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Abstract: This work presents a novel technique for estimating the prestressing forces in simply 

supported beams with axial prestress force. The technique is based on the use of generic finite 

elements for modeling the beam and experimental time-domain response to simultaneously identify 

axial forces and generic parameters. Parameter updating is accomplished using a Simulated Annealing 

algorithm implemented for the solution of the prestress force identification problem. The effectiveness 

of the method was assessed in numerical simulations and was further verified on an experimental 

prestressed concrete beam. The results show that the inclusion of generic elements allows the 

identification of the force to be achieved even in the presence of errors in model parameters, thus 

eliminating the restraints of previous approaches. 
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Highlights 
 

• New method for indirect measurement of prestressing forces. 

• The beams are modeled with generic elements to reduce the number of variables. 

• The method was assessed in simulated studies and was further verified on an experimental beam. 

• The results show that the method allows the identification of the force even in the presence of errors 

 in model parameters. 
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1. Introduction 
 

1.1. Generic finite elements 

The Generic finite elements have been used in problems of 

finite element adjustment and the identification of 

parameters. Ahmadian and Jalali (2007) used generic finite 

elements to model bolted lap joints. Based on the minimum 

mathematical requirements, generic stiffness, mass and 

damping matrices were deduced; the identification of generic 

parameters was performed looking for the minimization 

between the Model's Frequency Response Function (FRF) and 

the measured FRF of a structure that contained an overlap 

joint. The results were satisfactory, and of particular interest is 

the fact that the possibility of deducing and employing generic 

damping matrices was explored. However, the minimum 

mathematical requirements for damping matrices are 

unknown and whatever is used, including that presented in 

Ahmadian and Jalali (2007), is not easy to justify. 

Ratcliffe and Lieven (2000) proposed a method of 

identifying general joints based on the use of generic elements 

and a scheme of minimization of differences in FRF of 

substructures and FRF of the complete structure. Damping 

identification was also carried out in this work, although it was 

not modeled with generic matrices. Titurus et al. (2003) 

proposed the use of generic elements for model fit-based 

damage identification; In their work, the authors show the 

effectiveness of generic matrices in executing model 

adjustments when using the inverse sensitivity method. Law et 

al. (2001) introduced the concept of Super Element, which 

consists of formulating hybrid elements composed of several 

individual elements and three-dimensional models of joints, 

specified through generic matrices to model stiffness; the 

effectiveness of the method was evaluated with the 

adjustment of a three-dimensional truss in the modal domain 

and it was concluded that the method works to obtain good 

predictions of low vibration modes. Terrell et al. (2007) 

proposed a method for obtaining substructures using generic 

matrices and constraints for the conservation of model 

connectivity, and illustrated the fitting process from a trial on 

an L-shaped structure, using their corner as a substructure. 
 

1.2. Prestress force identification 
Prestressing is often employed in civil structures such as 

bridges, tunnel linings, or other structures requiring long 

spans while keeping other dimensions comparably small. 

Prestressed concrete structures constitute effective solutions 

that optimize the use of materials and provide extended 

service life (Wang et al., 2017). Nevertheless, the cables and 

rods that apply the prestress lose tension over time due to 

steel relaxation and concrete deformations (Guo et al., 2018; 

Kim et al., 2017). This loss can cause serviceability problems 

and the collapse of the structure. Although losses are 

considered in the design of prestressed elements, the 

uncertainty associated with diminished tension is significant 

at any given time during the life of the structure. Therefore, the 

tension specified in the design is generally not suitable for 

structural evaluations.  

One approach for the identification of prestress forces is the 

use of dynamic response data from forced vibration tests. The 

technique uses a finite element model updating scheme that 

seeks to minimize a normalized difference between calculated 

and measured dynamic responses. The sensitivity of modal 

parameters to prestress variations has been studied by Abdel-

Jader and Glisic (2019), Breccolotti (2018), Bruggi et al. (2008), 

Dall'Asta and Dezi (1996), Hamed and Frostig (2004, 2006) and 

Saiidi et al., (1994). These studies show conflicting results as to 

whether natural frequencies increase or decrease with 

increasing prestressing forces. 

 Because the effect of prestress on modal parameters in 

beams is still controversial, some researchers have used time-

domain data to identify prestress values. Lu and Law (2007) 

formulated the dynamic response sensitivity to parameter 

changes and illustrated its use via simulations and laboratory 

tests. Lu and Law (2006) also presented a methodology to 

identify prestress forces from time-response data. Their 

method was based on the formulation of a linear inverse 

problem that uses the dynamic response sensitivity proposed 

by Lu and Law (2007) to construct the rectangular matrix of the 

model. The method was used to identify the stress in an axial 

cable in the absence of parameter uncertainty, which was 

guaranteed in the simulation and the experiment by updating 

the model before applying to prestress.  

Lu and Li (2008) proposed a similar procedure using the 

Timoshenko beam elements. The effect of the magnitude of 

the axial force on the effectiveness of the identification was 

studied, and it was concluded from simulations that the 

method is not sensitive to the axial force; however, an 

experimental verification was not provided. In a study by Velez 

et al. (2010), the use of generic finite elements and genetic 

algorithms to solve the force identification problem was 

explored. In that case, simulated studies showed that generic 

elements can be used to account for parametric uncertainty. 

Despite the ongoing discussion regarding the effect of 

prestress on natural frequencies, these have also been 

used as base data to identify prestress forces. In 

particular, Kim et al. (2004) presented a prestress 

identification method from measurements of 5 natural 

frequencies whose application is illustrated in a 

laboratory structure and computational models.  

Other authors have focused on predictions and monitoring 

of prestress losses as a strategy to evaluate the structural 

safety of prestressed elements. Xuan et al. (2009) considered a 

pre-stress loss monitoring technique based on fiber optic 

sensors. The operation of the system was tested in controlled 
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trials and the total losses in different periods were quantified. 

The authors concluded that the use of this pre-stress loss 

monitoring technique is viable in operating structures.  

Other works on prestress monitoring were developed by 

Sun et al. (2002), where a method for monitoring losses in 

nuclear containers is presented, and Anderson (2005), who 

showed the results of thirty years of continuous measurement 

of prestress in a nuclear container. 

For all the above, in this paper, a novel and robust method 

for identifying prestress forces in the presence of modal 

parameter errors is proposed to remove the limitations 

presented by the method of Lu and Law (2006) for the 

identification of prestressing force. The identification process 

is posed as an optimization problem that is solved using 

simulated annealing algorithms. The beams are modeled with 

generic elements to account for parameter uncertainty, and 

solutions are sought simultaneously for the parameter of the 

generic finite elements and the prestress force. The authors 

described first the methods based on the use of Simulated 

Annealing and generic finite elements to improve the 

identification of prestressing force and then presented the 

effectiveness of the strategy, which was evaluated through 

numerical simulations and experimental tests on a 

prestressed concrete beam. 

 

2..Materials and methods 

 

2.1. Simulated Annealing (SA) algorithms  
Annealing is a metallurgic process in which a metal is heated 

to high temperatures, inducing disturbances in the position of 

its atoms. If the subsequent cooling is sufficiently slow, the 

metal reaches a stable state and an ordered atomic structure. 

The numerical simulation of this process is known as 

Simulated Annealing (SA) and it is employed in Inverse 

Problems through random alterations of the decision 

variables (Inman et al., 2005).  

A significant number of possible states exist for atoms. Each 

state, s, has an associated energy E(s); if the system is under 

thermal equilibrium at a temperature T, the probability of the 

system being in an s state is defined by the Boltzman 

distribution 

 

P(s) =
e−E(s)/kT

∑ e−E(w)/kT
w∈S

                                                                               (1) 

 

where k is the Boltzman constant and S is the set of possible 

states. This property is exploited in the following manner in the 

Metropolis algorithm (Levin & Lieven, 1998): if the system is in 

the initial state, si, with energy E(si), the alteration of a 

randomly selected atom will produce a new state sj, with 

energy E(sj); the new state is accepted or rejected according to  

the Metropolis criterion: if E(sj) ≤ E(si), the new state is 

accepted; if the opposite is true, the probability of the new 

state being accepted is 

 

P(sj) = e−∆E/kT                                                                                                    (2) 

 

where although it is possible to improve the performance for 

axial force is the difference between states of current and 

former energy and k is the Boltzman constant, which may be 

taken as unity. The analogy between optimization and 

thermodynamics is defined as follows: the state of the system 

is the set of parametric values; energy is the target function; 

temperature is a control parameter in the process, and the 

minimum energy is the global minimum. In each iteration, the 

new state is generated by using a function that specifies new 

random states with respect to the initial state, and when the 

possible number of states is depleted, temperature is reduced 

according to a cooling chronogram (Spall, 2003). 

Details of the implementation of Simulated Annealing (SA) 

algorithms vary significantly depending on the specific 

problem, and the performance of the algorithm depend on the 

characteristics or specific values of the initial temperature, the 

cooling sequence, the transition function, and the stopping 

criteria. The initial temperature, To, must be selected in such a 

way that the search is not blocked during the first iterations; if 

it is too high, too many states will be accepted in each 

transition and the process will be similar to a random search, 

and if it is too low, the solution can stall at a local minimum. 

The current research studied three initial possible 

temperatures. The cooling sequence characteristic of the 

Metropolis algorithm contemplates reduction of temperature 

after the number of available transitions has been depleted or 

the system has reached a thermal equilibrium. For the purpose 

of this work, temperature was reduced according to the 

scheme Ti = αTo, with α = 0.85. 

Different alternatives exist to define the transition function. 

In each iteration, the new state or parameter value can be 

defined by adding a random increment to one or more 

parameters at the same time. The new state can also be 

defined, through random or deterministic selection of a new 

value for a parameter in each transition, or by adding 

disturbances according to points on a fixed-radius hyper 

sphere (Spall, 2003).  

In this work, random selection of a vector of parameters in 

the specific search space was used. Regarding the stopping 

criteria, the algorithm may be halted according to a specified 

number of iterations or to some tolerance criterion. The current 

study employed the freezing criterion, specified here as the 

temperature at which 90% of the transitions are rejected. 

An additional aspect that must be considered in the 

definition of SA algorithms is the valid range of values for the  
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parameters. In general, as the range broadens, solving the 

identification problem becomes more difficult. When 

identifying prestress, it is possible to define reasonable ranges 

that significantly reduce the search space. For instance, a range 

can be defined for the axial force according to one of four 

criteria: i) knowledge of the axial force specified in the design, 

ii) knowledge of the number and diameter of the strands, iii) 

estimation of the minimum required stress in the beam 

according to its dimensions, and iv) estimation of the beam’s 

elastic critical buckling load. The first alternative may reduce 

the number of iterations significantly. The second permits 

estimating the maximum stress that could have been applied 

to the beam according to the nominal resistance of the strands, 

which is more or less standard. The third alternative implies the 

execution of a structural analysis of the element and can 

provide a good initial approximation at the lower limit. As to the 

fourth alternative, it may provide a good estimate of the 

maximum feasible force in the case of slender members. The 

generic parameters can be restricted according to numerical 

considerations or to the values known for different types of 

conventional finite elements. For example, the 𝑣1 parameter 

equals 48 to describe Euler, Timoshenko, and Hughes beams, 

while for the same beams, the 𝑣2 parameter equals 192β, 

where the constant is a function of geometric parameters and 

shear effects on stiffness (Gladwell & Ahmadian, 1995). 

Regarding damping, the range may be specified based on 

engineering judgment or on experimental data published from 

measurements on similar structures.  

The simulations and the experimental process were 

executed by combining the criteria of maximum stress on steel 

and minimum stress required by the system. The SA algorithm 

implemented in MATLAB@ seeks to minimize the function  

 

𝐸(𝑠) = ∑ (�̈�𝑒𝑥𝑝 −𝑚
𝑖=1 �̈�(𝑠)𝑎𝑛)𝑖

2 + (𝜔𝑒𝑥𝑝 − 𝜔(𝑠)𝑎𝑛)
2

           (3) 

 

In which �̈� and ω denote the acceleration and natural 

frequency of the beam, respectively and the sub-indices exp 

and an denote experimental (measured) and analytical 

(estimated), respectively. Only the frequency from the first 

vibration mode was included. The system response for each 

iteration was obtained using the Newmark mean acceleration 

method for each mode of interest and then calculating the 

overall response by modal superposition. For the beam model, 

it was observed that the inclusion of two modes was sufficient 

to produce accurate results.  For simulations, as well as for the 

experimental procedure, the search space restraint approach 

was employed. Hence, the minimum required force was taken 

to be the force required for the beam to withstand its own 

weight, and that the initial prestressing force was assumed to  

 

 

 

be known. For the experimental procedure, the assumption 

was made that the axial force had a loss of 20%, which is a 

reasonable approximation of the initial losses in a prestressed 

beam. Additionally, the 𝑣1 generic parameter was taken to be 

a constant value of 48, as in several types of known beams, 𝑣1 

is defined with this value, so that it may be left fixed and 

damping can be included in the identification problem without 

increasing the number of parameters. A similar reasoning was 

employed by Ahmadian and Jalali (2007) to identify joints.  

 

2.2. Generic finite elements 
Generic finite elements were formulated by Gladwell and 

Ahmadian (1995). The authors demonstrated that the mass 

and stiffness matrices obtained with the finite element 

method, for different types of elements, belong to a family of 

elements that can be represented by a single matrix. Generic 

element matrices can be deduced from any of the family 

members; that is, the mass and stiffness matrices of the Euler-

Bernoulli beam can be used, for example, to deduce the 

stiffness matrix of the generic beam, of which the Euler 

beams, Timoshenko, among others, are particular cases. The 

use of this type of element is particularly useful in inverse 

problems since the matrices are represented uniquely by few 

parameters, as long as the traditional physical parameters are 

defined with sufficient precision. After the formulation of 

generic finite elements, it was used in problems of finite 

element adjustment and identification of parameters. 

Generic finite elements are formulated from the following 

general characteristics of the mass and rigidity matrices 

(Gladwell & Ahmadian, 1995): 

 

•Motion is described by r degrees of freedom 

•M is symmetric and positive definite 

•The element has d rigid body modes (d<6). 

•K is positive semi-definite and symmetric, and its range is 

equal to r – d. 

 

Given that the prior characteristics are the only 

mathematical requirements for an element’s mass and 

stiffness matrices, these can be used to specify families of 

elements that fulfill these basic requirements.  

The free vibration of an element is governed by the 

Equation 

 
(K − λM)Ф = 0 

 

Where 

 

K = Kgen − Kgeom                                                                                (5) 
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The geometric stiffness matrix is written for the ith element 

of a beam as 
 

𝐊geom =
𝑇

30

𝑖

[
 
 
 
 

36

𝐿
3 −

36

𝐿
3

3 4𝐿 −3 −𝐿

−
36

𝐿
−3

36

𝐿
−3

3 −𝐿 −3 4𝐿]
 
 
 
 

                                                     (6) 

 

The Ti factor is the axial force applied to the ith 

element. In the present context, it represents the 

prestressing force.  

By modifying the eigenvalues λ and eigenvectors Φ 

from the eigenvalue problem (Eq. 4) in such a way that the 

basic requirements for mass and stiffness matrices are 

fulfilled, the generic finite element matrix for a beam is 

obtained as (Gladwell & Ahmadian, 1995). 
 

}𝐊gen =
𝑘0

16

[
 
 
 
 
 𝑣2

𝑣2

2
−𝑣2

𝑣2

2
𝑣2

2

𝑣1

3
+

𝑣2

4
−

𝑣2

2
−

𝑣1

3
+

𝑣2

4

−𝑣2 −
𝑣2

2
𝑣2 −

𝑣2

2
𝑣2

2
−

𝑣1

3
+

𝑣2

4
−

𝑣2

2

𝑣1

3
+

𝑣2

4 ]
 
 
 
 
 

                       (7) 

 

where ko = EI/L. Thus, E, I, and L parameters may be omitted 

in the solution of Inverse Problems, so that the beam depends 

only on two parameters, 𝑣1 and 𝑣2. As mentioned in Section 

2.1, Gladwell and Ahmadian (1995) showed that the various 

classical beam models are special cases of the generic beam. 

For instance, 𝑣1 = 48 to yields Euler, Timoshenko, and Hughes 

beams. For these beam types 𝑣2= 192β1, where the constant 

β1 is a function of geometric parameters and shear effects on 

stiffness. When generic beams are employed, the degrees of 

freedom of the element are 
 

𝐪 = [

𝛿1

𝐿𝜃1

𝛿2

𝐿𝜃2

]                                                                                                      (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and, consequently, the responses associated to the 

degrees of freedom 2 and 4 of the element must be divided by 

the length of the element to obtain rotation units. 

 
2.3. Experimental setup 

Fig 1 shows the setup used in the experimental study. The 

simply supported beam has dimensions (bxhxL) of 25 x 30 x 

395 cm, with a 5/8-inch tendon placed concentrically, 

without grouting, in a 1-inch duct. The beam was post-

tensioned to 196,133 N force using a hydraulic jack. The 

applied force was measured with a load cell installed 

between one of the anchorages and a steel plate provided 

to reduce stress concentrations (Fig 2). After removing the 

jack, the cell registered a value of 153,964.41 N.  

To obtain the initial modal properties of the system, a 

modal test was performed to measure the Frequency 

Response Function (FRF) of the beam and calculate the 

fundamental natural frequency and the modal damping 

associated to the first vibration mode. An initial sinusoidal 

sweep was carried out between 0 and 100 Hz at a rapid rate to 

find a fundamental resonant frequency. This was observed 

around 27 Hz and its identification was refined by 

consequently conducting a slower sweep between 26 and 29 

Hz. Through an analysis of the FRF it was established that 

the fundamental natural frequency was 27.68 Hz. The 

analysis was performed through the circle fit method 

(Ewins, 2002). According to the analysis, the equivalent 

viscous damping ratio of the first mode is 3.24%. The axial 

force was then reduced in a controlled way by gradually 

displacing a threaded mechanism that was installed between 

the beam and the tendon anchorage on the end opposite to 

that of the load cell (Fig 3).  A minimum value of 118, 268.20 N, 

according to the load cell reading, was achieved. The modal 

analysis process was repeated for a total of five different axial 

force values and insignificant variations in the natural 

frequency and the damping ratio were obtained. 
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Figure 1. Experimental Setup. 

 

 

 

 

 
 

Figure 2. Detail of the load installation. 



 
 

 

A. Cruz et al. / Journal of Applied Research and Technology 250-262 

 

Vol. 19, No. 3, June 2021  256  256 

 

 

3. Results and discussion 

 

3.1. Simulated Annealing (SA) algorithms  
The simulated structure is a simply supported, 20-m long 

beam, with a 25 cm x 30 cm cross-section, 3% damping for all 

modes, modeled with Euler-Bernoulli elements. The 

excitation is a sinusoidal force whose frequency is close to the 

beam’s first natural frequency. The beam’s mass and stiffness 

matrices were first assembled and used to calculate the first 

natural frequency using MATLAB’s built-in function for 

eigenvalues. The resulting natural frequency varies slightly 

depending on the prestress force. Therefore, excitation frequency 

was set at an arbitrary value of 28 Hz, and the resulting dynamic 

force applied to the simulated beam was P = 400 sin [2π(28)t] N. 

The response was obtained using the Newmark mean 

acceleration method for each mode of interest and then 

calculating the overall response by modal superposition 

(Chopra, 1995). The reference response for the simulations is 

vertical acceleration at 3 m from the left support. Since the 

simulated beam is an Euler-Bernoulli beam, its stiffness matrix 

is equivalent to having 𝑣1 = 48 and 𝑣2 = 192.  

The “model” is the beam itself but modeled with generic  

 

 

 

elements. For this beam, 𝑣1 is fixed at 48, and the identification 

procedure is carried out to calculate 𝑣2, the axial force, and the 

modal damping for the first mode.  

Table 1 shows the results of the simulations for three 

different forces in which an initial temperature of 50,000 was 

specified, along with 300 transitions, and 1,000 energy levels. 

It can be seen that as the force increases the identification of 

the parameters improves; this can be explained from the 

stiffness matrix expressed in Eq. 5, in which it is evident that 

the stiffness degrades as the force increases and therefore, the 

greater the pre-stress, the beam will be more flexible.   

Although the results of the simulation are promising, it must 

be understood that the associated computational cost is high 

and, therefore, it is justifiable to look for an alternative to 

achieve a faster solution. Consequently, the use of Adaptive 

Domain Restrictions is proposed to accelerate the 

convergence of the process. The strategy is to modify the 

lower limit of the search space each time the energy is 

reduced. The new lower limit is calculated from the state that 

produced energy reduction as 

 

 sinf = [𝑟1, 𝑟2,… , 𝑟𝑛] ∗ 𝑠𝑟 =  𝑅 ∗ 𝑠𝑟                       (9) 

 

 
 

 

 
 

Figure 3. Detail of the guide for the variation of the prestress force. 
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Table 1. Simulation results for three levels of prestress. 

 
 Target Force (kN) 

 1,000 8,000 10,000 

Axial Force Identified         

(kN) 

1,080 7,810 10,200 

Damping Identified   0.04 0.05 0.038 

𝑣2 168.71 180.01 188.46 

 

where vector R is a vector operator and the symbol "*" 

denotes one-to-one multiplication. The operator may be 

diverse; It can be an algebraic, binary, differential operator, 

among others. The question of what the form and content of 

the operator should be according to the specific problem is 

left open. In this work, however, an algebraic operator whose 

elements are equal to unity is used. Table 2 shows the simulation 

results to identify a force of 200,000 N. Except for the fourth 

experiment, all the results are between 1% and 10% of error, 

which shows the potential that the strategy has to improve the 

results while reducing the computational cost, since only 2 levels 

of Energy were used. However, it is required to investigate which 
operators can guarantee that the adaptive constraints do not 

produce solutions that imply an overestimation of the axial force. 
 

Table 2. Simulation results with Adaptive 

Constraints: P = 200,000 N. 
 

Experiment 

 1 2 3 4 5 
Axial 

Force 

Identified 

(N) 

213,890 189,500 222,180 248,680 203,900 

Damping 

Identified 

  0.051 0.033 0.048 0.033 0.041 

𝑣2 183.5 189.73 191.39 190.28 191.98 

 

3.2. Experimental identification of the prestress force 
Prior to identification, the initial finite element model was 

adjusted to minimize the initial error. Careful definition was 

exercised for the physical and geometric parameters, as well 

as for the finite element mesh size, and the following values 

were used: E = 24.5 x 10^9 N/m2, ρ = 2,400 kg/m3, and a 20-  

 

 

 

 

 

element mesh. The stiffness matrix was defined according to  

Eq. 5 and the mass was modeled with consistent matrices 

(derived from shape functions). The axial force was introduced 

by using the geometric stiffness matrix (Eq. 6).  

    Identification was performed by using the same scheme as 

used for the numerical simulations, i.e., seeking minimizing 

values for the 𝑣2 generic parameter, the axial force, and the 

equivalent viscous damping ratio, and specifying domain 

constraints. The search was conducted over the range of 

80,000-180,000 N for the axial force, 2-192 for 𝑣2, and 0.01-0.05 

for the damping ratio. The excitation used corresponded to 

the first two seconds of the sweeps used for identification. 

Three different initial temperature levels were evaluated to 

avoid solutions blocked at high temperatures or low 

temperatures. How was mention below it was assumed that 

the axial force had a loss of 20%, which is a reasonable 

approximation of the initial losses in a pre-stressed beam. 

Additionally, the 𝑣1 generic parameter was taken to be a 

constant value of 48, so that it may be left fixed and damping 

can be included in the identification problem without 

increasing the number of parameters. Tables 3 to 5 show the 

results of five identification runs for the 153,964.41 N force at 

temperatures of 5,000, 50,000, and 100,000. According to the 

results, the temperature at 50,000 presents lower dispersion 

and, hence, its results are considered most suitable to make 

decisions and draw conclusions.  
 

Table 3. Identification of 153,964.41 N force: To = 5,000. 

 

 Experiment 

 1 2 3 4 5 

Axial 

Force (N) 

        (N) 

156,750 153,120 156,670 152,960 155,570 

Damping 0.072 0.079 0.078 0.041 0.017 

      𝑣2 10.02 4.50 4.01 5.03 5.06 

 

Table 4. Identification of 153,964.41 N force: To = 50,000. 

 

 Experiment 

 1 2 3 4 5 

Axial 

Force (N) 

 

 

 

 

149,980 159,200 154,800 155,840 155,570 

Damping 0.053 0.048 0.018 0.033 0.051 

      𝑣2 5.03 4.05 4.03 4.07 4.85 
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Table 5. Identification of 153,964.41 N force: To = 100,000. 
 

 Experiment 

 1 2 3 4 5 

Axial Force  

      (N) 

158,050 159,130 157,780 159,810 155,070 

Damping 
0.052 0.05 0.05 0.043 0.028 

       𝑣2 9.81 20.15 5.04 7.03 4.57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 153,964.41 N axial force was identified with a 4.47% 

maximum error and a 1% minimum error (Tables 3 to 5). It is 

worth mentioning that the minimum error was an 

overestimation of the force, therefore this result should not be 

considered adequate from the point of view of structural 

safety. Nevertheless, the results are encouraging and show the 

potential effectiveness of the method. Fig 4 and Fig 5 show 

that the calculated responses after the identification process 

(dotted line) correspond adequately with the experimental 

results (continuous line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Experimental response and adjusted response – P = 153,964.41 N. 
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Damping was calculated with a 34.8% maximum error and 

a 1.7% minimum error. In this case, data dispersion was 

significant, as shown in Table 2. It is considered that damping 

was not successfully identified. Also, the 𝑣2 generic parameter 

shows a clear tendency to being well below the upper 

theoretical limit. This result can be physically interpreted as an 

indicator of the effect of the shear force on the stiffness of the 

beam. If 𝑣2 is defined as: 

 

𝑣2 =
192

(1+12𝛽)
                                                                                             (10) 

 

where 

 

𝛽 =
𝐶𝐸𝐼

𝐴𝐿𝑒
2𝐺

                                                                                                        (11) 

 

and C is a shape factor, the Timoshenko beam is obtained. 

In this case, the constant C can be interpreted as the effect of 

the reduced stiffness (see Discussion below). This shows how 

generic elements allow a greater degree of approximation in  

 

the inverse problem. Regardless of the interpretation given in 

terms of the type of element identified, the point is that 

reduced stiffness was observed, which would have been 

difficult to discern without recurring to arbitrary modifications 

of the physical parameters if the beam had been modeled with 

Euler-Bernoulli elements or another classic formulation. In 

other words, a model that produced a satisfactory fit was 

obtained, with physical, geometric, and kinematic parameters 

that have a reasonable physical interpretation, regardless of 

the value of the generic parameters. 

Tables 6 to 8 show the results of the identification of the 

118,268.20 N force. Again, the temperature at 50,000 produced 

results with lower dispersion. The identification results show 

that although greater difficulty was encountered in detecting 

the axial force, the values identified seem to be slightly greater 

or less than the desired value. Therefore, it can be assumed 

that with a greater number of experiments, the force could be 

approximated with a statistical treatment of the results from 

each experiment. Lu and Liu (2008) observed a similar 

phenomenon for low axial forces. 

 

Figure 5. Experimental response and adjusted response – P = 118,268.20 N. 
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Table 6. Identification of 118,268.20 N force: To = 5,000. 
 

 Experiment 

 1 2 3 4 5 

Axial 

Force (N) 

159,920 159,970 116,620 159,740 160,000 

Damping 0.012 0.025 0.052 0.047 0.035 

       𝑣2 3.4 2.81 4.55 1.98 4.78 

 
Table 7. Identification of 118,268.20 N force: To = 50,000. 

 

 Experiment 

 1 2 3 4 5 

Axial 

Force (N) 

158,110 149,170 109,390 125,481 130,581 

Damping 
0.031 0.045 0.042 0.051 0.039 

       𝑣2 2.57 2.31 2.56 2.89 2.52 

 
Table 8. Identification of 118,268.20 N force: To = 100,000. 

 

 Experiment 

 1 2 3 4 5 

Axial 

Force (N) 

159,950 136,060 137,660 159,970 132,580 

Damping 
0.048 0.055 0.015 0.032 0.039 

       𝑣2 3.87 4.27 2.59 10.74 20.52 

 

3.3. Discussion 
The simulation results provide several interesting 

observations. It is evident that a greater axial force yields 

better identification results. This is true for the model of Eq. 5, 

which in essence is a stability model in terms of stiffness. 

According to this model, an axial force limit exists that would 

completely nullify the stiffness, that is, a buckling critical load. 

However, experimental data reported in the literature and 

observed in the present research appear to show that an 

increase in the prestress force causes an increase in stiffness. 

It is clear that a gap in knowledge exists in this sense. From the 

perspective of static behavior, it is hard to argue with the fact 

that stiffness is reduced by second-order effects induced by an 

axial force, yet experimental evidence shows a tendency to the 

contrary. A possible explanation is that in practice the tendon 

comes into contact with the duct walls during motion and this 

causes an increase in the effective rigidity (Dall'Asta & Dezi, 

1996). This increased stiffness may also affect the identified 

generic values by tilting the results toward a stiffer behavior. 

This stiffening effect is plausible in the beam studied in the 

current work and in similar beams studied elsewhere because 

the ducts had diameters that were only slightly greater than 

those of the strands, which makes contact more likely.   

The Adaptive Constraints approach is a heuristic strategy 

that promises to improve the speed of SA algorithms. 

However, instructions that involve too many calculations 

should not be included to specify the R operator, as 

computational savings could be compromised. In this work, 

the binary operator without zeros was used, whose effect is 

simply to replace the initial lower limit with the new state in 

each transition that produces energy reduction. Although the 

axial force showed a tendency to overestimate with this 

approach, the results were more satisfactory in terms of 

computational cost and identification of generic parameters, 

although it is possible to improve the performance for axial 

force if its upper limit is known with precision. 

The fitting variables in the problem are continuous, and as 

discussed previously, in an application in which prestress 

needs to be identified with the method described above or 

with any other method that involves optimization, the analyst 

can specify constraints with physical justification. In fact, the 

linear methods presented in Lu and Law (2007) and Lu and Liu 

(2008) have an implicit constraint: the initial error must be 

small. In the opinion of the authors, these linear schemes 

cannot be effective if the initial errors are large, let alone when 

uncertainty exists in parameters different from the axial force.  

The values calculated for the generic parameter 𝑣2, are well 

below the values that correspond to the known beam models. 

However, the fact that it is below the value for Euler's beams - 

which seems to be the upper limit in the family of elements of 

four degrees of freedom - is consistent with what would be 

expected from a beam with the dimensions of the studied 

beam, that is, it behaves more like a shear beam. Besides, the 

purpose of the generic elements was fulfilled: that an 

adjustment of models is achieved respecting the logical values 

and with a clear sense of the parameters of the material, the 

cross-section, and the kinematic restrictions (supports). As for 

the damping, it cannot be stated that it was identified, but at 

least the values found in the different simulations were 

reasonable. 

 

4. Conclusions  
 

The SA algorithm was used to solve the problem of identifying 

prestress using dynamic response data in the presence of 

parameter uncertainty. The generic parameter 𝑣1 was held 

constant, as several beam finite elements have 𝑣1  = 48, while 

the value for 𝑣2 was allowed to vary, as it is a different value for 

all four degree of freedom beam elements. The damping ratio 

of the first mode was also allowed to vary. The use of domain 
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constraints was necessary, which were specified based on 

physically feasible values of the axial force. The performance 

of the algorithm was satisfactory, and the 153,964.41 N axial 

force was identified in the experimental setup with a maximum 

4.47% error. The 118,268.20 N axial force was not identified with 

precision; however, it is believed that with a greater number of 

runs it may be statistically estimated. The 𝑣2  generic parameter 

was identified between 4.03 and 5.03 when the axial force was of 

153,964.41 N, and between 2.31 and 2.89 for the 118,268.20 N axial 

force. These values show that if a traditional beam had been 

specified, the model could not have been fitted without resorting 

to arbitrary modifications of the physical parameters.  
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