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Abstract: A modified master-slave scheme to look for synchronization, based on a general 

combination of elastic and dissipative couplings, is presented. We focus on solutions according the 

scheme presented, illustrating the method we use, by employing the van der Pol and Duffing oscillators 

and analyzing three types of couplings. We find synchronization in the oscillators for large values of the 

coupling. Nevertheless, no synchronization exists for an elastic coupling, while for the dissipative 

coupling, we found partial synchronization. For the general combination we obtained complete 

synchronization. 
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1. Introduction 

 
Since the seminal work of Pecora and Carrol on 

synchronization Pecora and Carroll (1990), works on chaos 

that comprise diverse areas such as lasers, chemical reactions, 

electronic circuits, biological systems, among others. In 

particular, low-dimensionality systems have been of interest 

in order to understand the synchronization and chaotic 

behavior in nature. The most studied and representative 

systems are the Lorenz, Chua, Rössler, van der Pol and Duffing 

ones Chua et al. (1993), Ding and Yang (1996), Lee et al. (1998), 

Pastor-Díaz and López-Fraguas, (1995), Reick and Mosekilde, 

(1995), Yin and Dai (1998). 

The van der Pol and Duffing oscillators are the 

paradigmatic circuits to study chaos in systems of low-

dimensionality. The first gives a limit cycle and the last 

provides the prototype of a strange attractor. Studies focused 

on the van der Pol oscillator revel that it possess a rich 

dynamical structure, especially when the oscillator is forced. 

This system exhibits complex bifurcation structures with an 

important number of periodic states, a chaotic region and 

islands of periodic states, showing, in addition, transitions 

from chaos to stable states. The dynamics based on identical 

or distinct nonlinear oscillators presenting the same kind of 

attractors is still under study Dongmo et al. (2018), Kuznetsov 

and Roman (2009), López-Mancilla et al. (2019).  Nevertheless, 

the dynamics of these systems in states of different attractors 

is of current interest and it could give rise to important 

information. 

The control of chaos is concerned with using some 

designed control to modify the characteristics of a nonlinear 

system. A number of methods such as active control, adaptive 

control, optimal control and sliding mode control exist for the 

control of chaos in systems Chekan et al. (2017), Huang and 

Cao (2017), Pai (2020), Ye et al. (2018). Various kinds of 

synchronization play a very important role such as phase 

synchronization, anticipated synchronization, generalized 

synchronization, projective synchronization, complete 

synchronization, hybrid synchronization, anti-

synchronization, multimodal synchronization, forced 

synchronization, itinerary synchronization and hybrid 

function projective synchronization have been developed and 

are frequently used Anzo-Hernández et al. (2019), Campos et 

al. (2004), Gonzalez-Salas et al. (2008), Khan and Shikha (2017), 

Ouannas et al. (2017), Razminia and  Dumitru (2013), Yan and 

Li (2005). 

Some applications of the van der Pol and Duffing 

oscillators go from physics to biology, electronics, chemistry 

and many other fields. For instance, a possible application of 

synchronization in chaotic signal is to implement secure 

communication systems. Since chaotic signals are usually 

broadband, noise like, and difficult to predict the behavior and 

the information the systems transport. They can also be used 

for masking information bearing waveforms Lu et al. (2019), 

Murali and Lakshmanan (1993), Njah (2010). In robotics, the 

oscillators have been included to control joint hips and knees 

of human-like robots to ensure the mechanical system follows 

the right path. The generated signals can be used as reference 

trajectories for the feedback control Dutra (2003), Jasni and 

Shafie (2012). Other application is in artificial intelligence. In 

fact, the oscillators have shown usefulness to training neural 

network and recognition of chaotic systems Chaharborj et al. 

(2021), Mall and Chakraverty (2016). 

As far as the coupling between the van der Pol and Duffing 

oscillators is referred, we can mention three different 

couplings, namely: gyroscopic, dissipative, and elastic 

Chedjou et al. (2001, 2006), Kuznetsov et al. (2009), Siewe et al. 

(2010a), Uriostegui-Legorreta et al. (2021), Vicent and Kenfack 

(2008). Among the diverse ways of coupling, the most used are 

the elastic and dissipative ones Kengne et al. (2012; 2014). In a 

previous work Uriostegui-Legorreta et al. (2021), it is analyzed 

a different approach of synchronizing two distinct oscillators 

of low dimensionality, using the aforementioned couplings. 

In this work, we study and compare three types of 

couplings by using the van der Pol and Duffing systems: the 

elastic, the dissipative and a combination of both couplings 

Uriostegui-Legorreta et al. (2021). It is important to remark that 

the studies in the literature on this kind of synchronization are 

based only on one coupling. An outline of this work is as 

follows. In Sec. 2, it is briefly studied the features of the van der 

Pol and Duffing oscillators. In Sec. 3, we study and compare 

three types of couplings using the van der Pol and Duffing 

systems upon the master-slave configuration. In Sec. 4, some 

conclusions and an outlook are presented. 

 
2. The systems 

 
As a dynamical system, the van der Pol oscillator is one with 

nonlinear damping. The time evolution is governed by 

  

𝑥̈ − 𝜇(1 − 𝑥2)𝑥̇ +
𝑑𝑈2(𝑥)

𝑑𝑥
= 𝐴2 cos(𝜔2𝑡),               (1) 

 
where, as usual, the variable 𝑥 is real and denotes the position, 

𝑡 the time, and 𝜇 > 0 is a parameter that governs the 

nonlinearity and damping. The external forcing is given by the 

harmonic function, with amplitude 𝐴2 and frequency 𝜔2. We 

have defined the function 𝑈2(𝑥): 

 
𝑈2(𝑥) =

1

2
𝑥2,                 (2) 

 
as the van der Pol energy potential, which represents a simple well 

(see Fig. 1 (a)). The potential has a minimum located at 𝑥 = 0.  
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To express Equation (1) as a dynamical system and to analyze the 

fixed points, we set 𝑥̇ = 𝑢 and drop the forcing to obtain 
𝑥̇ = 𝑢,

𝑢̇ = 𝜇(1 − 𝑥2)𝑥̇ − 𝑥.                (3) 

We can observe from Equation (3) that the only fixed point 

is located at (𝑥 = 0, 𝑢 = 0). For the case when 𝐴2 = 0 the van 

der Pol system satisfies the Lienard theorem, giving a limit cycle 

in the phase space, around the origin. 

On the other hand, the Duffing oscillator is a nonlinear 

dynamical system governed by 

 

𝑦̈ + 𝛼𝑦̇ +
𝑑𝑈1(𝑦)

𝑑𝑦
= 𝐴1 cos(𝜔1𝑡),               (4) 

where 

 

𝑈1(𝑦) = −
1

2
𝑦2 +

1

4
𝜀𝑦4,                (5) 

 
and 𝛼 is positive and it denotes a dissipative parameter, 𝜀 is a 

positive constant that controls the nonlinearity of the system, 

and 𝐴1 is the amplitude of the external forcing, being 𝜔1 its fre- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quency. The potential  in  Equation  (5)  represents a double well 

shown in Fig. 1 (b). The local minima of this potential are in 𝑦 =

±
1

√𝜀
 and the local maximum is located at 𝑦 = 0. As a 

dynamical system the Duffing Equation in (4) (no forcing) can 

be cast as 
 
𝑦̇ = 𝑣,

𝑣̇ = −𝛼𝑣 + 𝑦 − 𝜀𝑦3.                (6) 

 

Here, we set 𝑦̇ = 𝑣. The fixed points for these systems are in the 

phase space at (𝑦 = 0, 𝑣 = 0) and(𝑦 = ±
1

√𝜀
, 𝑣 = 0). The first 

point at (𝑦 = 0, 𝑣 = 0) is a saddle point, while the others, 

depending on the parameter 𝛼, they can be stable or unstable 

points. For 𝛼 > 0 the points result stables, for the 𝛼 = 0 case, 

the resulting dynamics is of type center and for 𝛼 < 0 case, the 

points result unstable. When the damping is positive (𝛼 > 0), 

the trajectory of the system is stable spiral conversely, for a 

damping negative (𝛼 < 0), the trajectory is unstable spiral at 

the fixed points (𝑦 = ±
1

√𝜀
, 𝑣 = 0) in both cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

a)                    b) 

 

Figure 1. The potentials 𝑈2(𝑥) and 𝑈1(𝑦). (a) The potential corresponds to the van der Pol oscillator.  

(b) The Duffing oscillator (𝜀 = 1). 
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3. Master-slave synchronization 

 
In this section, three different couplings for the van der Pol and 

Duffing systems are studied and compared among themselves, 

namely: the elastic, the dissipative and the one that combines 

elastic and dissipative couplings employed by Uriostegui-

Legorreta et al. (2021). Let us stress that most of the research on 

synchronization is based on autonomous systems of three 

dimensions or higher Boccaletti et al. (2002), Pecora and  Carroll 

(2015), Zhang et al. (2009). Three of the most studied 

nonautonomous systems of low-dimensionality with forcing 

are the Duffing, van der Pol, Rayleigh and their variations, since 

much of the dynamical features embedded in the physical 

systems can be realized on these systems Chang (2017), Siewe 

et al. (2010b), Wang and Li (2015). One important implication is 

that a two-dimensional continuous dynamical system cannot 

give rise to strange attractors. In particular, chaotic behavior 

arises only in continuous dynamical systems of three 

dimensions or higher. Most of the research on synchronization 

is based on autonomous systems that satisfy the Poincaré-

Bendixson theorem. Nevertheless, let us stress that the van der 

Pol and Duffing oscillators being of two-dimensional, need an 

external forcing to present chaos. In general, the 

synchronization problem reduces to finding a suitable value of 

the coupling strength 𝐺, (denoted by 𝐺∗) being in the range 𝐺 ≥

𝐺∗ > 0, such that the master and slave systems synchronize. 

Thus, for a coupling strength 𝐺∗, when the complete 

synchronization is reached, the error function goes to zero: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim
𝑡→∞

|𝑦(𝑡) − 𝑥(𝑡)| = lim
𝑡→∞

|𝑣(𝑡) − 𝑢(𝑡)| = 0.              (7) 

 

When the system is in practical synchronization, for a 

certain value of 𝐺∗, the error functions satisfy 
 

lim
𝑡→∞

|𝑦(𝑡) − 𝑥(𝑡)| ≤ 𝛿,                                 (8) 

 

lim
𝑡→∞

|𝑣(𝑡) − 𝑢(𝑡)| ≤ 𝜏,                (9) 

 

for given positive values 𝛿, 𝜏 > 0 and arbitrary initial 

conditions. This definition is used, because, sometimes, the 

errors do not exactly converge to zero, but in practice we still 

can speak of synchronized systems. In some cases, it can be 

reached complete synchronization in a single state of the 

system while in the other, it can be only obtained practical or 

null synchronization. Partial synchronization is the 

phenomenon when, in a dynamical system, only part of the 

state variables synchronize and the others do not do. 

The dynamics for each oscillator under study is described 

by the Equations (1) and (4). The values of the parameters we 

use are as follows: 𝜇 = 0.8, 𝛼 = 0.3, 𝜀 = 1, 𝐴1 = 0.5, 𝜔1 =

1.3, 𝐴2 = 0.6 and 𝜔2 = 0.4. In Fig. 2 it is displayed the 

respective trajectories with the initial conditions 𝑥(0) = 0.8, 

𝑦(0) = 2, 𝑢(0) = 1 and 𝑣(0) = 0.5. Let us mention that the 

very same values of the parameters and the initial conditions 

will be used in the subsequent numerical simulations. The 

numerical simulations were achieved using the fourth order of 

the Runge–Kutta method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           

                                             a)              b) 

 
Figure 2. In (a) van der Pol oscillator described by Eq. (1). In (b) Duffing oscillator described by Eq. (4). 
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A modified master-slave scheme leading to synchronization 

even in the cases where the classical master-slave scheme fails, 

was considered by Uriostegui-Legorreta et al. (2021). The 

system analyzed in this reference can be separated into two 

parts (see Equations 10 and 11). In one side, the system 

combines a non-conventional coupling, where a linear 

feedback is made. The elastic coupling is proportional to the 

difference of the position, 𝐺1(𝑦 − 𝑥), which is introduced in 

the velocity of the slave system. The other part also uses 

another linear feedback proportional to the difference of the 

velocity (dissipative coupling), 𝐺2(𝑦 − 𝑥), introduced in the 

acceleration in the slave system. For the van der Pol and 

Duffing oscillators, the equations that govern the evolution are 

 

𝑀𝑎𝑠𝑡𝑒𝑟: {
𝑦̇ = 𝑣,

𝑣̇ = −𝛼𝑣 + 𝑦 − 𝜀𝑦3+𝐴1 cos(𝜔1𝑡),
             (10) 

 

𝑆𝑙𝑎𝑣𝑒: {
𝑥̇ = 𝑢 + 𝐺1(𝑦 − 𝑥),

𝑢̇ = 𝜇(1 − 𝑥2)𝑢 − 𝑥+𝐴2 cos(𝜔2𝑡) + 𝐺2(𝑣 − 𝑢).
(11) 

 

The errors 𝑒1 = 𝑦 − 𝑥  and 𝑒2 = 𝑣 − 𝑢, are determined by 

subtracting Equations (10) and (11), giving 

 
𝑒̇1 = 𝑦̇ − 𝑥̇ = 𝑣 − 𝑢 − 𝐺1𝑒2, 
𝑒2 = 𝑣 − 𝑢 = 𝑒̇1 + 𝐺1𝑒1, 
𝑒̇2 = 𝑣̇ − 𝑢̇ = −𝛼𝑣 + 𝑦 − 𝜀𝑦3+𝐴1 cos(𝜔1𝑡) 
      −𝜇(1 − 𝑥2)𝑢 + 𝑥−𝐴2 cos(𝜔2𝑡) − 𝐺2𝑒2.                           (12) 

 

The constant 𝐺1 corresponds to the elastic coupling and 𝐺2 to 

the dissipative coupling. Hence, 𝐺1(𝑦 − 𝑥) = 𝐺1(𝑒1) and 

𝐺2(𝑣 − 𝑢) = 𝐺2(𝑒̇1 + 𝐺1𝑒1), which manifest the dependence 

of 𝐺2 on the derivative of error and the coupling 

𝐺1, giving more information about the dynamical evolution of 

the system. For definiteness, let us express Equations (10) and 

(11) in matrix form for the case of two distinct couplings 

 

(
𝑦̇
𝑣̇

) = (
0 1
1 −𝛼

) (
𝑦
𝑣

) + (
0

−𝜀𝑦3) + (
0

𝐴1𝑐𝑜𝑠(𝜔1𝑡)),                  (13) 

 

(
𝑥̇
𝑢̇

) = (
0 1

−1 𝜇
) (

𝑥
𝑢

) + (
0

−𝜇𝑥2𝑢
) + (

0
𝐴2𝑐𝑜𝑠(𝜔2𝑡)) 

+ (
𝐺1𝑒1

𝐺2𝑒̇1 + 𝐺1𝐺2𝑒1
).                               (14) 

 
The first vectors in Equations (13) and (14) on the right-hand 

side contain the nonlinearity information of the system, while 

the second ones give the information on the external forcing. 

The last vector in (14) is the so-called control vector. Notice 

that the control depends on the error and its derivative. For the 

case 𝐺1 = 𝐺2 = 0 the system decouples. To study the 

dynamics of the system, we vary the couplings 𝐺1 and 𝐺2 

keeping one of them constant, while the other is varied. Let us 

consider the |𝑦(𝑡) − 𝑥(𝑡)| and |𝑣(𝑡) − 𝑢(𝑡)| error functions. 

We calculate |𝑦(𝑡) − 𝑥(𝑡)| keeping 𝐺2 = 100 and varying 𝐺1 

in small steps from 0 to 10 with a time interval from 5000 to 

6000. This time interval will be used in the calculations of the 

error functions for the three couplings used in this work. In a 

similar way, we obtain the error function |𝑣(𝑡) − 𝑢(𝑡)| with 

𝐺1 = 5 and varying 𝐺2 in small steps from 0 to 200. As it can be 

appreciated from Figs. 3 (a) and (b), we obtain complete 

synchronization, since the error functions go to zero as the 

value of 𝐺1 and 𝐺2 are increased. The plots of |𝑒1| and |𝑒2| as 

a function of 𝑡, for the values of 𝐺1 = 5  and 𝐺2 = 100, are 

depicted in Fig. 4. 

Let us now analyze the projections onto the (𝑥, 𝑦) and 

(𝑢, 𝑣) planes for values of 𝐺1 = 5 and 𝐺2 = 100. For this case, 

the Duffing oscillator is in a chaotic regime; the van der Pol 

oscillator is maintained as the slave system. In Figs. 5 (a) and 

(b) the behavior of the Duffing and van der Pol oscillators is 

shown, respectively, while in (c) and (d), it can be observed 

that complete synchronization is reached for these systems. 

For the configuration master-slave, in which the Duffing 

oscillator acts as master and the van der Pol as slave, we will 

analyze the elastic coupling. For this case, we have 

 

𝑀𝑎𝑠𝑡𝑒𝑟: {
𝑦̇ = 𝑣,

𝑣̇ = −𝛼𝑣 + 𝑦 − 𝜀𝑦3+𝐴1 cos(𝜔1𝑡),
             (15) 

 

𝑆𝑙𝑎𝑣𝑒: {
𝑥̇ = 𝑢,

𝑢̇ = 𝜇(1 − 𝑥2)𝑢 − 𝑥+𝐴2 cos(𝜔2𝑡) + 𝐾(𝑦 − 𝑥).
 (16) 

 
In this instance, the coupling is represented by 𝐾(𝑦 − 𝑥), 

being 𝐾 the coupling parameter to be varied. For the 𝐾 = 0 

case, the system decouples. The coupling is a lineal feedback 

to the slave oscillator proportional to the difference of the 

position. We are interested in studying how the dynamics of 

the system evolves as the constant coupling K is changed. 

Let us consider again the error functions  |𝑦(𝑡) − 𝑥(𝑡)| 

and |𝑣(𝑡) − 𝑢(𝑡)| by taking 𝐾 as a control parameter to be 

varied in small steps from 0 to 200. For our case, the error 

functions allow us to find the range of values for 𝐾 in which the 

synchronization is reached in the projections onto the (𝑥, 𝑦) 

and (𝑢, 𝑣) planes, as it can be shown in Figs. 6 (a) and (b). As it 

can be observed, no synchronization exists in this kind of 

coupling, since the error functions |𝑦(𝑡) − 𝑥(𝑡)| and |𝑣(𝑡) −

𝑢(𝑡)| do not vanish. In order to see this, let us observe that the 

errors 𝑒3 = 𝑦 − 𝑥  and 𝑒4 = 𝑣 − 𝑢 can be calculated from 

Equations (15) and (16) as: 

 
𝑒̇3 = 𝑦̇ − 𝑥̇ = 𝑒4, 
𝑒̇4 = 𝑣̇ − 𝑢̇ = −𝛼𝑣 + 𝑦 − 𝜀𝑦3+𝐴1 cos(𝜔1𝑡) 
     −𝜇(1 − 𝑥2)𝑢 + 𝑥−𝐴2 cos(𝜔2𝑡) − 𝐾𝑒3.                       (17) 

 
The plots of |𝑒3| and |𝑒4| as a function of 𝑡 for a  

value  of   𝐾 =  200,  are  depicted  in Fig. 7.  To  corroborate 
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                                       a)                     b) 

 

Figure 3. The error functions varying the parameters couplings 𝐺1 and 𝐺2. 

 In (a) it is represented |𝑦(𝑡) − 𝑥(𝑡)|, with 𝐺2 = 100 and varying 𝐺1. In (b) |𝑣(𝑡) − 𝑢(𝑡)|, with 𝐺1 = 5 and varying 𝐺2.  

 

 

 Figure 4. Error functions for |𝑒1| and |𝑒2| with respective values of 𝐺1 = 5 and 𝐺2 = 100. 
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a)            b) 

       

                                 c)          d) 

Figure 5. Elastic and dissipative couplings for 𝐺1 = 5 and 𝐺2 = 100.  

In (a) the Duffing oscillator (master). In (b) the van der Pol oscillator (slave).  

In (c) and (d) projections onto the (𝑥, 𝑦) and (𝑢, 𝑣) planes, respectively. 
 

 

  
                            a)                           b) 

 

Figure 6. The error functions: In (a) represents |𝑦(𝑡) − 𝑥(𝑡)|, and in (b) |𝑣(𝑡) − 𝑢(𝑡)|, both as a function of the parameter  𝐾. 
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that no synchronization exists, let us analyze the projections 

onto the (𝑥, 𝑦) and (𝑢, 𝑣)  planes for a particular value 𝐾 =

200. For this case, the master system is working in the chaotic 

regime and the dynamics of the van der Pol oscillator is not 

being controlled by Duffing oscillator as it can be observed 

from Figs. 8 (a) and (b). In Figs. 8 (c) and (d) the projections 

onto the (𝑥, 𝑦) and (𝑢, 𝑣)  planes no synchronization exists. If 

we have had synchronization, we could observe a straight line 

at 45° on both mentioned projections, but it is not the case. 

Let us mention that, regardless of the former conclusion, the 

elastic coupling is still used in bidirectional synchronization 

Kengne et al. (2012). Thus, it is important to discuss here this 

kind of coupling. 

Let us now discuss the synchronization when the 

oscillators are coupled through a dissipative coupling, 

represented by 
 

𝑀𝑎𝑠𝑡𝑒𝑟: {
𝑦̇ = 𝑣,

𝑣̇ = −𝛼𝑣 + 𝑦 − 𝜀𝑦3+𝐴1 cos(𝜔1𝑡),
             (18) 

 

𝑆𝑙𝑎𝑣𝑒: {
𝑥̇ = 𝑢,

𝑢̇ = 𝜇(1 − 𝑥2)𝑢 − 𝑥+𝐴2 cos(𝜔2𝑡) + 𝐻(𝑣 − 𝑢).
 (19) 

 

Here 𝐻(𝑣 − 𝑢) represents the dissipative coupling, being 𝐻 

used as a parameter. As before, for the 𝐻 = 0 case, the 

oscillators become decoupled. The dissipative coupling is also 

a lineal feedback to the slave oscillator proportional to the 

difference of velocity. 

As before, we consider the error functions, with 𝐻 varied 

from 0 to 200 in small steps. These plots allow us to find the 

range of values for 𝐻 in which the synchronization could be 

reached as it is shown in Figs. 9 (a) and (b). Notice that in the 

projection onto the (𝑥, 𝑦) plane no synchronization exists 

since the error function |𝑦(𝑡) − 𝑥(𝑡)| results large; the 
|𝑣(𝑡) − 𝑢(𝑡)| function goes to zero for large values of 𝐻. For  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the projection onto the (𝑢, 𝑣)  plane, the complete 

synchronization could be reached for large values of 𝐻. For the 

dissipative coupling, the errors 𝑒5 = 𝑦 − 𝑥  and 𝑒6 = 𝑣 − 𝑢, 

are determined by subtracting Equations (18) and (19), given 

 
𝑒̇5 = 𝑦̇ − 𝑥̇ = 𝑒6, 
𝑒̇6 = 𝑣̇ − 𝑢̇ = −𝛼𝑣 + 𝑦 − 𝜀𝑦3+𝐴1 cos(𝜔1𝑡) 

     −𝜇(1 − 𝑥2)𝑢 + 𝑥−𝐴2 cos(𝜔2𝑡) − 𝐻𝑒̇5.                      (20) 

 
The plots of |𝑒5| and |6| as a function of 𝑡 for a value of 𝐻 =

200, are depicted in Fig. 10. 

Let us analyze the projections onto the (𝑥, 𝑦) and (𝑢, 𝑣) 

planes for a specific value of 𝐻 = 200. In this case the master 

system is in a chaotic regime. In Fig. 11 (a) it is shown the Duffing 

oscillator (master system) while in Fig. 11 (b) it is represented the 

van der Pol oscillator (slave system). In Fig. 11 (c) we can 

appreciate the fact that in the projection onto the (𝑥, 𝑦) plane 

there is no synchronization while in the projection onto the 

(𝑢, 𝑣) plane there is only complete synchronization (Fig. 11 (d)). 

For certain systems, it is not possible to reach 

synchronization when the classical master-slave scheme is 

used. Specifically, there are cases where it is impossible to find 

a coupling constant 𝐾 such that the systems reach 

synchronization, as it occurs for the systems described by 

Equation (15) and (16). In some cases, the systems reach 

complete synchronization in a single state of the slave system 

as it occurs for the dynamics contained in Equations (18) and 

(19), depending of the value 𝐻. Variations to the master-slave 

scheme for some systems have been proposed to solve certain 

kind of problems Aydogmus and Tosyali (2022), Buscarino et 

al. (2019), Ding (2019), Ramirez et al. (2020). In particular, 

Uriostegui-Legorreta et al. (2021) a modified master-slave 

scheme is considered that leads to synchronization even in 

the cases where the classical master-slave scheme fails. 

 

 
 

      
Figure 7. Error functions for |𝑒3| and |𝑒4| as a function of 𝑡, for a value of 𝐾 = 200. 
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a)                          b) 

 

           

              c)                                   d) 

Figure 8. Elastic coupling, for a parameter control of 𝐾 = 200. In (a) the Duffing oscillator. 

 In (b) the van der Pol oscillator. In (c) and (d) projections onto the (𝑥, 𝑦) and (𝑢, 𝑣) planes respectively. 

 

         
 

                   a)                                 b) 
 

Figure 9. The error functions: In (a) represents |𝑦(𝑡) − 𝑥(𝑡)|, and in (b) |𝑣(𝑡) − 𝑢(𝑡)|,  

both as a function of the parameter 𝐻. 
 

 



 
 

 

U. Uriostegui-Legorreta, E. S. Tututi / Journal of Applied Research and Technology 227-240 

 

Vol. 21, No. 2, April 2023    236 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Error functions |𝑒5| and |6|, for 𝐻 = 200. 

 
 

 

           

a)                          b) 

 

           

            c)                                  d) 

Figure 11. Dissipative coupling case, for 𝐻 = 200. In (a) the Duffing oscillator (master) and in (b) the van der Pol oscillator (slave).  

In (c) and (d) projections onto the (𝑥, 𝑦) and (𝑢, 𝑣) planes, respectively. 
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4. Conclusions 
 

The van der Pol and Duffing are low-dimensionality 

nonautonomous systems that present chaos and have been 

well studied. One of the conclusions presented in the literature 

is that the classical master-slave configuration (by using 

elastic coupling), for the van der Pol and Duffing oscillators, 

does not offer synchronization. In this work, we have shown 

that for this same coupling, in master-slave configuration and 

when the dissipative coupling is used, only complete 

synchronization in the projection onto the (𝑢, 𝑣)  plane can be 

reached. In fact, according to the classical master-slave 

configuration in the best of cases, it is obtained only complete 

synchronization in a single state of the slave system studied. 

On the other hand, the possibility of using two coupling 

(elastic and dissipative, in this case), blending up as one, 

allows the system more interesting dynamics and a broad 

range for the control parameters. In this paper, we have 

analyzed the synchronization in the van der Pol and Duffing 

oscillators using the blending of the elastic and dissipative 

couplings. We observed that, in a difference with other 

approaches, with this new coupling, we were able of obtaining 

complete synchronization in the projections onto the (𝑥, 𝑦) 

and (𝑢, 𝑣)  planes. In order to apply synchronization in 

communication systems, it is necessary to have a large range 

of the control parameters, which is obtained in the van der Pol 

and Duffing oscillators, by employing our approach of 

coupling. This kind of coupling will be applied in other systems 

that do not present synchronization through the usual 

methods. 
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