioned in 
other related papers along with some considerable results in parameter uncertainty conditions. 
 
Keywords: Multi-objective planning, robust optimization, lead time control, queue theory, complex assembly system. 
 
 
1. Introduction 
 
Optimization of the problems which are related 
to queue system is very complex. In literature, 
there are many problems which are related to 
queue systems (Smith et al, 1988). Following 
goals of this paper are: production, 
programming, improving throughput, deceasing 
sojourn time and the average number of the 
client in the system. Controlling servicing speed 
in each node of the system studied by Jackson 
package. Schechner et.al (1989) considered 
maintenance & operation costs. They assumed 
that costs are functions of the activity frequency 
which are performed on a node. Tseng and 
Hsiao (1995) studied optimal control of a queue 
system input with two stations under constraint 
of time delay in system in order to maximize 
throughput in the system. Kerbache and Smith 
(2000) studied optimal routing and positioning 
problems from the point of view of system 
optimization. Baldoquin et.al (2014) and Chen et  

 
 
al (2014) studied a new model for controlling and 
optimizing servicing speeds and speeds of entry 
to servicing stations. They intended to optimize 
waiting length of the system route and total 
operational costs of their service stations in each 
period. In all studies performed so far, 
hypothesis of model parameters certainty were 
considered as a main hypothesis while many 
optimization problems were facing with the 
uncertainty of the parameters. For example, 
actual demand of products, financial return, 
required material and other sources are not 
known in the supply chain at the time of critical 
decision making. Input parameters of each 
server, in queue system optimization problems, 
may face with uncertainty. The optimal answer 
obtained from the made models may not be 
optimal or justified due to violation of some 
constraints as soon as the parameters take any 
values other than nominal value.  
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This may result in a natural question in designing 
of approaches for finding the optimal answer which 
is safe against the uncertainty of the parameters. 
They are called Robust Answers. In order to 
explain the importance of the most robust answer 
in applications, we refer to a case study which was 
done by Ben-Tal and Nemirovski (2000) on linear 
optimization through Net lib.  
 
We can’t neglect that negligible uncertainty in 
parameters can make optimal normal answer 
meaningless from the applied point of view In 
applications of linear programming. 
 
In classic methods, sensitivity analysis and 
stochastic programming are used in order to 
consider the uncertainty of the parameters. In the 
first approach, analyst neglects any effects of 
parameter uncertainty on the model and uses 
sensitivity analysis in order to confirm the obtained 
answers. Parameter Sensitivity Analysis is really a 
tool for analyzing good answers and we can’t apply 
it for production of robust answers. In addition, it is 
not practical to do sensitivity analysis on the 
models with many uncertain parameters. 
 
Dantzing (1998) has defined stochastic 
programming as an approach for modeling 
uncertainty of the parameters. This approach 
assumed scenarios with different probabilities of 
occurrence of parameters. In this approach, 
justifiability of the answer is expressed by the use 
of chance constraints. There are three main 
problems for this approach as follows: A-It is 
difficult to recognize accurate distribution of 
uncertain parameters and finally quantify the 
scenarios which are obtained from the concerned 
distributions, B- Chance constraints exclude 
convexity of the main problem and increase the 
complexity, C- Dimensions of the obtained 
optimization model may be increased 
astronomically in parallel with the increase of the 
number of scenarios which causes major 
calculation challenges. 
 
Robust optimization is another approach which has 
been introduced for confronting with uncertainty of 
parameters. In this approach, we have to seek for 
near optimal answers. On the other hand, we 
ensure justifiability of the answer by decreasing 
optimization of the target function. In case of 
uncertainty in target function coefficients, we 

should search to find the answer which is better 
than initial ones with high probability of changing 
target function. 
 
This article presents an approximate model for 
controlling and optimizing servicing speed 
(capacity) in each node in the multiphase 
assembly system and on the basis of the goals of 
Baldoquin et.al (2014). 
 
2. Multiphase dynamic assembly systems 
 
A multiphase dynamic assembly system can be 
modeled as an open queue system. A servicing 
station is embedded in each node and is regarded 
as an assembly or production operation. The 
following hypotheses are considered: 
 
Each separate part of the product enters a 
production system under Poisson process with 
parameter of λ. Just one product is produced. 
Servicing station is regarded as a production 
station with more than an input edge as a 
production station. A servicing station with more 
than one input edge is regarded as an assembly 
station. Each party enters into production station 
after entering the system to perform production 
operations on it. If another part is being produced, 
the new part will be in queue. After completion of 
process in production station, a part which enters 
into another station would be exposed to other 
operations. After production of each part, the 
concerned part is assembled with other parts in 
assembly station. The product is completed in end 
node and leaves the system. Each part has some 
specifications which are statistically independent of 
the other parts. Each servicing station comprises 
one or infinite number of servers. Operation time in 
servicing stations follows an exponential 
distribution and is independent of the previous 
operation time. There is no pause in operations 
due to failure, repair or other cases. Servicing rule 
is based on FIFO method. Capacity of queue of all 
stations is infinite. Transportation times between 
servicing stations are independent random 
variables with Erlang distributions. There is a 
queue system in a stable state. The capacity of the 
station is controlled by servicing speed of 
concerned device. Servicing speeds are stepwise 
variables. Operational costs of a servicing station 
in each period are ascending functions of servicing 
speed of that station. Thre are totally two service 
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stations in a queue system nodes. After completion 
of assembly operations, the server starts the next 
assembly operation in case of at least one unit 
item of each part. Assembly station of a queue 
system is multiple input and its specific 
characteristic is a cluster servicing in which each 
cluster includes one unit of a part. Harrison (1973) 
and Ascencio et.al (2014) showed that it is 
impossible to create a synchronization analytic 
method and adjustment of unreported input flows 
in order to find distribution of lead time in the 
multiphase assembly system. Therefore, analysts 
use lead time distribution estimation. 
 
With regard to hypothesis of the model, any 
entrance to the production stations which are prior 
to assembly station has a Poisson model with 
parameter λ. This indicates that entrance of parts 
to each assembly node is a Poisson process with 
speed λ. Both nodes in queue system are related 
to multiphase dynamic assembly system. It is like a 
tree and waiting times are independent in servicing 
stations. (Lemoine, 1979) 
 
3. Analyzing the longest route in queue systems 
 
The most important phases of the longest route 
analysis of queue systems include: 
 
Phase 1. Determining density function of waiting time 
(including operating time and queue waiting time) in 
each servicing station. If servicing station has only 
one machine, the spent time is similar to the 
system.If servicing station m  has only one machine, 
the spent time is similar to the 1//MM  system. 
 

0 t,  )()( )(    metw m                               (1) 

 

Where m  
and   are entry rates and the 

servicing rate in queue system. Therefore, waiting 

time distribution in thm  
servicing station is 

exponential distribution with parameter of 

)(  m . If there is an infinite machine in 

servicing station, spent time in this //MM  
system will follow an exponential distribution with 

parameter of m  
because there is no queue. 

 
Phase 2. By converting each node which includes 
servicing station to stochastic edge such as queue  
 

system to equivalent stochastic network, length of 
each edge equals to the time spent in the related 
servicing station. For more details, refer to 
Baldoquin et.al (2014). After conversion of all 
nodes of the stochastic edges, queue system has 
been converted to equivalent stochastic network. 
 
Phase 3. In this phase, Kalkarni et al. specified the 
longer route distribution function which has been 
obtained by the stochastic network. Assume 

),( AVG  as a stochastic network in which V 

stands for a set of nodes and A is edged or 
production operation of the assembly dynamic 
system after transformation. Starting and 
terminating nodes are shown with s and t. Length 
of the edge a in which Aa is a stochastic 
variable with exponential distribution and 

parameter a . For Aa  , )(a  consider stochastic 

variable as the first node of edge a  and )(a as 

the last node of the edgea. Azaron and Modarres 
(2005) mentioned the following definitions used in 
present article: 
 
Definition 1. are sets of input and output edges of 
node υ and are defined as follows: 
 

  ,        )(:  )( VvvaAavI                        (2) 

 
   ,       )(:  )( VvvaAavO                          (3) 

 
Definition 2. If and    tand     ,  cXAXXs   where 

cX complements set, then, cut ),( ts is defined as 

follows: 
 

    )( ,  )(:  ),( XaXaAaXX                        (4) 

 
),( ts  is a uniformly directed cut(UDC) if ),( XX is 

empty.  
 
Definition 3. If FED   is a UDC of the network, 
we consider it as an acceptable distance. If we 
have FaI ))((  or each Fa .  

 
Definition 4. Each one of the operations at time t  
can be dormant or idol in one of the active states 
which is defined as follows: 
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Active: Any operations which are being executed 
at time t .  
 
Dormant: Operations at time t  which have been 
completed, but there is an unfinished operation in it.  
 
Idol: An operation at time t , which is neither active 
nor dormant.  
 
The set of active and dormant states are shown 
with )(tY  and )(tZ  and ))(),(()( tZtYtX  . Now, if 

S stands for all cuts of the network which have 
acceptance distance, we can consider 

 ),( SS   where ),( X  indicates to 

  Y(t)  ,  )(tZ . It means that all operations at 

time t  are idol and therefore, end product finished 
at time t leaves the system.  
 
We can prove that  0),( ttX  is a Markov 

process in state space of S  with continuous time. 
Members of transient matrix in this Markov 
process which is shown with   ),(),,( '' FEFEqQ   

are UDF of active and dormant operations which 
have been introduced by Kulkarni, and Adlakha 
(1986) are as follows: 
 
 
 
 
 
 
 
 
 
 
                                                                             (5) 
 
 0),( ttX  is a finite –state absorbing, continuous 

Time Markov process and because 

  0),(),,( q is an absorbing state, other 

states are clearly transient. In addition, we number 
states S in such a manner that matrix Q is 
converted to a higher triangle matrix. 
 
It is assumed that these states are numbered as 

N,...,2,1  in which N equals to the total number of S
.The first state is initial which is shown with

)),(()( sOtX   and state N is absorbing which is 

shown with ),()( tX . 
 
Assume that T indicates the longest route in the 
network with lead time.  
 
It is clear that  1)0()(:0min  XNtXtT  

Therefore, T is the time which takes for 
 0),( ttX to be absorbed by the last phase which 

has started with 1. 
 
In order to calculate  tTPtF )( or lead 

distribution function, we can apply backward the 
Chapman –Kolmongroff relations. In this regard, if 

)(tPi  is defined as follows: 

 
    N1,2,....,i   ,)0()()(  iXNtXPtPi             (6) 

 
We will have )()( 1 tPtF   

 
Yinan et.al (2014) presented a differential equation 
for the vector: 
 

 TN tPtPtPtP )(),...,(),()( 21 as follows: 

 

 TP
tPQtP

1,...,0,0)0(
    ),(.)(




                                                  (7)
 

 
The relations introduced in section 3 are used 
for constructing an optimization model in the 
next section. 
 
4.Multi-objective lead time control problem 
 
In this section, an analytic model is used for 
optimal control of servicing the speed in 
servicing stations. We can increase speed of 
servicing in production & assembly stations. In 
this case, average lead time will be shortened 
accordingly. But this may increase operational 
costs in each period. 
 
As a result of a suitable tradeoff between average 
lead time and costs, it is necessary to consider 
lead time variance because when we concentrate 
on average lead time, servicing speeds may not 
be optimal. 
 

,ܧ)}ܳ  ,(ܨ ,´ܧ) {(´ܨ =
ەۖۖۖ
۔ۖ
ܽ ݂݅        ଴ߣۓۖۖ ∈ ,ܧ ൯(ܽ)ߚ൫ܫ ⊄ ܨ ∪ {ܽ}, ´ܧ ܧ= − {ܽ}, ´ܨ = ܨ ∪ ܽ ݂݅        ଴ߣ:{ܽ} ∈ ,ܧ ൯(ܽ)ߚ൫ܫ ⊄ ܨ ∪ {ܽ}, ´ܧ ܧ= − {ܽ}, ´ܨ = ܨ ∪ ´ܨ                :{ܽ} = ܨ − ܱ൫ߚ(ܽ)൯− ෍ ܽ ∈ ఒబܧ ܧ ݂݅           = ,´ܧ ܨ = ݁ݏ݅ݓ ݎℎ݁ݐܱ                 0 :´ܨ
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In order to achieve the mentioned goal, a multi-
objective problem has been presented by Chen et 
al (2014) in which three objectives include 
minimization of total operational costs of the 
system in each period and minimization of average 

lead time. The operational cost of thi  working 

station in each period has been regarded as 
ascending function )( mmC   

where m  is servicing 

speed of that station. Therefore, C or total 
operational costs of the system are calculated in 
each period: 
 

  )(
1




M

m
mmCC                                                       (8) 

 
Dalfard et.al (2011) focused on the case in which 
production capacity is provided for discrete 
choices. For example, when some machines or 
workers or one working shift is added, the capacity 
is controlled with servicing speed in each node. 
Therefore, servicing speed should be selected 
among a series of related discrete choices. 
 

With regard to iS as a series of choices for thi

servicing speed )( mmC   constant values are not 

allocated to transient matrix elements but it is a 

function of control vectors  Tm ,...,, 21 . For 

this reason, nonlinear dynamic model has been 
suggested as follows: 
 
With regard to iS as a series of choices for thi

servicing speed )( mmC   constant values are not 

allocated to transient matrix elements but it is a 

function of control vectors  Tm ,...,, 21 . For 

this reason, nonlinear dynamic model has been 
suggested as follows: 
 

.1)(
1-N1,2,....,i     ,0)0(

                ),()..()(






tP
P

tPQtP

N

i



                                    (9)

 

 
In caseB  sets of nodes, including servicing 
stations 1//MM  and C  is set of nodes, including 
servicing of //MM , the following relations are 
used in order to sustain the system: 
 

C,m   ,0
   B,m   ,




m

m



                                              (10) 

 
Such a structure is not available in mathematical 
programming. Therefore, the following relations 
are used in defining a multi-objective problem as 
substitute of the relations: 
 

C,m   ,
 B,m   ,







m

m

                                          (11) 
 
With regard to the relation (11) with help of goal 
attainment method, multi-objective lead time 
control model has been introduced. (Dalfard & 
Ranjbar, 2012) 
 
Generally, this method requires determining goals 
and weights that are ௝ܾ and ௝ܿ which should be 
specified for three target functions. In this regard, 
we will have: 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                           (12)

 
 
It is complex to solve this problem with continuous 
lead time with use of analytical methods. 
Therefore, we try to use approximate method. For 
this purpose, the continuous time system turns out 
to be discrete and the optimal control problem is 
converted into equivalent nonlinear programming. 
On the other hand, differential relations in set of 
relations 12 are converted to difference equations. 
Integral expressions are converted to summation 
ones. For progress of this method, time has been 
divided into K equal sections with length of t .  
 

If t  is small, we can assume that )(tP  changes 

only at times tKt  )1(,...,,0 . Therefore, if 

)( tkP   is shown with pkth   with P(k), the 

min ܼ 

௠ߤ                    ≥ ߣ + ݉      ,ߝ ∈ ௠ߤ                    ,ܤ ≥ ݉      ,ߝ ∈ ௠ߤ                   ,ܥ ∈ ܵ௠,       ݉ = 1,2, … ,  ,ܯ

׬ ൫1 − ଵܲ(ݐ)൯݀ݐ − ଶܼܥ ≤ ܾଶ,ஶ଴ ׬                 ଵஶ଴݌ଶݐ ݐ݀(ݐ) − ׬ൣ ݐ ଵܲ(ݐ)݀ݐஶ଴ ൧ଶ − ଷܼܥ ≤ ܾଷ,                ܲ(ݐ) = .(ߤ)ܳ (ݐ)௜ܲ                ,(ݐ)ܲ = 0,                  ݅ = 1,2, … , (ݐ)ேܲ                , ܯ = 1,                
,(ݐ)݌ ܼ ≥ 0.               
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continuous time system )()..()( tPQtP   is 

converted to discrete time system.  
 

,)().()()1( tkPQkPkP   1,....1,0  kk       (13) 
 
Mixed integer nonlinear programming model is 
obtained which is equivalent to the main model 

with which  Tn**
2

*
1 ,...,,   or the optimal control 

vector is obtained.  
 min .ݏ     ܼ                   ∑                    :ݐ (௜ߤ)௜ܥ − ଵܼܥ ≤ ܾଵ,௡௜ୀଵ      ∑ ൫ݐ∆݇ ଵܲ(݇ + 1) − ଵܲ(݇)൯ − ଶܼܥ ≤ ܾଶ,௞ିଵ௞ୀ଴                      
      ∑ )ݐ∆݇) ଵܲ(݇ + 1) − ଵܲ(݇))௞ିଵ௞ୀ଴ − ൣ∑ ൫ݐ∆݇ ଵܲ(݇ +௞ିଵ௞ୀ଴1−ܲ1݇2−3ܾ≥3ܼܥ,                           ܲ(݇ + 1) = ܲ(݇) + .(ߤ)ܳ ݇                      ,ݐ∆(݇)ܲ =0,1, … , ݇,                           ௜ܲ(0) = 0,                       ݅ = 1,2, … , ܰ − 1,                        
    ேܲ(݇) = 1                        ݇ = 0,1, … , ݇,                           ௜ܲ(݇) ≤ 1,                        ݅ = 1,2, … , ܰ − 1, ݇ =0,1, … , ௜ߤ                           ,݇ ≥ ߣ + ݅                       ,ߝ ∈ ௜ߤ                            ,ܤ ≥ ݅                              ,ߝ  ∈ ௠ߤ                          ,ܥ = ∑ ݉         ௠௝ݕ௠௝ߙ = 1,2, … , ௌ೔|௝ୀଵ|ܯ ,                           ∑ ௠௝ݕ = 1,|ௌ೔|௝ୀଵ                     ݉ = 1,2, … , ,(ݐ)ܲ                          ,ܯ ܼ ≥ 0.                          
                                                                           (14) 
 
With regard to hypothesis governing the problem, 
input rate or system input distribution parameter is 
  and since lack of wastes has been assumed in 
all stations, therefore, it is evident that the input 
rate of all stations will be  . Now, if you assume 
that each station has irreversible wastes which 

have been shown with m , each servicing station 

input rate will not be equal to  . Therefore, we 

can show thm  servicing station input rate with m  

and we can write as follows:  
 

    mm                                                  (15) 
 

Where m  is defined as wastes of the previous 

servicing stations and m  servicing stations. Now  
 

if the relationship between stations is shown on 
the basis of production process with matrix 

),( nmO we can calculate value of m  for 

servicing stations: 
 


n

nm nmO  ),(                                               (16) 

 

Where n  indicates wastes of thm  station which is 

independent of wastes of other stations. It is 
necessary to note that the parts of which 
equivalent part or parts are regarded as wastes in 
assembly station are regarded as a kind of wastes: 
 
If ),,( mjiq  is three-dimensional matrix with 

entries -1,0,+1 and defined as follows: 
 

jif   , the entry relating to servicing stations of 

which activities have been finished takes value of 1 
during change from state i  to j . 
 

If 



ik

ji:      m.   ),,,(),,( mjiqmjiq
 

then we 

can define matrix Q  as follows:  

 

 



ik

   ),(),,(),,(),(
m n

nm nmOmjiqmjiqjiQ 

                                                                           (17)

 

 

In order to insert wastes in model (14), matrix 'Q  

is defined as follows: 
 

  )()()()('   QQQQQQ               (18) 

 
Relation (13) will change as follows: 
 

 1,-k1,....,,0k 
   ,)(P.)(P).()(P)1(P


 tkQtkQkk 

 
                                                                           (19) 
 
In which, model (20) will emerge by subtitling 
relation 19 with its equivalent constraints in the 
model (14) and expanding constraint relating to 
stability with use of relation (15): 
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min .ݏ  ܼ                 ∑               :ݐ (௜ߤ)௜ܥ ≤ ܾଵ,௡௜ୀଵ   ∑ )ݐ∆݇ ଵܲ(݇ + 1) − ଵܲ(݇) − ଶܼ௞ିଵ௞ୀ଴ܥ ≤ ܾଶ,                   
     ∑ )ݐ∆݇) ଵܲ(݇ + 1) − ଵܲ(݇))௞ିଵ௞ୀ଴ − ൣ∑ ൫ݐ∆݇ ଵܲ(݇ +௞ିଵ௞ୀ଴1−ܲ1݇2−3ܾ≥3ܼܥ,                    ܲ(݇ + 1) =ܲ(݇) + ൣܳ(݅, ݆) + ܳఊ(݅, ݆)൧ ௝ܲ(݇)∆ݐ,                      ݇ =0,1, … , ݇ − 1,                    ௜ܲ(0) = 0,                       ݅ = 1,2, … , ܰ − 1,                     ேܲ(݇) = 1                        ݇ = 0,1, … , ݇,                    ௜ܲ(݇) ≤ 1,                        ݅ = 1,2, … , ܰ − 1, ݇ =0,1, … , ௠ߤ                    ,݇ ≥ ߣ + ݅                       ,௠ߛ ∈ ௜ߤ                     ,ܤ ≥  0,                              ݅ ∈ ௠ߤ                   ,ܥ = ∑ ݉         ௠௝ݕ௠௝ߙ = 1,2, … , ௌ೔|௝ୀଵ|ܯ ,                    ∑ ௠௝ݕ = 1,|ௌ೔|௝ୀଵ                     ݉ = 1,2, … , ,(ݐ)ܲ                    ,ܯ ܼ ≥ 0.                   
                                                                           (20) 
 
The introduced model is valid in set of relations 
(20) when its parameters are defined finally. In 
case waste in each station is indefinite in each 

station n , the validity of the following model will 

be questioned. In order to confront with this 
uncertainty, robust optimization is used. 
 
5. Robust multi-objective lead time control 
problem 
 
In order to achieve a robust answer for multi-
objective lead time control problem (MOLTCP), 
robust multi-objective lead time control problem 
(RMOLTCP) are presented with the use of two 
robust optimization approaches. 
 
5.1 Robust model for interval uncertainty 
 
Assume that wastes in independent stochastic 

variables servicing stations m
~

which have symmetric 

distribution in theinterval  mmmm  ˆ,ˆ  . m
 
is a 

set  of  machines  relating  to  machine  m   where 

~  is indefinite. 

 
Therefore, we can show wastes in each station 
as follows: 
 

mmmm  ˆ~
 11  m m                       (21) 

 

Where, m  
is stochastic variable between -1 and 

+1 which shows data fluctuations. In this case, all 
elements of ξ vector can change in interval [-1,1] 
which is called an interval uncertainty model. This 
robust optimization method in linear programming 
was presented for the first time by Soyster (1973). 
Since this method optimizes the worst state, it is 
regarded as conservative method. In this method, 
it is assumed that the worst state occurs for all 
indefinite parameters On the other hand, it takes 

the minimum value in the studied problem of m
~

. 

In this regard, input rate of each station increases, 
which changes the stability of queue system and 
average values and variance by changing )(kP . 
Since we want to optimize the worst state, 

therefore, the value of m  is defined as follows: 
 

,ˆ),(



mn

nmmm nmO                      (22) 

 
The MOLTCP problem solution is modeled with 
use of relations (20) and (22). 
 min .ݏ  ܼ                 ∑               :ݐ (௜ߤ)௜ܥ ≤ ܾଵ,௡௜ୀଵ   ∑ )ݐ∆݇ ଵܲ(݇ + 1) − ଵܲ(݇) − ଶܼ௞ିଵ௞ୀ଴ܥ ≤ ܾଶ,                   
     ∑ )ݐ∆݇) ଵܲ(݇ + 1) − ଵܲ(݇))௞ିଵ௞ୀ଴ − ൣ∑ ൫ݐ∆݇ ଵܲ(݇ +௞ିଵ௞ୀ଴1−ܲ1݇2−3ܾ≥3ܼܥ,                    ܲ(݇ + 1) =ܲ(݇) +ൣܳ(݅, ݆)            ,1−݇ ,…,0,1=݇    ,ݐ∆݆݇ܲ݊∅(݊,݉)ܱ݉,݆,݅ݍ݆݊݉,݅ߛܳ+
         ௜ܲ(0) = 0,                       ݅ = 1,2, … , ܰ − 1,                     ேܲ(݇) = 1                        ݇ = 0,1, … , ݇,                    ௜ܲ(݇) ≤ 1,                        ݅ = 1,2, … , ܰ − 1, ݇ =0,1, … , ௠ߤ                    ,݇ ≥ ߣ + ௠ߛ + ∑ ܱ(݉. ݊)∅෡݊௡ஷ௠ ,                      ݉ ∈    ,ܤ
௠ߤ                   ≥  0,                              ݉ ∈ ௠ߤ                   ,ܥ = ∑ ݉         ௠௝ݕ௠௝ߙ = 1,2, … , ௌ೔|௝ୀଵ|ܯ ,                    ∑ ௠௝ݕ = 1,|ௌ೔|௝ୀଵ                     ݉ = 1,2, … , ,(ݐ)ܲ                    ,ܯ ܼ ≥ 0.                                                               

(23)
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This method, which is the most conservative robust 
optimization method is very simple and meta-
heuristic methods can be used for solving MOLTCP 
problema. But since you have assumed the worst 
state, it decease value of the target function. A 
robust optimization method of which conservative 
rate is adjusted is explained for MOLTCP problem. 
(Dalfard, 2014), (Kaveh et.al, 2014). 
 
5.2 Robust optimization with use of budget 
uncertainty model 
 
Many efforts have been done to remove defect of 
Soyster’s method which acts conservatively. Ben-
Tal and Nemirovski (1998,1999, 2000), El-Ghaoui 
and Lebret (1997) and El-Ghaouiet.al (1998) 
presented methods for solving this case. But his 
suggested methods have some disadvantages 
which make the robustness problem and 
inapplicability of optimization problems difficult with 
discrete variables. 
 
For discrete problems, Kouvelis, and Yu (1997) 
presented a robust discrete optimization 
framework which seeks to find the answer for 
minimizing performance of the worst state under a 
series of scenarios for the parameters. 
 
Unfortunately, robust peers of many discrete 
optimization problems which can be solved in 
polynomial time are converted to NP-Hard 
problems. Bertsimas and Sym (2002, 2004) 
presented a robust optimization method for linear 
programming problems of which conservative rate 
can be adjusted and doesn’t increase the difficulty 
of the problem.  One of the advantages of this 
method is its applicability to discrete optimization 
of problems and mixed optimization ones. A 
method, in which this uncertainty is budgetary, is 

assuming that the maximum number of m  varies 

between rates of m machine wastes. Parameter   
is called protection level and is a nonnegative 
integer smaller than or equal to the number of 
indefinite parameters relating to the wastes. When 
it changes by maximum number of  , robust 
optimal answers will be obtained and will remain 
optimal. Method, in which this is an approximation 
of the robust optimization with interval uncertainty, 
it is assumed that: 
 

mmmm  ˆ~


m
m

mm   ,                            (24) 

We will have the following model by applying this 
method on MOLTCP problem. 
 min .ݏ  ܼ           ∑        :ݐ (௜ߤ)௜ܥ ≤ ܾଵ,௡௜ୀଵ   ∑ )ݐ∆݇ ଵܲ(݇ + 1) − ଵܲ(݇) − ଶܼ௞ିଵ௞ୀ଴ܥ ≤ ܾଶ,                 ∑ )ݐ∆݇) ଵܲ(݇ + 1) − ଵܲ(݇))௞ିଵ௞ୀ଴ − ൣ∑ ൫ݐ∆݇ ଵܲ(݇ +௞ିଵ௞ୀ଴1−ܲ1݇2−3ܾ≥3ܼܥ,              ܲ(݇ + 1) =ܲ(݇) +ൣܳ(݅, ݆)               ,1−݇ ,…,0,1=݇    ,ݐ∆݆݇ܲ݊∅(݊,݉)ܱ݉,݆,݅ݍ݆݉,݅ߛܳ+

௜ܲ(0) = 0,                       ݅ = 1,2, … , ܰ − 1,               ேܲ(݇) = 1                        ݇ = 0,1, … , ݇,              ௜ܲ(݇) ≤ 1,                        ݅ = 1,2, … , ܰ − 1, ݇ =0,1, … , ௠ߤ              ,݇ ≥ ߣ − ௠ߛ + ݉                      ,௠(Γ௠)ߚ ∈ ௠ߤ               ,ܤ ≥  0,                              ݉ ∈ ௠ߤ             ,ܥ = ∑ ݉         ௠௝ݕ௠௝ߙ = 1,2, … , ௌ೔|௝ୀଵ|ܯ ,              ∑ ௠௝ݕ = 1,|ௌ೔|௝ୀଵ                     ݉ = 1,2, … , ௠(Γ௠)ߚ              ,ܯ = ௠ܮ} ∪ ௠ܮ|{௠ݐ} ⊂ Φ௠, ۂ௠ܮہ = Γ௠, ௠ݐ ∈Φ௠\ܮ௠}ൣ∑ ܱ(݉, ݊)∅ + (Γ௠ − ௡∈௅೘ۂΓ௠ہ )ܱ(݉,    ௠)∅௧൧ݐ
,(ݐ)ܲ            ܼ ≥ 0.               
                                                                           (25) 
 
We can show that the introduced model in set of 
relations (25) is equivalent to the following 
model: 
 min .ݏ  ܼ      ∑  :ݐ (௜ߤ)௜ܥ ≤ ܾଵ,௡௜ୀଵ   ∑ )ݐ∆݇ ଵܲ(݇ + 1) − ଵܲ(݇) − ଶܼ௞ିଵ௞ୀ଴ܥ ≤ ܾଶ,           ∑ )ଶ(ݐ∆݇) ଵܲ(݇ + 1) − ଵܲ(݇))௞ିଵ௞ୀ଴ − ൣ∑ ൫ݐ∆݇ ଵܲ(݇ + 1) −௞ିଵ௞ୀ଴ܲ1݇2−3ܾ≥3ܼܥ,         ܲ(݇ + 1) =ܲ(݇) + ∑ ൣܳ(݅, ݆) + ܳఊ(݅, ݆) − ∑ ,݅)ݍ) ݆, ݉)[Γ௠ݓ௠ +௡௝݊∈Ψ݉߬݉݊])݆ܲ݇∆1−݇ ,…,0,1=݇  ,ݐ,         ௜ܲ(0) = 0,                       ݅ = 1,2, … , ܰ − 1,          ேܲ(݇) = 1                        ݇ = 0,1, … , ݇,         ௜ܲ(݇) ≤ 1,                        ݅ = 1,2, … , ܰ − 1, ݇ = 0,1, … , ௠ߤ         ,݇ ≥ ߣ − ௠ߛ + Γ௠ݓ௠ + ∑ ߬௠௡௡∈ஏ೘ ,                      ݉ ∈ ௠ߤ          ,ܤ ≥  0,                              ݉ ∈ ௠ߤ        ,ܥ = ∑ ௠௝ݕ = 1         ݉ = 1,2, … , ௌ೙|௝ୀூ|ܯ ,         ∑ ௠௝ݕ = 1,|ௌ೙|௝ୀூ                     ݉ = 1,2, … , ௠ݓ         ,ܯ + ߬௠௡ ≥ ܱ(݉, ,(ݐ)ܲ         ,݊∅(݊ ܼ, ,௠ݓ ߬௠௡ ≥ 0.          
                                                                           (26) 
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With regard to constraints and variables to be 
added, the number of the added variables and 
constrains in model (26) will be equal LmL ,

 in 

comparison to the model (20) which is 
 





M

m
mL

1

 

 
5.2.1 Proof 
 

For mmm  ),(  equals to the optimal answer 
obtained from the following model. 
 

     n    ,1   0          

                                                     

m

     :.

m

n)O(m,     max

m

m

n

n

n










mn

mn

mn

Z

Zts

Z

                          (27) 
 
Combination of model (7) is as follows: 
 

     n      0, ,w          
                                                   
 n)O(m,       w:.

m

 w    min

mm

nmm

n

mm





 


mn

mn

ts







                                          (28)
 

 

Since, )( mm   is equal to optimal answer (27) 

and it equals to answer (28), therefore, 
equivalence of model (25) and (26) is obtained. 
 
6. Experimental results: 
 
For a numerical study of the problem, assume a 
dynamic assembly system in figure 1 in which 
speed of demand for each product unit equals to 
15 per day and assume that all service stations 
follow queue system M/M/1 . 
 

 
 

Figure 1. Dynamic assembly system queue network. 
 
 

Characteristics of servicing stations include 
function relating to calculation of each unit cost in 
Rials and set of selectable capacities for each 
servicing station are given in table 1. 
 
Stochastic process of  0),( ttX  which relates to 

analysis of the longest route of the stochastic 
network has 38 expressions which are as follows: 
 
 ),(),12(),11(),10,9(),...,6,1(),4,1(),2,1( *   

 
The ideal goal for operational costs of the system 
per day is b1=890 Rls,b2=2.3 days, and b3=0.03 
squared days for average and variance of lead 
time. With regard to the fact that a day of deviation 
from average lead time is 100 times more 
important than one Rial difference in total 
operational expenses of the system and is as 
important as one squared day of difference from 
the lead time variance. Then values cj will be 
c1=0.9804 and c2=c3=0.0098. Other values of 
parameters will be 0.05.  and  25,334.0  kt   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Servicing 

station 

 
Selectable capacities 

)( iiC  

Station 1  18,17,16,151  86 1  

Station 2  19,18,17,162  52 2  

Station 3  16,15,14,133  63 3  

Station 4  17,16,15,144  410 4  

Station 5  15,14,13,125  68 5  

Station 6  16,15,14,136  15 6  

Station 7  14,13,12,117  37 7  

Station 8  15,14,13,128  42 2
8  

Station 9  13,12,11,109  54 9  

Station 10  14,13,12,1110  75 10  

Station 11  14,13,12,1111  22
11  

Station 12  12,11,10,912  92 12  

 
Table 1- Characteristics of servicing stations.
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Table 2 shows wastes of servicing stations. Figure 
2 shows queue network equivalent stochastic 
network presented in figure 1 of which edges are 
independent of each other and have been 
distributed exponentially. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Dynamic assembly system stochastic network. 
 

Table 3 shows optimal servicing speeds or *  for 
12,...,2,1i  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4 shows lead time distribution function in the 
production system at tk and 25,...,2,1k  

 

 
 

Table 4. Lead time distribution  
function in production system. 

 
Now, it is assumed that changes of wastes in each 

station )ˆ( m  equals to the rate given in table 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With regard to the specified values for 
parameters, results obtained from robust 
optimization for total cost of system in one day, 
average lead time, lead time variance are as 
follows and average servicing rate in stations 
(optimal speeds) is based on table 7. 
 

0.564Var(T)           5.134E(T)              1479 C  

 
With regard to Bertsimas and Sym (2004) and with 

regard to what is given in table 5, value of m  is 

based on table 6. 
 
At the end, minimum operational cost of the 
production system per day, average minimum and 
minimum lead time variance are obtained as follows: 
 

0.648Var(T)           561.4E(T)             1275 C  

 
 

Station m 

1 2  
2 1.5 
3 0.8 
4 1.5 
5 1.2 
6 0.5 
7 0.5 
8 0.5 
9 0.5 

10 0.5 
11 1 
12 0 

 
Table 2. Wastes of servicing stations.

Station 
* 

1 17  
2 17 
3 15 
4 15 
5 14 
6 14 
7 13 
8 13 
9 12 

10 12 
11 12 
12 11 

 
Table 3. Optimal speeds of servicing stations. 

Station m̂ 

1 0.4  
2 0.45 
3 0.08 
4 0.45 
5 0.42 
6 0.075 
7 0.1 
8 0.1 
9 0.075 

10 0.125 
11 0.03 
12 0 

 
Table 5. Changes of wastes  

of servicing stations. 
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As observed definite answer, average servicing 
rate is higher than the results obtained from 
definite model and production cost and average 
lead time increase and their variance decreases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Conclusion 
 
In this article, a new multi-objective model has 
been suggested with regard to irreversible wastes 
in an indefinite state for optimal control of servicing 
speeds of production and assembly operations in a 
multiphase assembly system. The average lead 
time and variance and total operational costs of the 
system are minimized in each period. In this 
model, wastes are regarded as defining element in 
the system. Then two robust optimization methods 
are used for including uncertainty in the related 

parameters. It is difficult to solve problem in 
continuous state. Therefore, the problem is solved 
through estimation and by making continuous time 
system discrete and converting optimal control 
problem to an equivalent nonlinear programming. 
The limitation of this model is that the number of 
variables and constraints of multi-objective 
nonlinear programming increases exponentially 
with increase of network size. Methodology can be 
expanded in the following fields: 
 
Using Mont Carlo simulation for analyzing the 
effect of non-exponential inputs on times of 
operation, transportation and their related wastes. 
 
One interactional method such as the surrogate 
worth trade off method, STEM or SEMOPS can be 
applied for solving robust multi-objective lead time 
control problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Station m 

1 0  

2 0  
3 1 
4 1 
5 2 
6 1 
7 2 
8 1 
9 3 

10 2 
11 3 
12 3 

 
Table 6. Conservation level in stations. 

Station  
1 17 
2 17 
3 15 
4 15 
5 15 
6 16 
7 16 
8 15 
9 15 

10 15 
11 13 
12 13 

 
Table 7. Robust optimal  

speeds of servicing stations. 

*
m
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