

Vol. 12, October 2014 908

An Implementation of the Task Algebra, a Formal Specification for the
Task Model in the Discovery Method

C.A. Fernández-Fernández*1 and A.J.H. Simons2

1 Instituto de Computación
Universidad Tecnológica de la Mixteca
Huajuapan de León, Oax., México
*caff@mixteco.utm.mx
2 Department of Computer Science
The University of Sheffield
Sheffield, South Yorkshire, United Kingdom

ABSTRACT
This paper describes an implementation of the Task Algebra, a formal model of hierarchical tasks and workflows, in
the Haskell programming language. Previously we presented the Task Algebra as a formal, unambiguous notation
capturing the kinds of activity and workflow typically seen in business analysis diagrams, similar to UML use case and
activity diagrams. Here, we show how the abstract syntax for the Task Algebra may be parsed and then semantically
analysed, by a suite of Haskell functions, to compute the execution traces of a system. The approach is illustrated
with a case study of a journal management system. The results show how it is possible to automate the semantic
analysis of requirements diagrams, as a precursor to developing a logical design.

Keywords: software modeling, formal specification, lightweight formal methods.

1. Introduction

There has been a steady take up in the use of
formal calculi for software construction over the
last 25 years [1], but mainly in academia. Although
there are some accounts of their use in industry
(basically in critical systems), the majority of
software houses in the “real world” have preferred
to use visual modelling as a kind of “semi-formal”
representation of software.

A method is considered formal if it has well-defined
mathematical basis. Formal methods provide a
syntactic domain (i.e., the notation or set of
symbols for use in the method), a semantic domain
(like its universe of objects), and a set of precise
rules defining how an object can satisfy a
specification [2]. In addition, a specification is a set
of sentences built using the notation of the
syntactic domain and it represents a subset of the
semantic domain.

Spivey says that formal methods are based on
mathematical notations and “they describe what
the system must do without saying how it is to be
done” [3], which applies to the non-constructive

approach only. Mathematical notations commonly
have three characteristics:

• conciseness - they represent complex facts of a
system in a brief space;

• precision - they can specify exactly everything
that is intended;

•_unambiguity - they do not admit multiple or
conflicting interpretations.

Essentially, a formal method can be applied to
support the development of software and
hardware. This paper shows the results the
implementation of a particular process algebra
using the Haskell language to build the kernel of
a framework. There are some implementations
of process algebras such as JACK [4], a Java
implementation of a process algebra, which is
offered as a Java extension package with CSP
operators embedded in the language; Foster [5]
describes a plug-in extension for Eclipse
translating BPEL4WS models to Finite State

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Journal of Applied Research and Technology 909

Process (FSP) algebra able to perform
equivalence verification process. We are
applying our particular process algebra, called
Task Algebra, to characterise the Task Flow
models in the Discovery Method. The advantage
is that this will allow software engineers to use
diagram-based design methods that have a
secure formal underpinning.

2. The task flow model

The Discovery Method is an object-oriented
methodology proposed formally in 1998 by Simons
[6]; it is considered by the author to be a method
focused mostly on the technical process. The
Discovery Method is organised into four phases;
Business Modelling, Object Modelling, System
Modelling, and Software Modelling. The Business
Modelling phase is task-oriented. A task is defined
in the Discovery Method as something that has the
specific sense of an activity carried out by
stakeholders that has a business purpose. This
task-based exploration will lead eventually towards
the two kinds of Task Diagrams: The Task
Structure and Task Flow Diagrams.

The business workflow is represented in the
Discovery Method using the Task Flow Diagram. It
depicts the order in which the tasks are realised in
the business, expressing also the logical
dependency between tasks. While the notation used
in the Discovery Method is largely based on the
Activity Diagram of UML, it maintains consistently
the labelled ellipse notations for tasks. Figure 1
shows the notation for the Task Flow Diagram.

Figure 1. Elements of the
Discovery’s Task Flow Diagram.

2.1 The Task Algebra for Task Flow Models

Even though Task Flow models could be
represented using one of the process algebras
described above, a particular algebra was defined
with the aim of having a clearer translation
between the graphical model and the algebra.
One of the main difficulties with applying an
existing process algebra was the notion that
processes consist of atomic steps, which can be
interleaved. This is not the case in the Task
Algebra, where even simple tasks have a non-
atomic duration and are therefore treated as
intervals, rather than atomic events.

A simple task in the Discovery Method [6], [7] is
the smallest unit of work with a business goal. A
simple task is the minimal representation of a task
in the model. A compound task can be formed by
either simple or compound tasks in combination
with operators defining the structure of the Task
Flow Model.

In addition to simple tasks and compound tasks,
the abstract syntax also requires the definition of
three instantaneous events. These may form part
of a compound task in the abstract syntax.

2.2 The Task Flow Metamodel

The basic elements of the abstract syntax are the
simple task, which is defined using a unique name
to distinguish from others;  representing the empty
activity; and the success  and failure  symbols,
representing a finished activity.

Simple and compound tasks are combined using
the operators that construct the structures allowed
in the Task Flow Model. The basic syntax
structures for the Task Flow Model are sequential
composition, selection, parallel composition,
repetition, and encapsulation:

•. Sequential composition defines the chronological
order of execution for a task or a group of tasks from
the left to the right and ‘;’ is used as the operator.

• Selection is represented with the symbol ‘+’ and it
means that there is a choice between the operands.

• Parallel composition defines the simultaneous
execution of the elements in the expression. It is
represented by the symbol ‘||’.

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Vol. 12, October 2014 910

•_Repetition allows the reiteration of an
expression in the form of an until-loop and while-
loop structure. It is represented using the x
fixpoint notation.

• Finally, encapsulation is used to group a set of
tasks and structures. This constructs a compound
task and is represented using curly brackets ‘{‘ ‘}’.

The abstract syntax has the following definition in
Backus Naur form:

Activity ::=  -- empty activity

|  -- succeed
|  -- fail

 | Task -- a single task
 | Activity ; Activity -- a sequence of activity
 | Activity + Activity -- a selection of activity

| Activity || Activity -- parallel activity
 | x.(Activity ;  + x) -- until-loop activity

| x.( + Activity ; x) --while-loop activity

Task::= Simple -- a simple task

| { Activity } -- encapsulated activity

A task can be either a simple or a compound
task. Compound tasks are defined between
brackets ‘{‘ and ‘}’, and this is also called
encapsulation because it introduces a different
context for the execution of the structure inside
it. Curly brackets are used in the abstract syntax
to represent diagrams and sub-diagrams but
also have implications for the semantics that will
be explained later. Also, parentheses can be
used to help comprehension or to change the
associativity of the expressions. Expressions
associate to the right by default.

2.3 Task Model Constructions

Just as the graphical structures of the Task Flow
Model can be composed, basic definitions in the
abstract syntax may form complex expressions. The
abstract syntax definition can be considered like a
Universal Algebra which, to accomplish an accurate
representation of the diagram syntax, has to be
limited by axioms. The abstract syntax definition and
its axioms form an Ideal or Quotient Algebra. Table
1 presents the set of constructions for the algebra.
More details of the axioms can be seen in [8], [9].

 Simple Task

sp.1

sp.2

 Sequential composition

s.1 a, b, c  Activity  a; (b; c)  (a; b); c associative sequence

s.2 a, b, c  Activity  (a + b); c  (a; c) + (b; c) right distributivity of sequence
over selection

s.3 a  Activity  a;   ; a  a empty sequence

s.4 fail on sequence

s.5 succeed on sequence

 Parallel composition

p.1 associative parallel composition

p.2 commutative composition

p.3

right distributivity of concurrency
over selection

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Journal of Applied Research and Technology 911

3. Task algebra implementation

The implementation for the task algebra was
developed in the Haskell language [10], which is a
lazy functional language based on lambda
calculus. The application in Haskell is a compiler
that transforms a task algebra expression and, if
the expression is correct, generates the
corresponding traces for the expression. The
process will be similar to a one-pass compiler [11].
Figure 2 shows the process for a task algebra
expression in the implementation to generate the
set of traces.

Figure 2. Structure of the Task Algebra implementation.

From the BNF definition for the task algebra
described in [8], [9], there are just a couple of
changes that have been made with the aim of

facilitating the analysis of the input string
representing an expression in the algebra:

Activity ::= Epsilon -- empty activity
 | Sigma --  succeed

| Phi --  fail
 | Task -- a single task
 | Activity ; Activity -- a sequence of activity
 | Activity + Activity -- a selection of activity
 | Activity || Activity -- parallel activity
 | Mu.x(Activity ; Epsilon + x)

 -- until-loop activity
| Mu.x(Epsilon + Activity ; x)

-- while-loop activity

Task::= Simple -- a simple task

| { Activity } -- encapsulated activity

Evidently, the Greek symbols used in the algebra
had to be converted into machine-readable tokens
in the Latin character set. Also, the Mu symbol
was separated from the variable x using a dot to

p.4 instant synchronisation

p.5 if a   instant failure

p.6 instant success

 Repetition

r.1 unrolling one cycle of until-loop
repetition

r.2 unrolling one cycle of while-loop
repetition

 Encapsulation

e.1 vacuous subtask

e.2 coincident exit

e.3 vacuous selection

e.4 promotion of fail

e.5 promotion of fail in sequence

e.6 promotion of fail in selection

Table 1. Task Algebra constructions.

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Vol. 12, October 2014 912

simplify their identification in the lexical analyser
(the bound expression is then contained in
parentheses). Table 2 shows the correspondence
between the expression written in the original
algebra syntax and the machine-readable syntax
for the Haskell application.

Additionally, the traces for the expression are
generated executing the function tr. For instance,
the execution of tr “a; Phi; c” creates the traces
for the expression a; Phi; c. Consequently, the
expressions depicted above have the following set
of traces, in which semantic tokens denote the
execution of corresponding syntactic tokens, apart
from “!”, which denotes the commit-action:

tr “a; Phi; c” {[a,Phi]}
tr “a + Epsilon + b” {[!],[!,a],[!,b]}
tr “a || b || Sigma” {[Sigma]}
tr “Mu.x(a ; Epsilon + x)” {[a,!],[a,!,a]}
tr “Mu.x(Epsilon + a ; x)” {[!],[!,a,!],[!,a,!,a]}

As can be seen, traces are produced following
the semantics defined in [9] with the exception of
the repetition structures. Traces for the until- and
while-loops are generated for a finite number of
cycles, setting an arbitrary maximum limit of two
repetitions for each loop. The while- and until-
loops show, as expected, different trace sets due
to the position of the condition (e.g., the trace [!]
is produced in the while-loop as a result of the
possibility of doing nothing). Minor differences in

the trace notation are the syntax for commit ‘!’
instead of ‘’, and the use of square brackets to
delimit traces as a substitute for the angle
brackets used originally. In addition, simple task
names should begin with a lowercase;
uppercase is reserved for compound tasks and
the algebra keywords.

The implementation takes a string as an input for
the expression in the algebra, which is translated
into the corresponding functions to generate the
resulting trace semantics. The parser was built
using the Happy parser generator for Haskell. In
addition, a simple hand-written lexical analyser
was built. Together, the parser and the lexical
analyser are responsible for linking each input sub-
expression to the appropriate constructor for the
corresponding Activity data type.

Model : Activity { $1 }
 | CompoundTask Model { Model
$1 $2 }

CompoundTask :

'let' taskName '='
Encapsulation { CompoundTask $2 $4 }

Encapsulation:

'{' Activity '}' { Task
(Encapsulation $2) }

Activity :

Activity ';' Activity {
Sequence $1 $3 }
 | Activity '+' Activity {
Selection $1 $3 }
 | Activity '||' Activity {
Parallel $1 $3 }

 -- Until-loop
 | 'Mu' '.' simple '(' Activity
';'
 'Epsilon' '+' simple ')' {
UntilLoop $5 (Simple $3) (Simple $9 }

 -- While-loop
 |'Mu' '.' simple '(' 'Epsilon'
'+' Activity';' simple ')' {
WhileLoop $7 (Simple $3) (Simple $9)}
 | '(' Activity ')' { Task
(Brackets $2) }

Task
Algebra

Task Algebra implementation

a; ; c a; Phi; c

a +  + b a + Epsilon + b

a || b ||  a || b || Sigma

x.(a ;  + x) Mu.x(a ; Epsilon + x)

x.( + a ; x) Mu.x(Epsilon + a ; x)

Table 2. Comparison between original
Task Algebra syntax and the Haskell

implementation.

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Journal of Applied Research and Technology 913

 | Encapsulation { $1 }
 | 'Epsilon' { Epsilon }
 | 'Phi' { Fail }
 | 'Sigma' { Succeed }
 | simple { Task (Simple
$1) }
 | taskName { Task
(Compound $1) }

The definition of the Activity data type is as follows:

-- Activity
data Activity
 = Epsilon
 | Fail
 | Succeed
 | Task Task
 | Sequence Activity Activity
 | Selection Activity Activity
 | Parallel Activity Activity
 | UntilLoop Activity Task Task
 | WhileLoop Activity Task

Task
 | CompoundTask String Activity
 | Model Activity Activity
 deriving (Eq, Ord)

Then, we define Show for each datatype defined in
order to see the syntactic structure. Subsequently,
we define the function trace for each datatype, to
be able to construct traces for any kind of
compound syntax. Finally, we define Show for
each kind of event defined for the set of traces, in
order to see the results.

The definition of the function trace is as follows:

trace :: Activity -> DataDictionary -
> SetOfTraces

where SetOfTraces is declared as a set of the Trace
type. Trace is declared as a list of Event elements:

type Trace = [Event]
type SetOfTraces = Set Trace

Event is a data type defining the trace elements:

data Event = Ident String | Phi |
Sigma | Commit
 deriving (Eq, Ord)

From here, the use of the function trace, by
pattern matching, calls the appropriate functions
implementing the semantics from [9]..For
example, for sequence composition the function
trace is called as follows:

trace (Sequence a b) dict

which is equal to:

trace a dict #* trace b dict

meaning that the trace of a sequence of a
followed by b is equal to the trace of a
concatenated with the trace of b, using the
concatenated product operation (#*). As defined
in [9], the concatenated product works over the
set of traces:

(#*) :: SetOfTraces -> SetOfTraces ->
SetOfTraces
setA #* setB
 | setA == empty = empty
 | setB == empty = empty
 | otherwise

= union (insert (findMin
setA # findMin setB)

 (singleton (findMin setA) #*
(difference setB (singleton (findMin
setB)))))
 ((difference setA (singleton
(findMin setA))) #* setB)

which uses the concatenation function to append
the traces. The semantic function for
concatenation of traces implemented in Haskell:

(#) :: Trace -> Trace -> Trace
[Sigma] # (item:rest) = [Sigma] #
rest
[Phi] # (item:rest)= [Phi] # rest
[Commit] # trace@(item:rest)
 | item == Commit = trace
 | otherwise = Commit : trace
(item:rest) # trace = item : (rest #
trace)
epsilon#trace = trace

The next section introduces a case study to show how
this implementation can be used.

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Vol. 12, October 2014 914

4. An electronic journal

An interesting case study was developed by
Adams [12] working with the Discovery Method for
modelling a web based electronic journal. The
study models an electronic journal, which is offered
free to all subscribers, where the authors submit
their articles and pay towards the costs of their
online publication by conducting peer reviews of
articles submitted by other authors.

There are four actor roles identified in the
system. Reader is the role denoting someone
who wants to browse the journal, read articles or
search for information in the journal. The role of
Author defines someone who wants to publish
his/her articles. The Reviewer is the role of an
author who is required to review other
unpublished papers with the aim of paying
towards the cost of publishing his/her own paper.
The last role is that of the Editor, the
administrator of the system. The editor role is
subdivided into a master editor and sub-editors,
who can be assigned their role by any master
editor. In the study, a Task Structure diagram is
developed for each of the four main roles,
describing the tasks they individually perform.

Here, we focus on the Task Flow analysis, which is
the part of the Discovery Method where Task Flow
Diagrams are constructed in order to determine the
workflows linking the identified tasks. For every
Task Structure Diagram in the case study, there is
a corresponding Task Flow Diagram, illustrating
the order in which the tasks are carried out for
each role. In general, Task Flow diagrams are
constructed from the viewpoint of the principal
users of a system.

Figure 3 shows the Task Flow Diagram for the
reader role. The diagram describes the choice the
reader has initially, to decide between reading
information about the journal, searching for an
article, or reading about content alerting before
subscribing to the content alerting service.

The diagram is formed by six tasks: Read Info on
Journal, Search for Article, Read Abstract,
Download Article, Read about Content Alerting,
and Register for Content Alerting. The first task is
clearly defined as a compound task, which is

formed by the subtasks Read Journal Aims, and
Read Submission Instructions.

The task algebra expression for the diagram from
Figure 3 should be as follows:

Mu.x(ReadInfoOnJournal; Epsilon+x)
+Mu.x((searchForArticle; Phi+readAbstract;
downloadArticle+Epsilon); Epsilon+x)
+(readAbourContentAlerting;
Epsilon+registerForContentAlerting)

Figure 3. Reader Task Flow Diagram.

Additionally, the compound task ReadInfo On
Journal can be defined like this:

let ReadInfo On Journal = {read Journal
Aims+read Submission Instructions}

In the trace semantics only simple tasks and
events are represented in the traces. The
compound task ReadInfo On Journal is
unpacked and its subtasks’ traces are spliced
into the system’s global traces, as defined by the
semantics. After the task algebra expression is
defined, it may be processed by the tr function to
generate the set of traces. For this case, 17
possible paths form the set of complete traces;
we are presenting here only partial results as an
example:

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Journal of Applied Research and Technology 915

{ [!,readAboutContentAlerting,!],
[!,readAboutContentAlerting,!,
registerForContentAlerting],
[!,readJournalAims,!],
...
[!,searchForArticle,!,readAbstract,!,
searchForArticle,!,Phi],
[!,searchForArticle,!,Phi] }

4.1 Author Task Flow Diagram

The role of Author is used for someone who wants
to publish his/her articles. It involves the options of
Read Instructions, Obtain Style, Complete
Restricted Task (such as Read Reviews or Check
Article Status), and Submit Article. Figure 4 shows
the Task Flow Diagram for the author role. All
tasks in the diagram are simple tasks with the
exception of Login, which is defined later.

The Task Algebra expression for the Author
diagram is represented as follows:

(readAuthorGuidelines; readReviewerGuidelines) +
viewStyleGuide + (Mu.x(Login; Epsilon + x);
(readReviews; obtainEditorsDecision;
submitReworkedArticle+Epsilon)+checkArticleStat
us) + (completeSubmissionEform;
obtainReviewerID)

Figure 4. Author Task Flow Diagram.

The compound task Login contemplates the
complete process for login into the system,
including the case when the user fails to remember
the password, with the possibility to activate a

password reminder. Figure 5 presents the Task
Flow diagram for this task. The resultant
expression in the task algebra is:

let Login = {(Phi + Epsilon + (requestPassword;
Epsilon + Phi)) }

The set of complete traces resulting from the task
algebra expression includes the task Login which,
as was mentioned above, manages the success
and failure cases of logging into the system by
entering the password. Because Login is in a cycle
to allow multiple opportunities to gain entry into the
system, an until-loop structure Mu.x(Login; Epsilon
+ x) is needed. The set of traces from Login is
unpacked within the set of traces in the general
expression to generate the complete set of traces
(27 possible paths); again, we are presenting here
only partial results as an example:

{[!,completeSubmissionEform,obtainRev
iewerID],
[!,enterPassword,!,checkArticleStatus
],
...
[!,requestPassword,!,enterPassword,!,
requestPassword,!,enterPassword,!,rea
dReviews,obtainEditorsDecision,!,subm
itReworkedArticle],
[!,requestPassword,!,enterPassword,!,
requestPassword,!,Phi],
[!,requestPassword,!,enterPassword,!,
Phi],
[!,requestPassword,!,Phi],
[!,viewStyleGuide],
[!,Phi]}

Figure 5. Login Task Flow Diagram.

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Vol. 12, October 2014 916

4.2 Reviewer Task Flow Diagram

The Reviewer role defines the behaviour in the
system for a user who wants to write a review of an
article or perform some related activity, such as
read an abstract in order to choose a paper, check
his/her payment status (authors “pay” by doing
reviews), or simply checking the guidelines for the
reviewers. Figure 6shows the Task Flow Diagram
for this role where, as for the previous role, Login is
the only compound task in this diagram. The flow for
Login is the same defined earlier in Figure 5.

Figure 6. Reviewer Task Flow Diagram.

In a similar manner to the section above, the
content of the Reviewer Task Flow Diagram may be
expressed directly in the syntax of the task algebra,
incorporating as unitary wholes any tasks that
encapsulate further flows, such as the Login task:

readReviewerGuidelines + (Mu.x(Login; Epsilon +
x); checkPaymentStatus + completeReviewForm +
(Mu.x((Mu.y(readAnAbstract; Epsilon+y);
selectPaper); Epsilon+x); confirmSelection;
receivePapers))

From applying the trace function to the task algebra
expression above, the set of complete traces is
obtained (34 paths), in which once again the
behaviour of the Login task is unpacked; we are
presenting here only partial results as an example:

{[!,enterPassword,!,checkPaymentStatus,
[!,enterPassword,!,completeReviewEform,

[!,enterPassword,!,enterPassword,!,ch
eckPaymentStatus],
[!,enterPassword,!,enterPassword,!,co
mpleteReviewEform],
[!,enterPassword,!,enterPassword,!,re
adAnAbstract,!,readAnAbstract,
selectPaper,!,confirmSelection,receiv
ePapers],
...
[!,requestPassword,!,enterPassword,!,
requestPassword,!,enterPassword,!,rea
dAnAbstract,!,selectPaper,!,readAnAbs
tract,!,selectPaper,
confirmSelection,receivePapers],
[!,requestPassword,!,enterPassword,!,
requestPassword,!,Phi],
[!,requestPassword,!,enterPassword,!,
Phi], [!,requestPassword,!,Phi],
[!,Phi]}

4.3 Editor Task Flow Diagram

The Editor role’s behaviour is specified inFigure 7.
As can be seen, an editor is able to evaluate
articles and reviews, publish a new edition of the
journal, and even to assign sub-editor privileges.
The Task Flow Diagram shows the different tasks
involved for the execution of this role and, like the
other roles, but with the exception of the Reader
role, the compound task of Login is required. The
rest of the tasks used in this diagram are
considered simple tasks.

Figure 7. Editor Task Flow Diagram.

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Journal of Applied Research and Technology 917

The expression in the Task Algebra includes the
until-loop for the verification of the login before
carrying out the remaining tasks. After the editor
has logged in, s/he has to choose which of the
activities want to perform. The task algebra
expression is presented here:

Mu.x(Login; Epsilon+x); (assignEditorPrivileges
+ (obtainListFRArticles; selectFRArticle;
Phi + (approveArticle + referArtForCorrections +
rejectArticle)) + (obtainListReviews; selectReview;
approveReview + referReview) +
(obtainApprovedList; completePublication)

The many different executions of this Task Algebra
expression may be obtained by applying the tr
tracing function, which obtains the set formed by
53 traces; again, we are presenting here only
partial results as an example:

{[!,enterPassword,!,assignEditorPrivi
leges],
[!,enterPassword,!,enterPassword,!,as
signEditorPrivileges],
[!,enterPassword,!,enterPassword,!,ob
tainApprovedList,
completePublication],
...
[!,requestPassword,!,enterPassword,!,
requestPassword,!,enterPassword,!,obt
ainListReviews,selectReview,!,referRe
view],
[!,requestPassword,!,enterPassword,!,
requestPassword,!,Phi],
[!,requestPassword,!,enterPassword,!,
Phi],
[!,requestPassword,!,Phi],
[!,Phi]}

These examples show how it is possible to
express realistic Task Flow diagrams in the Task
Algebra and convert them to traces, illustrating the
possible executions of the diagrams. These traces
are potentially verifiable by equivalence checking
and model checking [13]. We think Flow Task
diagrams could potentially be used to create formal
models of a variety of applications (e.g., object-
oriented software [14], flow diagram of algorithms
as in [15]), depending of the use of flow diagrams;
whether its use represents an advantage or not is
a matter for future research.

5. Conclusions

The work presented in this paper extends the
earlier theoretical presentation of the Task Algebra
[8] by providing a reference implementation in the
Haskell programming language. Haskell was
chosen, because of the transparency with which
the algebra’s constructors and recursive tracing
function could be implemented in the functional
style. The capability of this implementation was
demonstrated using an extended case study
analysing tasks and workflow in a journal
management system, distributed over several task
diagrams and consisting of both simple and
compound tasks. The tracing function was shown
to produce all the complete traces of the system,
as a measure of the system’s behaviour. Such
traces may be used to answer questions about the
semantic properties of a system. For example, the
equivalence of two sets of traces may be used to
prove that two different ways of modularising a
system as a set of hierarchical diagrams actually
denote systems with the same behaviour; while
non-equivalence would reveal that they are in fact
different. A further use for the traces may be found
when checking for arbitrary temporal logic
properties of a system, by verifying LTL or CTL
theorems against the traces. This is the subject of
current and future work.

An Implementation of the Task Algebra, a Formal Specification for the Task Model in the Discovery Method, C.A. Fernández‐Fernández / 908‐918

Vol. 12, October 2014 918

References

[1] R. M. Hierons et al., “Using formal specifications to
support testing,” ACM Computing Surveys, vol. 41, no.
2, pp. 1–76, Feb. 2009.

[2] J. M. Wing, “A Specifier’s Introduction to Formal
Methods,” IEEE Computer, vol. 23, no. 9, pp. 8–24, 1990.

[3] J. M. Spivey, “An Introduction to Z and Formal
Specifications,” Software Engineering Journal IEEE, vol.
4, no. 1, pp. 40–50, 1989.

[4] L. Freitas, A. Cavalcanti, and A. Sampaio, “JACK: A
framework for process algebra implementation in Java,”
Proceedings of XVI Simpósio …, 2002.

[5] H. Foster and S. Uchitel, “Tool support for model-
based engineering of web service compositions,” Web
Services, 2005. …, 2005.

[6] A. J. H. Simons, “Object Discovery: a process for
developing medium-sized object-oriented applications,”
Tutorial 14, European Conf. Object-Oriented Prog.,
Brussels, no. 2, p. AITO/ACM, 116 pp, 1998.

[7] A. J. H. Simons, Discovery Method. Systems
Analysis and Design for Object-Oriented Applications.
COM3410 Course Notes, University of Sheffield., 2002.

[8] C. A. Fernandez-y-Fernandez and A. J. H. Simons,
“An Algebra to Represent Task Flow Models,”
International Journal of Computational Intelligence:
Theory and Practice, vol. 6, no. 2, pp. 63–74, 2011.

[9]-C. A. Fernandez-y-Fernandez, “The Abstract
Semantics of Tasks and Activity in the Discovery
Method, PhD Thesis, Department of Computer Science,”
The University of Sheffield, 2010.

[10] S. Thompson, Haskell : the craft of functional
programming, 2nd ed. Harlow, Eng. ; Reading, Mass.:
Addison Wesley, 1999.

[11] A. V Aho, Compilers : principles, techniques, and
tools, 2nd ed. Boston: Pearson Addison-Wesley, 2007.

[12] M. Adams, “A self resourcing web based electronic
journal, Bachelors Dissertation, Department of computer
Science,” University of Sheffield, 2002.

[13] D. Torres, J. Cortéz, and R. González, “Semi‐formal
specifications and formal verification improving the digital
design: some statistics,” Journal of Applied Research and
Technology, vol. 7, no. 1, pp. 15–40, 2009.

[14] G. Toledo-Ramírez, E. Kussul, and T. Baidyk, “Object
oriented software for micro work piece recognition in
microassembly,” Journal of Applied Research and
Technology, vol. 4, no. 1, pp. 59–74, 2006.

[15] R. Aquino-Santos, A. Gonzalez-Potes, V. Rangel-
Licea, M. Garcia-Ruiz, L. A. Villaseñor-Gonzalez, and A.
Edwards-Block, “Wireless communication protocol
based on EDF for wireless body sensor networks,”
Journal of Applied Research and Technology, vol. 6, no.
2, pp. 120–130, 2009.

