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Abstract: Objectives: Modern data centers serving web and mobile applications employ distributed 

load balancers. The Join Idle Queue (JIQ) algorithm is ideally suited for load balancing in a distributed 

setup. It attains fast response time by directing service requests to idle servers which can immediately 

process them. However, JIQ is not optimal in tracking idle servers leaving room for improvement. 

Methods: We observed that JIQ assigns idle servers non-uniformly to load balancers leaving some load 

balancers with no access to idle servers. We propose a variant of the JIQ algorithm, Join Idle Queue 

dispatcher I-queue Optimization (JIQ-DIO), which increases the probability of load balancers having 

access to idle servers without additional communication overhead leading to improved response time. 

Findings: We simulated JIQ-DIO on CloudSim Plus 3.0 and compared it with standard JIQ and its 

different variants. JIQ-DIO was found to increase the probability of incoming requests being directed 

to idle servers and lead to more than two-fold improvement in response time across a broad range of 

parameters. 
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1. Introduction 
 

Servers hosted on-premises have traditionally used a 

centralized load balancer. However, as modern web and 

mobile applications move to the cloud, the use of multiple 

distributed load balancers over a server farm has become the 

preferred implementation as it is more robust, programmable, 

and cost-effective (Lu et al., 2011). 

A centralized load balancer oversees the entire incoming 

and outgoing traffic of tasks and the assignment of tasks to 

servers; hence it can keep track of the task queue at each 

server. Whereas in a distributed setup each load balancer, 

called dispatcher, is only aware of the tasks that it handles; 

hence dispatchers cannot track the task queues at servers. 

Additional communication between the servers and 

dispatchers is required for the dispatchers to have information 

on server queues for load balancing. However, as servers and 

dispatchers increase in number, information exchange 

between them becomes voluminous and an expensive time 

overhead making it impractical for the dispatchers to keep 

track of all server task queues ( Mitzenmacher, 2016). 

The Join Idle Queue (JIQ) algorithm was proposed to 

attain fast response time for distributed dispatchers with low 

communication overhead (Mitzenmacher, 2016). It was shown 

to perform better than other load balancing algorithms for 

distributed setups (Silva Filho et al., 2017) and has become the 

standard. Central to JIQ is decoupling the process of task 

assignment by dispatchers from the registration of idle servers 

at the dispatchers. Instead of dispatchers tracking server 

queues, idle servers register themselves with dispatchers. To 

facilitate this, each dispatcher maintains a data structure 

called the I-queue which contains a list of idle servers 

registered at the dispatcher. When a server becomes idle, it 

registers itself with the I-queue of one of the dispatchers which 

is selected at random. In this study, we observed that in a 

typical JIQ scenario many dispatchers persist with zero- length 

I-queues. Since the servers are blind to the I-queues of 

dispatchers, idle servers register themselves with the I-queues 

of randomly selected dispatchers. The distribution of idle 

machines across dispatcher I-queues is not uniform and 

allows zero-length I-queues to persist in some dispatchers. 

Dispatchers with empty I-queues assign incoming tasks to 

randomly selected servers leading to suboptimal average 

response time. We hypothesized that if dispatchers can make 

servers aware of their idle queues at the time of task 

assignment, the servers can have partial information on 

dispatcher I-queues and when idle they can register 

themselves with one of the dispatchers that have an empty I-

queue. This will help to mitigate the persistence of zero-length 

I-queues while keeping communication overhead low. As the 

probability of dispatchers finding idle servers increases, the  

 

average response times will improve. In this paper we propose 

an improvement to the JIQ algorithm called Join Idle Queue 

Dispatcher I-queue Optimization (JIQ-DIO) which implements 

this idea. 

Related work including the JIQ algorithm, and its variants 

are described in Section 2. The JIQ- DIO algorithm is described 

in Section 3. Implementation and simulation of the JIQ-DIO 

algorithm in CloudSim Plus (Calheiros et al., 2011), a fork of 

popular tool CloudSim  for simulating cloud computing 

infrastructures (Kunwar et al., 2018), is described in Section 4. 

The original JIQ algorithm and its other variants have also 

been simulated on the same platform for direct performance 

comparison with JIQ-DIO. Conclusions and future work are 

discussed in Section 5. 

 
2. Related work 

 
2.1. Load balancing with distributed dispatchers 
Cloud computing delivers computing resources and services 

over the internet. An important aspect of research work in 

cloud computing is load balancing which refers to the optimal 

allocation of service requests to evenly balance the workload 

across multiple servers. Load balancing improves response 

time and throughput for the users and leads to optimal 

utilization of resources and low downtime at the servers. 

Traditionally load balancing is performed by a single 

dispatcher who makes all decisions on task allocation to 

servers. This classical problem of load balancing using a 

centralized dispatcher has been researched extensively 

(Khiyaita et al., 2012; Li, 2017) and analytical expressions for 

optimizing average response time, power consumption and 

cost- performance ratio in heterogeneous multi-server setups 

have been described  (Rao et al.,2003). 

However, lately the use of multiple distributed dispatchers 

over a server farm has been preferred over a centralized 

dispatcher. The scalability and performance advantages of 

decentralized load balancing were recognized in peer-to-peer 

file sharing systems (Gao & Min, 2009; Grosu & Chronopoulos, 

2005; Yang & Garcia-Molina, 2003). Multiple heterogeneous 

servers distributing tasks among them using game theoretic 

algorithms in either cooperative or non-cooperative fashion 

were found to be advantageous over centralized load 

balancing (Al-Fares et al., 2008; Duan et al., 2014). In data 

centers, multi-rooted tree architecture utilizing software 

algorithms and communication protocols for balancing data 

flows across a network was found to be superior to a 

centralized setup (Bharti & Pattanaik, 2013; Cheung & Leung, 

2018; Harchol-Balter, 2021). Similarly, distributed load 

balancing was found to improve the resilience and scalability 

of data centers hosting cloud computing services (Badonnel &   
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 Burgess, 2008; Ousterhout et al., 2013). Distributed load 

balancing can be achieved in many ways such as by servers 

sharing load with peers (Cardellini et al.,1999; Hong, Y et 

al.,2006), DNS based load balancing (Kingman, 1961), or by a 

strictly hierarchical architecture where dedicated load 

balancers called dispatchers direct requests to servers 

(Ousterhout et al., 2013).  

This study considers cloud computing server farms having a 

hierarchical setup consisting of multiple distributed dispatchers 

and heterogeneous servers or virtual machines (VMs) as 

illustrated in Fig. 1. The server farm comprises of p physical 

servers hosting a total of 𝑘1 + 𝑘2 + ⋯ + 𝑘𝑝 = 𝐾 virtual machines 

(VMs). Service requests, or tasks, T1, T2, …, Tn are received by a 

router. Task arrival is modeled by a Poisson process and the 

processing times of tasks (or task lengths) are considered to be 

exponentially distribute (Narang et al., 2019). The router directs 

a service request to one of m dispatchers which assigns it to one 

of K VMs. The VMs maintain a task queue from which tasks are 

processed in a first-in-first-out (FIFO) order. 

 

 
 

Figure 1. A cloud computing infrastructure with distributed 

dispatchers: (A) service requests (or tasks) are received by a router 

and directed to dispatchers, (B) the dispatchers assign tasks to VMs, 

and (C) the VMs send responses back to dispatchers. 

 

In this scenario, a load balancing algorithm must address 

broadly three aspects: 

A) Routing of a service request to a dispatcher, or dispatcher 

selection, 

 

 

 

 

 

B) Assignment of a service request by a dispatcher to a VM, or 

task allocation, and 

C) Communication between VMs and dispatchers for the 

maintenance of task queues. 

 

2.2. A general model of Join Idle Queue 
The Join Idle Queue algorithm addresses load balancing in the 

context of large data centers or server farms that maintain 

hundreds or thousands of servers managed by distributed 

dispatchers (Mitzenmacher, 2016). The large compute capacity 

ensures that any given time there are idle VMs available to 

immediately process incoming service requests. The problem 

of load balancing is then simplified to finding an available idle 

VM for an incoming service request. JIQ solves this problem 

with minimal communication overhead between the 

dispatchers and VMs. In a JIQ model each dispatcher locally 

maintains an Idle Queue or I-queue which stores a list of idle 

VMs that are registered with it. An idle VM may be registered 

with the I-queue of only one dispatcher at any time. When a 

task arrives, a dispatcher assigns it to an idle VM from its I- 

queue and removes the VM from its I-queue. Notably, instead 

of dispatchers attempting to find idle VMs to fill their I-queues, 

the idle VMs have the responsibility of registering themselves 

with the I-queue of a dispatcher. The different variants of JIQ 

present various strategies by which idle VMs select a dispatcher 

to register themselves with. For instance, the standard JIQ 

algorithm, also referred to as JIQ-Random, uses the following 

strategies for the three key aspects of load balancing: 

A) Dispatcher selection: The router directs an incoming request 

to one of the dispatchers selected uniformly at random. 

B) Task allocation: A dispatcher with non-empty I-queue 

selects an idle VM uniformly at random from its I-queue and 

then removes this VM from its I-queue. A dispatcher with an 

empty I-queue selects a VM uniformly at random among all 

VMs. 

C) I-queue joining: When a VM becomes idle, it selects a 

dispatcher uniformly at random among all dispatchers and 

joins its I-queue. 

 

2.3. Variants of JIQ 
The standard JIQ or JIQ-Random uses a simple uniform-at-

random strategy for dispatcher selection, task allocation as 

well as I-queue joining. This is easy to implement as there is no 

need to track the state of the system. However, its 

performance is not optimal. A few different variants of the JIQ 

algorithm have been proposed to improve performance (Lu, 

2018). These are summarized in Table 1. 
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Table 1. Strategies used by different variants of JIQ algorithm: 

dispatcher selection refers to how the router chooses one among all 

dispatchers to which it directs an incoming request. Task allocation 

refers to how a dispatcher selects a VM to which it assigns the 

request. The selection strategy depends on whether or not the I-

queue of the dispatcher is empty. I-queue joining refers to how an 

idle VM selects a dispatcher I-queue to register itself with. The 

random strategy implies choosing any one among the available 

alternatives uniformly at random. The SQ(d) strategy refers to 

randomly sampling any d out of all available alternatives and 

choosing the one with the shortest queue. 

 

 

 

 

 

Algo 

Strategy 

 

 

 

Dispatcher  

Selection 

 

Task Allocation 

 

 

 

I-queue 

Joining 

Nonempty 

I-queue 

(Select 

from I-

queue) 

Empty I- 

queue 

(Select 

from all 

VMs)  

JIQ 

Random 

Random Random Random Random 

JIQ-

SQ(d) 

Random Random Random SQ(d), 

Shortest 

I queue 

JIQ-PoD Random Random SQ(d) Random 

JIQ-NE SQ(d) Random Random Random 

JIQ-E Random Random Random SQ(d) 

 

JIQ-SQ(d) makes a smarter choice in the I-queue joining 

strategy compared to JIQ-Random: 

JIQ-SQ(d) I-queue joining: When a VM becomes idle, it 

chooses d dispatchers at random and among those registers 

itself with the dispatcher which has the shortest I-queue length. 

JIQ-PoD, power-of-d-choices, improves upon the task 

allocation strategy: 

JIQ-PoD task allocation: A dispatcher with non-empty I-

queue selects an idle VM uniformly at random from its I-queue 

and then removes this VM from its I-queue. A dispatcher with 

empty I-queue selects a subset of d VMs from all VMs, and 

among these d VMs assigns the task to the VM with the shortest 

task queue. 

JIQ-NE, non-empty, improves the strategy for dispatcher 

selection: 

JIQ-NE dispatcher selection: The router chooses d 

dispatchers at random and among them selects the first one 

having a non-empty I-queue for routing a new task. If none of 

the d dispatchers has a non-empty I-queue, then the dth 

dispatcher is chosen irrespective of its I- queue status. 

JIQ-E, empty, is like JIQ-SQ(d), however, the difference is in 

that JIQ-SQ(d) seeks the dispatcher with shortest length I-queue 

whereas JIQ-E seeks a dispatcher with an empty I- queue: 

JIQ-E I-queue joining: When a VM becomes idle, it chooses 

d dispatchers at random and among those registers itself with 

the first dispatcher that has an empty I-queue. If none of the d 

dispatchers has an empty I-queue, then the dth dispatcher is 

chosen irrespective of its I-queue status. 

Also, JIQ-SQ(d) and JIQ-PoD probe d servers 

simultaneously whereas JIQ-NE and JIQ-E do the probing 

sequentially to reduce the communication cost. 

In the same spirit, the present research preserves the 

general model of JIQ while improving upon the I-queue joining 

strategy. 

 

3. Join Idle Queue Dispatcher I-queue Optimization 
 

As seen in Table 1, in JIQ and its variants idle VMs register 

themselves with the I-queues of dispatchers selected by 

random or by the SQ(d) method. Through simulation studies 

we noted that this approach allows zero-length I-queues to 

persist in dispatchers which may lead to suboptimal 

assignment of tasks to VMs and hence increased response 

time. The proposed algorithm, JIQ dispatcher I-queue 

Optimization, aims to increase the number of dispatchers that 

have non-empty I-queues without increasing the overhead of 

communication between dispatchers and VMs. To achieve 

this, a list of dispatcher I-queue lengths is kept with the VMs. 

This list is updated opportunistically when dispatchers assign 

tasks to VMs. At the time of task assignment, a dispatcher also 

communicates its I-queue length to the VM which is stored by 

the VM in its list of dispatcher I-queue lengths. As different 

dispatchers and VMs communicate during the process of task 

assignment, the VMs gradually build up an approximate state 

of dispatcher I-queue lengths without incurring additional 

communication overhead. The VMs may never build a 

comprehensive view of all dispatcher I-queue lengths and the 

values may not be up to date, however the partial view suffices 

for VMs to register themselves with dispatchers with empty I-

queues when they become idle. This leads to a reduction in 

the numbers of dispatchers with empty I-queues, hence 

increasing the probability of tasks finding a dispatcher with 

non-zero I-queue and being processed immediately. Hence, 

there is an improvement in the average response time. 

JIQ-DIO compares with other JIQ algorithms listed in Table 

1 as follows: 

• Dispatcher selection: Random 

• Task allocation: 

• Non-empty I-queue: Random VM from the I-queue 

• Empty I-queue: Randomly to any VM 

• I-queue joining: Lookup the VM’s list of dispatcher I-

queue lengths. If there are dispatchers with empty I-queues in 

this list, select any one of them at random. Otherwise select 

any dispatcher at random. 
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3.1. Pseudocode of JIQ-DIO 
The JIQ-DIO algorithm has been simulated in CloudSim Plus 

following the pseudocode presented below. In CloudSim 

terminology tasks are called cloudlets. 

 

1.Cloudlet generation and processing module 
• Generate n cloudlets with lengths (task size) as per 

exponential distribution 

• Set the cloudlet arrival times as per Poisson 

distribution 

• For each cloudlet to be scheduled: 

o Select a dispatcher uniformly at random from all the 

dispatchers 

o IF (dispatcher has non-empty I-queue) THEN 

• Select at random an idle VM in the dispatcher I-queue 

• Assign the cloudlet to the selected VM for processing 

• Remove the selected VM from the dispatcher’s I-queue 

• In the selected idle VM also set the length of the 

selected dispatcher’s I-queue 

ELSE 

• Assign cloudlet to a random VM. 

• Capture how many times this happens, i.e., no idle VM 

found. 

 

2.Listener: Cloudlet completion module 

• Decrement task queue length at VM 

• IF (task queue length == 0) THEN 

o VM is Idle, ready to be assigned to a dispatcher 

o Look up the list of dispatcher I-queue lengths (info 

embedded into VMs during cloudlet processing module) 

o IF (number of dispatchers with zero I-queue length > 0): 

THEN 

• Assign Idle VM to first dispatcher found with empty 

idle queue ELSE 

• Assign idle VM to a random dispatcher 

 

4. Results 
 

4.1.  Simulation framework 
The simulations in this study have been performed using 

CloudSim Plus, a fork of CloudSim. New modules were 

developed in CloudSim Plus to simulate JIQ-DIO as well as the 

other five JIQ variants listed in Table 1. The simulation model 

was described previously in (Narang et al., 2021), Section 7. In 

summary, cloudlets are generated dynamically with arrival 

times modeled by a Poisson process. The cloudlets are 

considered independent of each other and of the same 

priority. Cloudlet lengths are exponentially distributed. The 

VMs are modeled as having heterogeneous processing 

capacities in progressive increments of 1 MIPS step-ups while 

being homogeneous in other machine characteristics 

including RAM, bandwidth and storage. The parameters used 

in simulations in the present study are shown in Table 2. 

 
Table 2. Parameter values used in simulations. 

 

Parameter Value(s) 

Number of hosts 60 

Number of virtual machines 180, 360, 600 

VM processing capacity (MIPS) 

(heterogeneous) 

20, 21, 22, …, 

20+(n-1) 

Number of dispatchers 10, 36, 60, 120 

SQ(d) 0.3, 0.5, 0.6 

Number of cloudlets 10000, 30000, 

50000 

Cloudlet length distribution Exponential 

Mean cloudlet length 800 

Cloudlet arrival process Poisson 

Mean arrival time for cloudlets 1, 2 

 

4.2. Performance metrics 

The algorithms are compared on the following performance 

metrics which are key service level measures for cloud-based 

scenarios (Narang et al., 2021). 

 

Average response time per task (cloudlet): 

 

Average Response Time = F – A + Tdelay, 

 

where A is the arrival time of the task, Tdelay is the transfer 

time of the task, and F is the time to complete the task. For 

simulations in this work Tdelay = 0. 

 

Makespan: It is the completion time of the last cloudlet, 

which implies that all submitted tasks (cloudlets) have been 

processed by the pool of VMs. 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max (𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑠) 

 

Resource utilization: It is the average utilization of VMs where 

the utilization of a VM is defined as the difference of its busy and 

idle times through the length of execution, i.e., makespan. 

 

𝑟𝑢 =
𝑅𝑟𝑡−𝑅𝑖𝑡

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
           𝐴𝑣𝑔 𝑅𝑈 = ∑ 𝑟𝑢𝑛

𝑖=1 , 

 

where 𝑅𝑟𝑡 and 𝑅𝑖𝑡 are the VM running time and idle time 

respectively, and n is the number of VMs. Its value ranges 

between -1 (completely idle) and 1 (fully busy). 
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Figure 2. Average response time with varying number of VMs and frequency of cloudlet arrivals.  

T-test was performed to identify significant differences in the average response times of various algorithms 

 in comparison to JIQ-Random. Only significant p-values (p < 0.05) are shown. 

 

 
 
 

 

Figure 3. Average response time with varying number of dispatchers. 

 Mean cloudlet arrival time = 1s, no. of VMs = 360. Statistical significance (p-value) of the variation 

 in the average response time with the number of dispatchers was estimated using the Kruskal Wallis test. 
 
 

 

4.3. Simulation results 
Simulation was performed in triplicates for each set of parameter 

values and the performance metrics were summarized by their 

mean and standard deviation over replicates. 

Compared to standard JIQ and its variants, JIQ DIO had a 

consistently better response time which was even more 

pronounced as the number of VMs was increased (Fig. 2). In 

these simulations, JIQ-DIO led to almost 2-fold improvement  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the response time with good statistical significance (p < 

0.05). Interestingly, varying the number of dispatchers had 

little impact on the average response time as shown by lack of 

statistical significance (p > 0.05) in Fig. 3. It could be argued 

that performance improvement obtained with JIQ-DIO might 

be transient. To test this, the number of cloudlets increased 

from 10000 to 50000. Simulation results show that there is no 

drop in the performance of JIQ-DIO over time (Fig. 4). 
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Figure 4. Average response time with varying number cloudlets.  

Mean cloudlet arrival time = 1s, no. of VMs = 600, number of dispatchers = 60 

 
 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation results were used to compare the probability of 

dispatchers finding empty VMs in various JIQ implementations. 

It was mentioned above that our implementation of JIQ 

maintains a counter to track the number of times a dispatcher 

has an empty I-queue when a task is routed to it. The data 

collected from this counter is shown in Fig. 5. The JIQ-Empty 

and JIQ-NE encountered an empty I-queue 35,111 and 35,149 

times respectively on average among 50,000 cloudlets which 

implies that there is greater than 70% probability of 

dispatchers having empty I-queues. The frequency (out of 

50,000) is 1981 or 3.96% for standard JIQ, 1970 or 3.94% for JIQ-

PoD, 200 or 0.4% for JIQ-SQ(d) and 8 or 0.0016% for JIQ-DIO. 

These results favor the hypothesis that JIQ-DIO decreases the 

probability of dispatchers with empty I-queues which in turn 

improves the average response time. 

No significant differences were observed between the 

various JIQ variants in terms of the makespan and average 

resource utilization metrics. 

It is worth noting that the performance of JIQ and its 

variants reported in previous works (Mitzenmacher, 2016; 

Narang et al., 2021) is mostly considering a homogeneous set 

of VMs, whereas this work simulates a heterogeneous setup 

and uses a more generic simulation tool, CloudSim Plus. 

Hence, the simulation results concerning average response 

times presented herein might be more generalizable in 

comparison to those presented previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. The number of times a dispatcher has an empty  

I-queue when a task is routed to it. The data is aggregated over all 

tasks and all dispatchers throughout a simulation. The bars show the 

mean value, and the error bars show the standard deviation over 

three replications of the simulation. Number of VMs = 600,  

number of dispatchers = 60, number of cloudlets = 50000, mean 

cloudlet arrival time = 1s. 
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5. Conclusion and future work 
 
The Join Idle Queue algorithm is well suited for load balancing 

in distributed scenarios which are now commonplace in cloud 

computing. Over the years a few improvisations have been 

proposed to the initial work to yield better performance for 

specific scenarios. We proposed a new variant, JIQ dispatcher 

I-queue Optimization, and through simulations on a generic 

heterogeneous setup showed a two-fold improvement in 

response times across a broad range of parameters. We 

showed that JIQ-DIO results in a higher probability of 

dispatchers having access to idle machines leading to this 

performance gain. The reliability of the simulations was 

ensured by replication of the experiments followed by 

statistical analysis of the results. Rigorous mathematical 

evaluation of JIQ- DIO is left to a separate communication. In 

terms of future work, the model can be improved to attain a 

close to uniform distribution of idle machines among 

dispatchers to realize even further improvements to response 

times. Additional optimizations can be made to improve upon 

other performance metrics which would require taking into 

consideration additional parameters beyond the standard few 

used in this work. 
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