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ABSTRACT

This paper deals with the switching signal design to robust exponential stability for uncertain discrete-time switched
systems with interval time-varying delay. The lower and upper bounds of the time-varying delay are assumed to be
known. By construction of a new Lyapunov-Krasovskii functional and employing linear matrix inequality, some novel
sufficient conditions are proposed to guarantee the global exponential stability for such system with parametric
perturbations by using a switching signal. In addition, some nonnegative inequalities are used to provide additional
degrees of freedom and reduce the conservativeness of systems. Finally, some numerical examples are given to
illustrate performance of the proposed design methods.

Keywords: Switching signal, exponential stability, discrete switched systems, interval time-varying delay, additional

nonnegative inequality.

1. Introduction

A switched system is composed of a family of
subsystems and a switching signal that specifies
which subsystem is activated to the system
trajectories at each instant of time [1]. Some real
examples for switched systems are automated
highway systems, automotive engine control
system, chemical process, constrained robotics,
power systems and power electronics, robot
manufacture, and stepper motors [2-14]. Switching
among linear systems may produce many
complicate system behaviors, such as multiple limit
cycles and chaos [1]. It is also well known that the
existence of delay in a system may cause
instability or bad performance in closed control
systems [15-17]. Time-delay phenomena are
usually appeared in many practical systems, such
as AIDS epidemic, chemical engineering systems,
hydraulic systems, inferred grinding model, neural
network, nuclear reactor, population dynamic
model, and rolling mill. Hence stability analysis and

stabilization for discrete switched systems with
time delay have been researched in recent years
[2-4,7,9-10, 12-14].

It is interesting to note that the stable property for
each subsystem cannot imply that the overall
system is also stable under arbitrary switching
signal [4, 6, 8-9]. Another interesting fact is that the
stability of a switched system can be achieved by
choosing the switching signal even when each
subsystem is unstable [5, 7-8]. In [7], a switching
signal design technique is proposed to guarantee
the asymptotic stability of discrete switched
systems with interval time-varying delay. In [14],
the switching signal is identified to guarantee the
stability of discrete switched time-delay system.
Additional nonnegative inequality terms had been
used to improve the conservativeness for the
obtained results in our past results [4-5]. Hence the
global exponential stability problems for uncertain
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switched discrete systems with interval time-
varying delay under some certain switching signal
will be considered in this paper. Some numerical
examples are provided to demonstrate the use of
obtained results. From the simulation results, our
proposed approach provides some less
conservative results.

The notations are used throughout this paper. For

a matrix A, we denote the transpose by AT,
spectral norm by HA , symmetric positive (negative)
definite by 4>0 (A4 <0), maximal eigenvalue by
A (A) , minimal eigenvalue by A . (4), nxm

‘min

dimension by A( A< B means that matrix

nxm) *
B— A is symmetric positive semi-definite. 0 and
I denote the zero matrix and identity matrix with
compatible dimensions. diag{--} stands for a
block-diagonal matrix. For a vector x, we denote

the Euclidean norm by ||x|| Define N={,2--;M,
N>1, max HOH)‘(kJFQX"

O=—ryr,—1yH,

kas =

2. Problem statement and preliminaries

Consider the following uncertain discrete switched
system with interval time-varying delay of the form

x(k+1)= A, g x(k)+ Ay x(k —r(k))

x(0)=9(6). 6=

~ry,—t, +L--,0, )

where x(k)eR" is the state vector, x, is the
state at time k defined by
x,(0)=x(k+0), VOe{-r,,—r, +1,---,0}, switching
signal law o(k,x(k)) is a piecewise constant
function depending on the state in each time. The
switching signal o(k,x(k)) takes its value in the
finite set N and will be designed. Moreover, the
o(k)=i implied that the i—th subsystem
(4.4,) is activated, and ¢(k)eR" is a vector-
valued initial state function. The time-varying delay
r(k) is a function from {0,1,2,3,---} to
{0, 1,2,3, } and satisfies the following condition:

0<r, <r(k)<r, (2)

where r, and r,, are two given positive integers.

The matrices 4,4, are assumed to be
A, = 4+ M (k), A,=4, +AAdi(k)’ where
4,4, eR™, i=12,-.-,N, are some given

constant matrices. A4 (k), A4, (k). i=12,--,N,

are some perturbed matrices and satisfy the
following conditions

[AA7(k) AAd,'(k)] :MiF;(k)[Nli N2i] ®)
where M, and N, j=12 i=12,---,N, are
some given constant matrices of system with
appropriate dimensions, and F(k), i=1,2,-,N,

are unknown matrices representing the parameter
perturbations which satisfy

Fl(k)F(k)<1 (4)

i

In order to derive our main results, the Lemmas
are introduced as follows:

Lemma 1. [4] Let U, V, W and M be real matrices of
appropriate dimensions with M satisfying M =M",
then M+UVYW+W'VTUT <0 for all V7V <1 .,if and
only if there exists a scalar £>0 such that

M+&' UU +&WW=M+&"-UU +&" () (s)<0

Lemma 2. (Schur complement of [18]). For a given
W W,
VVlg W22
then the following conditions are equivalent:

matrix =[ } with w,, =w, W,, =W},
() W <0, (2) Wy, <0, W, =W, W5, W,; <0.
Define the some sets

Qo PU,A)={xeR :x (&% A'P4-P+UK<0},  (5)

where 0<a <1, P>0,and Q> 0, then we obtain
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N-1
> QN -\
Jj=1 Jj=1

Ol
=
I

Q  ®

From the above sets definition, then the switching
law is designed as follows:

oc=i,ifxeQ, ieN, (7)

where ﬁi is defined in (6).

The key lemma can be easily proved by the similar
way in [7].
Lemma 3. If there exist some scalars 0<a <1,

- N i
0<g <1, ieN, and zaizl, some matrices
i=1

o[-
P>0 andQ>0,suchthatzq.{ U ATP}
i=1

<0
* P

: N —
Obviously, we can obtain v, =9 and QO NQ, =g,
i#j,i,j=12,---,N,where @ is an empty set and

ﬁi is defined in (6).

Remark 1. Consider a discrete switched system:
x(k+1) = A, x(k)-

Now we can choose the Lyapunov function as
V(xk ) =a . x" (k)Px(k)

where matrix P > 0. We can obtain

AV(x)=a ™ o (k-+)Polle+1) " (k)Pafk) -
Assume o(k,x(k))=geN, then we have
AV(x)=a x" (kN 4" P4, — P+U-U (k)
where the matrix U > 0.

If the condition in Lemma 3 is satisfied, then we
can get

T
{—P+U AqZP }<0 (8)
* -a -P

By Lemma 2 with (8), then we can have the
following result:

X (ka - AT P4, - P+U)x(k)<0, wkeQ,
AV(x,)<0
To achieve the exponential stability of discrete

switched system, the condition in Lemma 3 is a
reasonable choice and feasible setting.

3. Main results

Theorem 1. System (1) is globally exponentially
stable with convergence rate 0 < @ <1 for any time-

varying delay r(k) satisfying (2), if there exist some
nxn matrices P>0, >0, T>0, 0>0, U >0,
R >0, i=1,2,3,4, R, eR*", R, ,eR"™,
j=1,2,3,45,
qg=12,---, N, such that the following LMI conditions
are feasible:

|:Ri11 Ri12

and the positive numbers & ,

} >0,i=12345, (R, =R,), (9)

it
=
m
K
1
Ry

EgE R By By <0sJ=12,9=12--3N, (10)
* £ qu

Y. |-P+U AP

Zal{ " Y }<0 (11)

i=1 * —a“ P

where

!, =diagl-a® 4'P4,~U+S5+(r,, +1)-0+T
_a2rm S _aZrM Q _aZrM T}

2r, T pT
+a '(rnz Ry R W W Rllz)

2ry

ta '[rM'R211+rM'R311+rMm'R511

5
+2 (lesz + W/ R, )

Jj=2

22, =diagl-a? - A'PA,~U+S+(r, +1)-0+T
—a’-S —a™-Q -a -T}
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+a? -, Ry, + Ry W, + W/RE,)

+a’ '[”M Ry + 1y Ry + 1y, Ry

5
+> (R, + W RE,)

j=2
AP (4, -D)R,

_ |0 0

Tl P AR,

0 0

(4,-D'R, (4,-D'R, (4,-1)'R,

0 0 0
AL R, ALR, AL R,

0 0 0

R R R R
Ezzq=—diag{a2-P -4 2 3 4}

rm rMm rM rMm

0 & N }f jj‘é ‘ g
- 0 0 | J— 1 ! )
=13q 0 g, 'Nqu Sosg = izgq g
0 0 i
RM, 0

B, :—diag{eq g, -I}, Pogm =1y =1,

m?

i =2 i) G54), =l 1 0 0]

nx4n

=l 0 =1 0. W=l 00 -1,
Wo=l0 0 1 =1}, W=0 1 -1 0],
Proof. The  Lyapunov-Krasovskii  functionals
candidate is given by
V()= V(x,) (12)
where
Vi(x,)=a" - x"(k)Px(k) (13)

Vo(x)= Y a7 x"(0)Sx(0) (14)
)= Sa < (0)rx(0) (15)

Z()fw T Qx(e) i Sa’w-xT(é’)Qx(e)

O=k—r(k) I==ry +1 O=k+l
(16)
0 k-1
Vs(xk)= Z zaiw'ﬂT(e)Rﬁ(g) (17)
I==r, +1 O=k-1+]
0 k-1 0
Vlw)= 2, 2o (O)R(0)+
l——r(k)+1 O=k—1+
Y a0kt (O)R1(0) (18)
I=—ry+1 O=k+l
0 k-1
)= 2 Xa™ 0" (0)Rn(0) (19)
I==ry+1 O=k-1+1
—r,=1 k-1
-5 S a7 0Ralo) (20)
I=—ry, O=k+l
where P>0, S>0, O0>0, T>0, R >0,
i=1234, and 7(0)=x(0+1)-x(¢). Taking the
difference of Lyapunov functionals 7 (x,),

j=12,3,4,56,7,8, along the solutions of system
(1) has the form

—x" (k) Px{)]

(21)

x" (ke +1)Px(k +1)

(22)

™ x" k rM)Tx(k rM)]

AV ) = (0)Tsl) -

(23)
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Y+ (6)0x(0)

O=k—r(k+1)+1

- Za’” "(0)ox(6)

AVAt(xk)z

O=k—r(k)
+a (=, )2 (k)Qx(k)
k—r,
- Yax(0)ox(0)
O=k—ry +1

By some simple derivations, we have

(0)ox(6)- Za*” "(0)00)

9:k—r(k+1)+1 = k—r(k)
2 x (k)oxk) + Za‘w "(0)ox(0)
O=k—r(k+1)+1

za-za r Qx(&)

O=k—r(k)+1
_ g2k 'XT(

k- r(k_))Qx(k —r(k))
<a 2" (k)odk)+ Yl 2" (0)ox6)

- S 0oo)
< (o (6)
w10 Y (0)0x0)
k—r(k)M)QX(k—r(k))

P ‘UT(k)Rlﬂ(k)

- 2a” ' (O)Rn(6)

O=k-r,,

o 2k ) -xT(

AVi(x)=a

0 k

A )= X Yea 0" (0)Rn(0)

I=—r(k+1)+1 O=k+l
0

=Y S a7 (O)Ra(6)

I=—r(k)+1 O=k-1+1

£ 3 a0 k-1 (O)R(60)

I==ry +1 O=k+I+1

—~ Z Za*‘" O—k—1+1)-1"(8)R,1(6)

I==ry+1 O=k+l

(24)

(25)

(26)

(27)

By some simple derivations, we have

0 k

> a1 (0)R,n(0)
I==r(k+1)+1 O=k+l
0 k-1

- 2 2a e (0)R:n(0)

I=—r(k)+1 O=k—1+]

a - r(k+1)-n" (k)R (k)

LY Sa ey OrA0)

I==r(k+1)+1 O=k+l

0
= > @ g (k=14 DRk —1+1)
I=—r(k)+1
N
- > >a " (0)Rn(0)

I=—r(k)+1 O=k+]

a1y (k)R 7Ak)+ (:ZH Za .17 (O)R10)
- SOt S S st
s on (R 3 0o (ORa0)
P Sa o Or(0) (28)

I=—ry +1 O=k+1

S S a0 kD)7 (0)R(0)

I=—ry +1 O=k+I+1

7

3 Se 0kt @rato)

I==ry +1 O=k+I

= > (D) k)R (k)

I=—ry +1

—T k—1
+ Y Y (0-k-1)n"(0)Rn(0)
I==ry+1 O=k+[+1

—r,

-y kia-” (O-k-1)-n"(0)R,n(0)

I=—ry+1 O=k+I+1

_ Zr: za-za T (19)

I==ry +1 O=k+I

—g .((FM s D T j k)R, (k)
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- Ya-n"(0)Rn(0) (29)

I=—ry+1 O=k+l

AV (x)=a n, " (k)Ryp(k)

- oy O)Rn(0) (30)
O=k—ry

AVs(xk): a “(ry _rm)'nT(k)Rﬂ?(k)
k—r(k)-1

- Za 477(9)
kr,-1

S ORae) @
O=k—r(k)

Then we can obtain the following result from
(21)-(31)

(x,)= iAV
2k {a 22T (k+1)Px(k +1)
( - P+S+(rMm+1) O +T x(k)
—a’ x"(k—r, )Sx(k—-r,)
xT(k 7 )Tx(k rM)
o’ - x" (k= r(k))ox(k - r(k))

+n (k)[rm R 4y, Ry 1, R +1y, 'R4]’7(k)

e S (0)RA(0)

2q4

O=k-r,,
k-1 k-1
> 0" (@)Rn(0)+ D 0" (0)Rn(6)
O=k—r(k) O=k-ry,
k—r(k)-1 k-r, -1
+ ST ORmO)+ DT (ORmO) (32
O=k-ry O=k—r(k)
Define

xT(k—rM)]
x(k —r(k))

FK)=p @) (k=) (k=)

From LMis in (9) with S (6) = x(k)

and the similar equations, we have

b i e

=T, -ﬂ(k)TleB(k)—i-Zﬂ(k)T(k)Rm Zi](@)

O=k-r,

m

a~

-1

+ 221" (ORn(0)=0 (33)

O=k-r,,

Ll vl

]
;7.

:r(k)'IBT(k)Rzllﬂ(k)"‘2ﬁT(k)R212 > 77(‘9)
O=k—r(k)
b S (ORa(0)20 (34)

O=k—r(k)

Sl Tl

=n,f ( ) 311ﬁ( +2 T(k)R312 277

O=k—r,
k-1

+ Y n"(0R7(6)=0 (35)

O=k-r,

Lol L)

(=) (R U+ 287 (R Y1(0)
ST ORA(0)20 (36)

holls sTel

=(re)=r, ) B (k)Rs, Bk} + 25" (k)R Zn

+ 277 0)R4n (37)

Assume the particular case o(k,x(k))=gq, then
we can obtain the following result
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¢ .{a2rm '[rm 'ﬁT(k)Rmﬂ(k)
k P ]+ 277 9)R177 :|}

O=k-r,,

=g [(k)ﬂ (k)R,,, (k)
W)kt SO }}
+a72k 'Jlaer '[rM 'ﬂT(k)Rmﬁ(k)

Somo

O=k—ry,

+a_2k'{aer -[(rM—r(k)) B’ ( ) 411:3
hgmw}

v g () -, )- BT ()RS, Bk
+W&Mr&%h&%ﬂ}

AV(x, )+a™

+2p" ( ) 112[x(k)

+2p" ( ) 312[ ( k ”M

+28" (k)R Jod k—r(le)) {1,

<a o x" (k+1)Px(k +1)
+xT(k)(—P+S+(rMm+1)-Q+T)x(k)
—a’ x"(k—r,)Sx(k—r,)

—a X" (k—r, Tx(k—7r,)

3" (ke = r(k))Qxlke — (k)

W R+ Py Ry + 1y - Ry + 14y, - R ()
+a '[rm 'IBT(k)Rmﬂ(k)
+ZIBT(k)Rllz[x(k)_x(k_rm)]]

(

2ny |

-a
+n"(k

+a2rM l: M} Mm 'ﬂT(k)Rznﬁ(k)

+27 (k)Ryp, [x(k)~ x(k = r(h))]]
+ o |, - BT (k)Ry,, (k)
+2p (k)Rm x(k) x(k_rM)]]

o { (rM—r(k)) 2 ”’“]rMm- (KR, A(K)
28 Rl ), )]
T {(r(k) , )} (k)RSH,B(k):I

rMm

+ 2ﬂT(k)R512 [x(k - rm)_ x(k - r(k))]}]
+ 2ﬁT(k)R512 [x(k - rm)_x(k _r(k))]}]

—a [\ (k)@ - ATPA, - P+U (k)
+ B (k)-(e()-E, +(1-2(k))- 5, )Bk)]  38)

Where g(k)= rk)-r,
rMm
arp ap]
q q
= ; 0 il 0
E,=5,,+ = (az P) _
S DT ArP
0 0
B _
4-1) (41
0 R 0 39
A4 O | Rty R R R) O (39)
q q
0 0
with Zj, 7, i=12, j=12345, ¢=12,--,N,

are defined in (10).

Since 0<e&(k)<1, the &(k)-5, +(1-&(k))-E, is a
convex combination of Eq and Ezq. Hence
8(k)-§1q+(1—5(k))-§2q<0 will imply Elq <0 and

E,, <0

é,.q:{“:‘f ”q}rA F (k)T +T,F/ (k)AL (40)

'_‘22q
where
N=pooo MP MR MR MR MR)
=[N, 0N, 000000 andZE,,

By, » Ep, are definedin (10).

By the condition (11) with Lemma 3 and the switching
signal in (8), we can obtain the following result
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X (ke AL P4 —P+Udk) <0, (k) eQ,  (41)

By Lemmas 1-3 with above conditions, the conditions
E, <0, i=12,in (10) will imply £, <0, i=12,
in (40), the conditions él_q <0, i=12, in (40) wil

also imply E.q <0 in (39).Therefore, the conditions

E,<0, i=12, in (39) are equivalent to
e(k)-E, +(1-¢&(k))-5,,<0 in (38). From the
condition 41) and the matrix

e(k) 5, . +(1—g(k))~§Qq <0 in (28) with (9), we have

AV(x,)=V(x,.,)-V(x,)<0, k=0,1,2,3,--
V(x,.,)<V(x,), £=0,1,2,3,-

This implies

V(x,)<V(x,), £=0,1,2,3,--,

& A (P <V, ) <V ()< 6, |

where

51 :ﬂ'max(P)-i_rm '/’Lmax(S)-i_rM 'ﬂ’max(T)

+(r15[ _erm +rm)'/lmax(Q)+rrj '/Imax(Rl)
+[r,‘24 +%(rM +7r, +l)-(rM —rm)-(rM —l)j
'ﬂ’max(RZ)JrrA%[ 'ﬂ’max(R3)+(rM _rm).rM 'ﬂ’max(R4)

By some simple derivations, we have

k) <{&/AulP)-al

Therefore, we conclude that the system (1) is
exponentially stable with convergence rate 0<a <1.
This completes this proof.

» k=0,1,2,3,---.

s

Remark 2. By setting o =1 in Theorem 1, the global
asymptotic stability of system (1) can be achieved.

Remark 3. In Theorem 1, some additional
nonnegative inequalities in (33) - (37) are proposed.
Rj >0, ] — 192’3,4 , R,'11 c SR4n><4n , Ri12 e iR4n><n ,

i=1,2,3,4,5,in(9), are determined appropriately by
LMI toolbox of MATLAB.

4. lllustrative examples
Example 1. Consider the system (1) with no

uncertainties and the following parameters:
(Example 3.1 of [7])

054 1.02 -0.01 -0.06
A1 = ’ Adl: ’
-017 -031 001 0.04
—-0.01 -0.06 011 018
AZZ ’Ad2= .
001 0.04 -0.03 -0.04
In order to show the obtained results, the
allowable delay upper bound and switching sets

that guarantees the global exponential stability
for system (1) with (42) is provided in Table 1.

N=2,

(42)

The delay upper bound and switching sets of switched
system (1) with (42)

a=1, r, =1, Ty =5 globally
asymptotically stable (choose ¢ =0, =05)

—38.8254x,x, —31.6356x> <0
,Q,=R"-Q,.

7] Q_{[xl x| e R :-12.0213x7 }

a=1,r,=1,r, =187 globally
asymptotically stable (g=01and;=09)

5 [x, x] eR?:2.9225¢
+10.1092x,x, +7.7291x* <0

our ,Q, =R -0

results a=0.85, r,o=1,r,=7 globally
exponentially stable (¢ =0.1andx, =09)

— [x, x| eR?:1.5344x7
Q =
+5.7566x,x, +5.0051x” <0

0,-% -0,

Table 1. Some obtained results
for our proposed results in this paper.

Example 2. Consider the system (1) with the
following parameters: (Example 3.1 of [10])
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B 0.8 0.2 -01 0
N_27 Al = ’ Ad1: ’

0 0.91 —0.1 -0.1

Y 03 0 Loforz 0 o1 o

1o 058 " o011 o11] ' o ol

001 O
Ny=Np=Ny=Ny= 0 001 (43)

In order to show the obtained results, the allowable
delay upper bound that guarantees the global
asymptotic stability for system (1) with (43) is
provided in Table 2.

The delay upper bound and switching sets of switched
system (1) with (43)

[10] 7.=1,1,,=5 (under arbitrary switching signal)

[4] 1. =1, 1,06 (under arbitrary switching signal)

r,=1,1,=11 (¢ =01landa, =09)

(o]

Our [x, x,] eR?:18.6759x]
result 1= 2

+0.6803x,x, +0.4395x” < 0
O, =R"-0,.

Table 2. Some delay bounds to guarantee the
global asymptotic stability (ar = 1) of system.

Example 3. Consider the system (1) with the
following parameters:

N=2 4- 07 02 - 02 -02
0.1 071 ~01 -02
L[ 04 —oor] - _[o2 o1
2712001 058 | 7|01 0.1
012 0 001 0
1 2 |:0 012:| Al A2 'Bl B |:0 001:|

(44)

In order to show the obtained results, the allowable
delay bounds that guarantee the global asymptotic
stability for system (1) with (44) is provided in Table 3.

The delay upper bound and switching sets of
switched system (1) with (44)

r,=1,r,=2
(under arbitrary switching signal)
r,=1,r,=3

[10]

(under arbitrary switching signal)
r,=2,r,=3
(under arbitrary switching signal)
r.=1,r,=4/(
a,=0.1and a, =0.9)
5 - [x, x| eR?:3.4451x7
+3.4325x,x, + 1.7489x* <0

— o0 =
Our =R Q.
result

(4]

r,=2,1r,=4(
a,=0.1and a, =0.9)

5_{[% x,] € R?:1.2306x7 }

+1.5704x,x, +0.7528x> < 0
,Q,=R"-Q,.

Table 3. Some delay bounds to guarantee
the global asymptotic stability (« = 1),0f system.

Example 4. Consider the system (1) with the
following parameters: (Example of [9])

N2 407 0 0.15 0
71008 095 T | -0.1 —0.1]

[o7 0 [o14 0 0.05
AZ_[O.08 0.9]4’2{—0.1 —0.1} Ml:{ 0 }
005
%{_002}, N, =[02 03], N,=[-01 -0
N, =[0 -0.1], N,=[-03 —02). (45)

In order to show the obtained results, the
allowable delay bounds that guarantee the global
asymptotic stability for system (1) with (45) is
provided in Table 4.
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The delay upper bound and switching sets of 5. Conclusions
switched system (1) with (45)
(] r,=2,r1,=6 In this paper, the global exponential stability for

uncertain discrete switched systems with interval
time-varying delay has been considered. Some
additional nonnegative inequalities and LMI

(under arbitrary switching signal)
r,=1,r,=10

(under arbitrary switching signal) approach are used to guarantee the proposed
r,=2,r,=10 results of the system. The obtained results have
(under arbitrary switching signal) shown to be less conservative via some

[4] numerical examples. In [19-20], the practical
applications have been successfully designed in

the different control fields.

r,=4,rn,=11

(under arbitrary switching signal)
r,=8,r,=12

(under arbitrary switching signal) Acknowledgments

r, =1, r,=11 (¢ =01anda, =09)
_{[xl X, ]T e R’ :-0.7576x;

The research reported here was supported by the
} National Science Council of Taiwan, R.O.C. under grant

ﬁl no. NSC102-2221-E-507-006.
+18.2930x,x, +50.3305x> <0
0,-%-0,.
r,=2,1,=11(a =0.1and o, =0.9)
5 :{[xl x| € R :-0.1590x }
+1.4113x,x, + 4.4661x” <0
Our ,Q, =R -Q,.
result 1~ 4, 1, =13 (¢, =0.1and @, =09)

_{[x1 x,| e R?:-0.7476x] }

Q
b 49.8448x,x, +29.7229x> < 0

0,-%-0,.
r,=8,1,=16 (¢ =0.1and a, =0.9)
5 :{[xl x,]| € R>:-0.4987x }

+2.8498x,x, +8.0945x% <0

O,-%-0,.

Table 4. Some delay bounds to guarantee the
global asymptotic stability (¢ = 1) of system.

Note that comparing the proposed examples, we
can design a new switching signal to guarantee
the global exponential stability for system (1). At
the same time, less conservative results are
reached without tuning any parameters.
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