

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 21 (2023) 256-264

Original

Dispatcher I-queue optimization in Join-Idle-Queue

algorithm for improved load balancing in cloud computing

P. Goswamia S. Narangb* A. Jainc

aSRM University, Sonepat, Haryana, India

 bPh. D. Research Scholar, SRM University, Sonepat, Haryana, India
cUniversity of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India

Received 05 24 2021; accepted 09 20 2021

Available 04 30 2023

Keywords: Cloud computing, Load balancing, Task scheduling, Join Idle Queue,

Response Time, Virtual Machines

Abstract: Objectives: Modern data centers serving web and mobile applications employ distributed

load balancers. The Join Idle Queue (JIQ) algorithm is ideally suited for load balancing in a distributed

setup. It attains fast response time by directing service requests to idle servers which can immediately

process them. However, JIQ is not optimal in tracking idle servers leaving room for improvement.

Methods: We observed that JIQ assigns idle servers non-uniformly to load balancers leaving some load

balancers with no access to idle servers. We propose a variant of the JIQ algorithm, Join Idle Queue

dispatcher I-queue Optimization (JIQ-DIO), which increases the probability of load balancers having

access to idle servers without additional communication overhead leading to improved response time.

Findings: We simulated JIQ-DIO on CloudSim Plus 3.0 and compared it with standard JIQ and its

different variants. JIQ-DIO was found to increase the probability of incoming requests being directed

to idle servers and lead to more than two-fold improvement in response time across a broad range of

parameters.

∗Corresponding author.

E-mail address: sudhanarang@gmail.com (P. Goswami).

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

http://dx.doi.org/10.1016/j.jart.2017.02.005
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.icat.unam.mx/
mailto:sudhanarang@gmail.com
https://www.unam.mx/

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 257

1. Introduction

Servers hosted on-premises have traditionally used a

centralized load balancer. However, as modern web and

mobile applications move to the cloud, the use of multiple

distributed load balancers over a server farm has become the

preferred implementation as it is more robust, programmable,

and cost-effective (Lu et al., 2011).

A centralized load balancer oversees the entire incoming

and outgoing traffic of tasks and the assignment of tasks to

servers; hence it can keep track of the task queue at each

server. Whereas in a distributed setup each load balancer,

called dispatcher, is only aware of the tasks that it handles;

hence dispatchers cannot track the task queues at servers.

Additional communication between the servers and

dispatchers is required for the dispatchers to have information

on server queues for load balancing. However, as servers and

dispatchers increase in number, information exchange

between them becomes voluminous and an expensive time

overhead making it impractical for the dispatchers to keep

track of all server task queues (Mitzenmacher, 2016).

The Join Idle Queue (JIQ) algorithm was proposed to

attain fast response time for distributed dispatchers with low

communication overhead (Mitzenmacher, 2016). It was shown

to perform better than other load balancing algorithms for

distributed setups (Silva Filho et al., 2017) and has become the

standard. Central to JIQ is decoupling the process of task

assignment by dispatchers from the registration of idle servers

at the dispatchers. Instead of dispatchers tracking server

queues, idle servers register themselves with dispatchers. To

facilitate this, each dispatcher maintains a data structure

called the I-queue which contains a list of idle servers

registered at the dispatcher. When a server becomes idle, it

registers itself with the I-queue of one of the dispatchers which

is selected at random. In this study, we observed that in a

typical JIQ scenario many dispatchers persist with zero- length

I-queues. Since the servers are blind to the I-queues of

dispatchers, idle servers register themselves with the I-queues

of randomly selected dispatchers. The distribution of idle

machines across dispatcher I-queues is not uniform and

allows zero-length I-queues to persist in some dispatchers.

Dispatchers with empty I-queues assign incoming tasks to

randomly selected servers leading to suboptimal average

response time. We hypothesized that if dispatchers can make

servers aware of their idle queues at the time of task

assignment, the servers can have partial information on

dispatcher I-queues and when idle they can register

themselves with one of the dispatchers that have an empty I-

queue. This will help to mitigate the persistence of zero-length

I-queues while keeping communication overhead low. As the

probability of dispatchers finding idle servers increases, the

average response times will improve. In this paper we propose

an improvement to the JIQ algorithm called Join Idle Queue

Dispatcher I-queue Optimization (JIQ-DIO) which implements

this idea.

Related work including the JIQ algorithm, and its variants

are described in Section 2. The JIQ- DIO algorithm is described

in Section 3. Implementation and simulation of the JIQ-DIO

algorithm in CloudSim Plus (Calheiros et al., 2011), a fork of

popular tool CloudSim for simulating cloud computing

infrastructures (Kunwar et al., 2018), is described in Section 4.

The original JIQ algorithm and its other variants have also

been simulated on the same platform for direct performance

comparison with JIQ-DIO. Conclusions and future work are

discussed in Section 5.

2. Related work

2.1. Load balancing with distributed dispatchers
Cloud computing delivers computing resources and services

over the internet. An important aspect of research work in

cloud computing is load balancing which refers to the optimal

allocation of service requests to evenly balance the workload

across multiple servers. Load balancing improves response

time and throughput for the users and leads to optimal

utilization of resources and low downtime at the servers.

Traditionally load balancing is performed by a single

dispatcher who makes all decisions on task allocation to

servers. This classical problem of load balancing using a

centralized dispatcher has been researched extensively

(Khiyaita et al., 2012; Li, 2017) and analytical expressions for

optimizing average response time, power consumption and

cost- performance ratio in heterogeneous multi-server setups

have been described (Rao et al.,2003).

However, lately the use of multiple distributed dispatchers

over a server farm has been preferred over a centralized

dispatcher. The scalability and performance advantages of

decentralized load balancing were recognized in peer-to-peer

file sharing systems (Gao & Min, 2009; Grosu & Chronopoulos,

2005; Yang & Garcia-Molina, 2003). Multiple heterogeneous

servers distributing tasks among them using game theoretic

algorithms in either cooperative or non-cooperative fashion

were found to be advantageous over centralized load

balancing (Al-Fares et al., 2008; Duan et al., 2014). In data

centers, multi-rooted tree architecture utilizing software

algorithms and communication protocols for balancing data

flows across a network was found to be superior to a

centralized setup (Bharti & Pattanaik, 2013; Cheung & Leung,

2018; Harchol-Balter, 2021). Similarly, distributed load

balancing was found to improve the resilience and scalability

of data centers hosting cloud computing services (Badonnel &

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 258

 Burgess, 2008; Ousterhout et al., 2013). Distributed load

balancing can be achieved in many ways such as by servers

sharing load with peers (Cardellini et al.,1999; Hong, Y et

al.,2006), DNS based load balancing (Kingman, 1961), or by a

strictly hierarchical architecture where dedicated load

balancers called dispatchers direct requests to servers

(Ousterhout et al., 2013).

This study considers cloud computing server farms having a

hierarchical setup consisting of multiple distributed dispatchers

and heterogeneous servers or virtual machines (VMs) as

illustrated in Fig. 1. The server farm comprises of p physical

servers hosting a total of 𝑘1 + 𝑘2 + ⋯ + 𝑘𝑝 = 𝐾 virtual machines

(VMs). Service requests, or tasks, T1, T2, …, Tn are received by a

router. Task arrival is modeled by a Poisson process and the

processing times of tasks (or task lengths) are considered to be

exponentially distribute (Narang et al., 2019). The router directs

a service request to one of m dispatchers which assigns it to one

of K VMs. The VMs maintain a task queue from which tasks are

processed in a first-in-first-out (FIFO) order.

Figure 1. A cloud computing infrastructure with distributed

dispatchers: (A) service requests (or tasks) are received by a router

and directed to dispatchers, (B) the dispatchers assign tasks to VMs,

and (C) the VMs send responses back to dispatchers.

In this scenario, a load balancing algorithm must address

broadly three aspects:

A) Routing of a service request to a dispatcher, or dispatcher

selection,

B) Assignment of a service request by a dispatcher to a VM, or

task allocation, and

C) Communication between VMs and dispatchers for the

maintenance of task queues.

2.2. A general model of Join Idle Queue
The Join Idle Queue algorithm addresses load balancing in the

context of large data centers or server farms that maintain

hundreds or thousands of servers managed by distributed

dispatchers (Mitzenmacher, 2016). The large compute capacity

ensures that any given time there are idle VMs available to

immediately process incoming service requests. The problem

of load balancing is then simplified to finding an available idle

VM for an incoming service request. JIQ solves this problem

with minimal communication overhead between the

dispatchers and VMs. In a JIQ model each dispatcher locally

maintains an Idle Queue or I-queue which stores a list of idle

VMs that are registered with it. An idle VM may be registered

with the I-queue of only one dispatcher at any time. When a

task arrives, a dispatcher assigns it to an idle VM from its I-

queue and removes the VM from its I-queue. Notably, instead

of dispatchers attempting to find idle VMs to fill their I-queues,

the idle VMs have the responsibility of registering themselves

with the I-queue of a dispatcher. The different variants of JIQ

present various strategies by which idle VMs select a dispatcher

to register themselves with. For instance, the standard JIQ

algorithm, also referred to as JIQ-Random, uses the following

strategies for the three key aspects of load balancing:

A) Dispatcher selection: The router directs an incoming request

to one of the dispatchers selected uniformly at random.

B) Task allocation: A dispatcher with non-empty I-queue

selects an idle VM uniformly at random from its I-queue and

then removes this VM from its I-queue. A dispatcher with an

empty I-queue selects a VM uniformly at random among all

VMs.

C) I-queue joining: When a VM becomes idle, it selects a

dispatcher uniformly at random among all dispatchers and

joins its I-queue.

2.3. Variants of JIQ
The standard JIQ or JIQ-Random uses a simple uniform-at-

random strategy for dispatcher selection, task allocation as

well as I-queue joining. This is easy to implement as there is no

need to track the state of the system. However, its

performance is not optimal. A few different variants of the JIQ

algorithm have been proposed to improve performance (Lu,

2018). These are summarized in Table 1.

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 259

Table 1. Strategies used by different variants of JIQ algorithm:

dispatcher selection refers to how the router chooses one among all

dispatchers to which it directs an incoming request. Task allocation

refers to how a dispatcher selects a VM to which it assigns the

request. The selection strategy depends on whether or not the I-

queue of the dispatcher is empty. I-queue joining refers to how an

idle VM selects a dispatcher I-queue to register itself with. The

random strategy implies choosing any one among the available

alternatives uniformly at random. The SQ(d) strategy refers to

randomly sampling any d out of all available alternatives and

choosing the one with the shortest queue.

Algo

Strategy

Dispatcher

Selection

Task Allocation

I-queue

Joining

Nonempty

I-queue

(Select

from I-

queue)

Empty I-

queue

(Select

from all

VMs)

JIQ

Random

Random Random Random Random

JIQ-

SQ(d)

Random Random Random SQ(d),

Shortest

I queue

JIQ-PoD Random Random SQ(d) Random

JIQ-NE SQ(d) Random Random Random

JIQ-E Random Random Random SQ(d)

JIQ-SQ(d) makes a smarter choice in the I-queue joining

strategy compared to JIQ-Random:

JIQ-SQ(d) I-queue joining: When a VM becomes idle, it

chooses d dispatchers at random and among those registers

itself with the dispatcher which has the shortest I-queue length.

JIQ-PoD, power-of-d-choices, improves upon the task

allocation strategy:

JIQ-PoD task allocation: A dispatcher with non-empty I-

queue selects an idle VM uniformly at random from its I-queue

and then removes this VM from its I-queue. A dispatcher with

empty I-queue selects a subset of d VMs from all VMs, and

among these d VMs assigns the task to the VM with the shortest

task queue.

JIQ-NE, non-empty, improves the strategy for dispatcher

selection:

JIQ-NE dispatcher selection: The router chooses d

dispatchers at random and among them selects the first one

having a non-empty I-queue for routing a new task. If none of

the d dispatchers has a non-empty I-queue, then the dth

dispatcher is chosen irrespective of its I- queue status.

JIQ-E, empty, is like JIQ-SQ(d), however, the difference is in

that JIQ-SQ(d) seeks the dispatcher with shortest length I-queue

whereas JIQ-E seeks a dispatcher with an empty I- queue:

JIQ-E I-queue joining: When a VM becomes idle, it chooses

d dispatchers at random and among those registers itself with

the first dispatcher that has an empty I-queue. If none of the d

dispatchers has an empty I-queue, then the dth dispatcher is

chosen irrespective of its I-queue status.

Also, JIQ-SQ(d) and JIQ-PoD probe d servers

simultaneously whereas JIQ-NE and JIQ-E do the probing

sequentially to reduce the communication cost.

In the same spirit, the present research preserves the

general model of JIQ while improving upon the I-queue joining

strategy.

3. Join Idle Queue Dispatcher I-queue Optimization

As seen in Table 1, in JIQ and its variants idle VMs register

themselves with the I-queues of dispatchers selected by

random or by the SQ(d) method. Through simulation studies

we noted that this approach allows zero-length I-queues to

persist in dispatchers which may lead to suboptimal

assignment of tasks to VMs and hence increased response

time. The proposed algorithm, JIQ dispatcher I-queue

Optimization, aims to increase the number of dispatchers that

have non-empty I-queues without increasing the overhead of

communication between dispatchers and VMs. To achieve

this, a list of dispatcher I-queue lengths is kept with the VMs.

This list is updated opportunistically when dispatchers assign

tasks to VMs. At the time of task assignment, a dispatcher also

communicates its I-queue length to the VM which is stored by

the VM in its list of dispatcher I-queue lengths. As different

dispatchers and VMs communicate during the process of task

assignment, the VMs gradually build up an approximate state

of dispatcher I-queue lengths without incurring additional

communication overhead. The VMs may never build a

comprehensive view of all dispatcher I-queue lengths and the

values may not be up to date, however the partial view suffices

for VMs to register themselves with dispatchers with empty I-

queues when they become idle. This leads to a reduction in

the numbers of dispatchers with empty I-queues, hence

increasing the probability of tasks finding a dispatcher with

non-zero I-queue and being processed immediately. Hence,

there is an improvement in the average response time.

JIQ-DIO compares with other JIQ algorithms listed in Table

1 as follows:

• Dispatcher selection: Random

• Task allocation:

• Non-empty I-queue: Random VM from the I-queue

• Empty I-queue: Randomly to any VM

• I-queue joining: Lookup the VM’s list of dispatcher I-

queue lengths. If there are dispatchers with empty I-queues in

this list, select any one of them at random. Otherwise select

any dispatcher at random.

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 260

3.1. Pseudocode of JIQ-DIO
The JIQ-DIO algorithm has been simulated in CloudSim Plus

following the pseudocode presented below. In CloudSim

terminology tasks are called cloudlets.

1.Cloudlet generation and processing module
• Generate n cloudlets with lengths (task size) as per

exponential distribution

• Set the cloudlet arrival times as per Poisson

distribution

• For each cloudlet to be scheduled:

o Select a dispatcher uniformly at random from all the

dispatchers

o IF (dispatcher has non-empty I-queue) THEN

• Select at random an idle VM in the dispatcher I-queue

• Assign the cloudlet to the selected VM for processing

• Remove the selected VM from the dispatcher’s I-queue

• In the selected idle VM also set the length of the

selected dispatcher’s I-queue

ELSE

• Assign cloudlet to a random VM.

• Capture how many times this happens, i.e., no idle VM

found.

2.Listener: Cloudlet completion module

• Decrement task queue length at VM

• IF (task queue length == 0) THEN

o VM is Idle, ready to be assigned to a dispatcher

o Look up the list of dispatcher I-queue lengths (info

embedded into VMs during cloudlet processing module)

o IF (number of dispatchers with zero I-queue length > 0):

THEN

• Assign Idle VM to first dispatcher found with empty

idle queue ELSE

• Assign idle VM to a random dispatcher

4. Results

4.1. Simulation framework
The simulations in this study have been performed using

CloudSim Plus, a fork of CloudSim. New modules were

developed in CloudSim Plus to simulate JIQ-DIO as well as the

other five JIQ variants listed in Table 1. The simulation model

was described previously in (Narang et al., 2021), Section 7. In

summary, cloudlets are generated dynamically with arrival

times modeled by a Poisson process. The cloudlets are

considered independent of each other and of the same

priority. Cloudlet lengths are exponentially distributed. The

VMs are modeled as having heterogeneous processing

capacities in progressive increments of 1 MIPS step-ups while

being homogeneous in other machine characteristics

including RAM, bandwidth and storage. The parameters used

in simulations in the present study are shown in Table 2.

Table 2. Parameter values used in simulations.

Parameter Value(s)

Number of hosts 60

Number of virtual machines 180, 360, 600

VM processing capacity (MIPS)

(heterogeneous)

20, 21, 22, …,

20+(n-1)

Number of dispatchers 10, 36, 60, 120

SQ(d) 0.3, 0.5, 0.6

Number of cloudlets 10000, 30000,

50000

Cloudlet length distribution Exponential

Mean cloudlet length 800

Cloudlet arrival process Poisson

Mean arrival time for cloudlets 1, 2

4.2. Performance metrics

The algorithms are compared on the following performance

metrics which are key service level measures for cloud-based

scenarios (Narang et al., 2021).

Average response time per task (cloudlet):

Average Response Time = F – A + Tdelay,

where A is the arrival time of the task, Tdelay is the transfer

time of the task, and F is the time to complete the task. For

simulations in this work Tdelay = 0.

Makespan: It is the completion time of the last cloudlet,

which implies that all submitted tasks (cloudlets) have been

processed by the pool of VMs.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max (𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠)

Resource utilization: It is the average utilization of VMs where

the utilization of a VM is defined as the difference of its busy and

idle times through the length of execution, i.e., makespan.

𝑟𝑢 =
𝑅𝑟𝑡−𝑅𝑖𝑡

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 𝐴𝑣𝑔 𝑅𝑈 = ∑ 𝑟𝑢𝑛

𝑖=1 ,

where 𝑅𝑟𝑡 and 𝑅𝑖𝑡 are the VM running time and idle time

respectively, and n is the number of VMs. Its value ranges

between -1 (completely idle) and 1 (fully busy).

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 261

Figure 2. Average response time with varying number of VMs and frequency of cloudlet arrivals.

T-test was performed to identify significant differences in the average response times of various algorithms

 in comparison to JIQ-Random. Only significant p-values (p < 0.05) are shown.

Figure 3. Average response time with varying number of dispatchers.

 Mean cloudlet arrival time = 1s, no. of VMs = 360. Statistical significance (p-value) of the variation

 in the average response time with the number of dispatchers was estimated using the Kruskal Wallis test.

4.3. Simulation results
Simulation was performed in triplicates for each set of parameter

values and the performance metrics were summarized by their

mean and standard deviation over replicates.

Compared to standard JIQ and its variants, JIQ DIO had a

consistently better response time which was even more

pronounced as the number of VMs was increased (Fig. 2). In

these simulations, JIQ-DIO led to almost 2-fold improvement

in the response time with good statistical significance (p <

0.05). Interestingly, varying the number of dispatchers had

little impact on the average response time as shown by lack of

statistical significance (p > 0.05) in Fig. 3. It could be argued

that performance improvement obtained with JIQ-DIO might

be transient. To test this, the number of cloudlets increased

from 10000 to 50000. Simulation results show that there is no

drop in the performance of JIQ-DIO over time (Fig. 4).

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 262

Figure 4. Average response time with varying number cloudlets.

Mean cloudlet arrival time = 1s, no. of VMs = 600, number of dispatchers = 60

Simulation results were used to compare the probability of

dispatchers finding empty VMs in various JIQ implementations.

It was mentioned above that our implementation of JIQ

maintains a counter to track the number of times a dispatcher

has an empty I-queue when a task is routed to it. The data

collected from this counter is shown in Fig. 5. The JIQ-Empty

and JIQ-NE encountered an empty I-queue 35,111 and 35,149

times respectively on average among 50,000 cloudlets which

implies that there is greater than 70% probability of

dispatchers having empty I-queues. The frequency (out of

50,000) is 1981 or 3.96% for standard JIQ, 1970 or 3.94% for JIQ-

PoD, 200 or 0.4% for JIQ-SQ(d) and 8 or 0.0016% for JIQ-DIO.

These results favor the hypothesis that JIQ-DIO decreases the

probability of dispatchers with empty I-queues which in turn

improves the average response time.

No significant differences were observed between the

various JIQ variants in terms of the makespan and average

resource utilization metrics.

It is worth noting that the performance of JIQ and its

variants reported in previous works (Mitzenmacher, 2016;

Narang et al., 2021) is mostly considering a homogeneous set

of VMs, whereas this work simulates a heterogeneous setup

and uses a more generic simulation tool, CloudSim Plus.

Hence, the simulation results concerning average response

times presented herein might be more generalizable in

comparison to those presented previously.

Figure 5. The number of times a dispatcher has an empty

I-queue when a task is routed to it. The data is aggregated over all

tasks and all dispatchers throughout a simulation. The bars show the

mean value, and the error bars show the standard deviation over

three replications of the simulation. Number of VMs = 600,

number of dispatchers = 60, number of cloudlets = 50000, mean

cloudlet arrival time = 1s.

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 263

5. Conclusion and future work

The Join Idle Queue algorithm is well suited for load balancing

in distributed scenarios which are now commonplace in cloud

computing. Over the years a few improvisations have been

proposed to the initial work to yield better performance for

specific scenarios. We proposed a new variant, JIQ dispatcher

I-queue Optimization, and through simulations on a generic

heterogeneous setup showed a two-fold improvement in

response times across a broad range of parameters. We

showed that JIQ-DIO results in a higher probability of

dispatchers having access to idle machines leading to this

performance gain. The reliability of the simulations was

ensured by replication of the experiments followed by

statistical analysis of the results. Rigorous mathematical

evaluation of JIQ- DIO is left to a separate communication. In

terms of future work, the model can be improved to attain a

close to uniform distribution of idle machines among

dispatchers to realize even further improvements to response

times. Additional optimizations can be made to improve upon

other performance metrics which would require taking into

consideration additional parameters beyond the standard few

used in this work.

Conflict of interest

The authors have no conflict of interest to declare.

Acknowledgments

We are grateful to our Institute for providing us with the

platform to do research and explore new tools.

Funding

The authors received no specific funding for this work.

References

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable,

commodity data center network architecture. ACM SIGCOMM

computer communication review, 38(4), 63-74.

https://doi.org/10.1145/1402958.1402967

Badonnel, R., & Burgess, M. (2008). Dynamic pull-based load

balancing for autonomic servers. In NOMS 2008-2008 IEEE

Network Operations and Management Symposium (pp. 751-

754). IEEE.

https://doi.org/10.1109/NOMS.2008.4575205

Bharti, S., & Pattanaik, K. K. (2013). Dynamic distributed flow

scheduling with load balancing for data center

networks. Procedia Computer Science, 19, 124-130.

https://doi.org/10.1016/j.procs.2013.06.021

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., &

Buyya, R. (2011). CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation

of resource provisioning algorithms. Software: Practice and

experience, 41(1), 23-50.

https://doi.org/10.1002/spe.995

Cardellini, V., Colajanni, M., & Yu, P. S. (1999). Redirection

algorithms for load sharing in distributed Web-server systems.

In Proceedings. 19th IEEE International Conference on

Distributed Computing Systems (Cat. No. 99CB37003) (pp. 528-

535). IEEE.

 https://doi.org/10.1109/ICDCS.1999.776555

Cheung, C. M., & Leung, K. C. (2018). DFFR: A flow-based

approach for distributed load balancing in Data Center

Networks. Computer:Communications, 116,:1-8.

https://doi.org/10.1016/j.comcom.2017.11.001

Duan, R., Prodan, R., & Li, X. (2014). A sequential cooperative game

theoretic approach to scheduling multiple large-scale applications

in grids. Future Generation Computer Systems, 30, 27-43.

https://doi.org/10.1016/j.future.2013.09.001

Gao, L., & Min, P. (2009). Optimal superpeer selection based on

load balance for P2P file-sharing system. In 2009 International

Joint Conference on Artificial Intelligence (pp. 92-95). IEEE.

https://doi.org/10.1109/JCAI.2009.165

Grosu, D., & Chronopoulos, A. T. (2005). Noncooperative load

balancing in distributed systems. Journal of parallel and

distributed:computing, 65(9),:1022-1034.

https://doi.org/10.1016/j.jpdc.2005.05.001

Harchol-Balter, M. (2021). Open problems in queueing theory

inspired by datacenter computing. Queueing Systems, 97(1-2), 3-37.

https://doi.org/10.1007/s11134-020-09684-6

Hong, Y. S., No, J. H., & Kim, S. Y. (2006). DNS-based load

balancing in distributed Web-server systems. In The Fourth

IEEE Workshop on Software Technologies for Future Embedded

and Ubiquitous Systems, and the Second International

Workshop on Collaborative Computing, Integration, and

Assurance (SEUS-WCCIA'06) (pp. 4-pp). IEEE.

https://doi.org/10.1109/SEUS-WCCIA.2006.23

https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1109/NOMS.2008.4575205
https://doi.org/10.1016/j.procs.2013.06.021
https://doi.org/10.1002/spe.995
https://doi.org/10.1109/ICDCS.1999.776555
https://doi.org/10.1016/j.comcom.2017.11.001
https://doi.org/10.1016/j.future.2013.09.001
https://doi.org/10.1109/JCAI.2009.165
https://doi.org/10.1016/j.jpdc.2005.05.001
https://doi.org/10.1007/s11134-020-09684-6
https://doi.org/10.1109/SEUS-WCCIA.2006.23

P.Goswami et al. / Journal of Applied Research and Technology 256-264

Vol. 21, No. 2, April 2023 264

Khiyaita, A., El Bakkali, H., Zbakh, M., & El Kettani, D. (2012).

Load balancing cloud computing: state of art. 2012 National

Days of Network Security and Systems, 106-109.

https://doi.org/10.1109/JNS2.2012.6249253

Kingman, J. F. (1961). Two similar queues in parallel. The

Annals of Mathematical Statistics, 32(4), 1314-1323.

 https://www.jstor.org/stable/2237929

Kunwar, V., Agarwal, N., Rana, A., & Pandey, J. P. (2018). Load

balancing in cloud—a systematic review. Big Data Analytics:

Proceedings of CSI 2015, 583-593. https://doi.org/10.1007/978-

981-10-6620-7_56

Li, K. (2017). Optimal task dispatching on multiple

heterogeneous multiserver systems with dynamic speed and

power management. IEEE Transactions on Sustainable

Computing, 2(2), 167-182.

https://doi.org/10.1109/TSUSC.2017.2706425

Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J. R., & Greenberg, A.

(2011). Join-Idle-Queue: A novel load balancing algorithm for

dynamically scalable web services. Performance

Evaluation, 68(11),:1056-1071.

https://doi.org/10.1016/j.peva.2011.07.015

Lu, Y. (2018). Distributed join-the-idle-queue: new algorithm and

analysis (Doctoral dissertation, University of British Columbia).

https://dx.doi.org/10.14288/1.0375787

Mitzenmacher, M. (2016). Analyzing distributed join-idle-

queue: A fluid limit approach. In 2016 54th Annual Allerton

Conference on Communication, Control, and Computing

(Allerton) (pp.:312-318).:IEEE.

https://doi.org/10.1109/ALLERTON.2016.7852246

Narang, S., Goswami, P., & Jain, A. (2019). Statistical Analysis of

Cloud Based Scheduling Heuristics. In Information,

Communication and Computing Technology: 4th International

Conference, ICICCT 2019, New Delhi, India, May 11, 2019, Revised

Selected Papers 4 (pp. 98-112). Springer Singapore.

https://doi.org/10.1007/978-981-15-1384-8_9

Narang, S., Goswami, P., & Jain, A. (2021). A Comprehensive

Review of Load Balancing Techniques in Cloud Computing

and Their Simulation with CloudSim Plus. Recent Advances in

Computer Science and Communications (Formerly: Recent

Patents on Computer Science), 14(6), 1684-1694.

https://doi.org/10.2174/2666255813666191218113350

Ousterhout, K., Wendell, P., Zaharia, M., & Stoica, I. (2013).

Sparrow: distributed, low latency scheduling. In Proceedings of

the twenty-fourth ACM symposium on operating systems

principles (pp. 69-84).

https://doi.org/10.1145/2517349.2522716

Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., & Stoica, I.

(2003). Load balancing in structured p2p systems. In Peer-to-

Peer Systems II: Second International Workshop, IPTPS 2003,

Berkeley, CA, USA, February 21-22, 2003. Revised Papers 2 (pp.

68-79). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-540-45172-3_6

Silva Filho, M. C., Oliveira, R. L., Monteiro, C. C., Inácio, P. R., &

Freire, M. M. (2017). CloudSim plus: a cloud computing

simulation framework pursuing software engineering

principles for improved modularity, extensibility and

correctness. In 2017 IFIP/IEEE symposium on integrated

network and service management (IM) (pp. 400-406). IEEE.

https://doi.org/10.23919/INM.2017.7987304

Yang, B. B., & Garcia-Molina, H. (2003). Designing a super-peer

network. In Proceedings 19th international conference on data

engineering (Cat. No. 03CH37405) (pp. 49-60). IEEE.

https://doi.org/10.1109/ICDE.2003.1260781

https://doi.org/10.1109/JNS2.2012.6249253
https://www.jstor.org/stable/2237929
https://doi.org/10.1007/978-981-10-6620-7_56
https://doi.org/10.1007/978-981-10-6620-7_56
https://doi.org/10.1109/TSUSC.2017.2706425
https://doi.org/10.1016/j.peva.2011.07.015
https://dx.doi.org/10.14288/1.0375787
https://doi.org/10.1109/ALLERTON.2016.7852246
https://doi.org/10.1007/978-981-15-1384-8_9
https://doi.org/10.2174/2666255813666191218113350
https://doi.org/10.1145/2517349.2522716
https://doi.org/10.1007/978-3-540-45172-3_6
https://doi.org/10.23919/INM.2017.7987304
https://doi.org/10.1109/ICDE.2003.1260781

