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ABSTRACT 
Anisotropic Conductive Film (ACF) is essential material in LCM (Liquid Crystal Module) process. It is used in bonding 
process to make the driving circuit conductive. Because the price of TFT-LCD is getting lower than before in recent 
years, the ACF has relatively higher cost ratio. The conventional long bar ACF cutting unit is changed into short bar 
ACF cutting unit in new bonding technology.  However, the new type machine was not optimized in process control 
and mechanical design. Therefore, the failure rate of new ACF cutting process is much higher than the one of the 
conventional process. This wastes the ACF material and rework cost is considerably large. How to make the 
manufacturing cost down effectively and promote the product quality is the main issue to maintain competition 
capability for the product. Therefore, the orthogonal particle swarm optimization (OPSO) is used to analyze the 
optimal design problem. The ACF cutting yield rate is selected to be objective function for optimization. The quality 
characteristic function for yield rate is used in orthogonal particle swarm optimization. Three control factors such as 
plasma clean speed, ACF peeling speed and ACF cutter spring setting are selected to study the effect of the yield 
rate. Results show that the proposed method can provide good optimal solution to improve the ACF cutting process 
for TFTLCD manufacturing process. 
 
Keywords: ACF cutting process, TFT-LCD, response surface method (RSM), plasma clean, orthogonal particle swarm 
optimization (OPSO). 
 
 
1. Introduction 
 
The usage amount of ACF material in global TFT-
LCD industry is shown as Fig.1. It shows that the 
annual growth is about 13% in LCD products. The 
usage amount of ACF material dominates the 
price of LCD TV modules product. The price of 
LCD TV has been reduced more than 50% since 
2007. Therefore, the cost of the ACF in the TFT-
LCD module directly affects the profit space of 
TFT-LCD products. Conventionally, in long bar 
ACF cutting process, it is found that the non-
conducting area wastes a lot of undesired ACF 
material. The cutting process in the LCD panel is 
shown in Fig. 2 [1]-[9]. 
 
 
 
 

 
 

 
 

Figure 1. The price of LCD TV over recent years. 
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Figure 2. The conventional long bar 
ACF cutting process in the LCD panel. 

 
The ACF usage percentage in LCD product is 
shown in Table 1. The ACF usage percentage in 
LCD products is roughly about 35%. It means 
that nearly 65% of the ACF usage in cutting 
process is not required. This increases 
production cost considerably. 
 
Therefore, in order to save the production cost, the 
design of conventional long bar ACF cutting unit in 
Fig. 3 has to be changed into short bar ACF cutting 
unit in Fig. 4. 
 

 
 

Table 1. The usage of ACF for different size of product. 
 

 
 

Figure 3. Long bar ACF cutting unit. 

 
 

Figure 4. Short bar ACF cutting unit. 
 
Short bar ACF cutting method has the following 
advantages and disadvantages: 
 
Advantages: 1) Since the ACF material usage is 
reduced, lower production cost can be achieved. 2) 
Since the components space placed in the PCB 
board is increased, more flexible manufacturing 
methods are provided. 
 
Disadvantages: 1) Cutting more segments increases 
the tact time under the same manufacturing 
condition. 2) The failure rate (FR) condition (NG 
parts/whole cutting segments) of the short bar ACF 
cutting process is relatively higher than the one of the 
long bar ACF cutting process. 
 
2. Cutting problem description of ACF cutting 
process 
 
In TFTLCD manufacturing process, there are 
many reasons causing failure rate (FR) in the 
ACF cutting process. Therefore, the peeling 
phenomena have to be described and defined. 
The state of peeling phenomena can be divided 
into upward peeling and downward peeling. The 
peeling of the location can be defined as cutting 
from the starting side to the end of peeling. 
Therefore, by peeling and cutting the ACF 
material in the ACF cutting process, many 
unexpected phenomenon possibly occurs. 
 
From the above reasons, it seems that the bad 
performance of cutter actuator, the bad cutting 
motion, and the bad peeling condition are the 
three major reasons to cause the failure rate of 
ACF cutting process. Therefore, design of 
experiments (DOE) method based on response 
surface method (RSM) is used to improve the 
cleanliness of the panel and change the design 
condition of the cutter. 
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3. Problem formulation using response surface 
method 
 
Response Surface Method（RSM）is generally 
employed to analyze and describe an unknown 
and complicated physical problem by design of 
experiments (DOE) [10]-[13]. In RSM, the 
mathematical analysis and statistical analysis are 
jointly utilized to analyze the experimental results 
to obtain the optimal response solution by 
discussing the interaction between factors. 
 
When the RSM is employed to analyze the 
experimental design with a plurality of factors, 
the experimental runs can be further reduced to 
achieve the purpose of obtaining optimal 
solution. Accordingly, the experimental cost can 
be decreased. 
 
In RSM, two kinds of response surfaces are 
discussed and defined: 
 

a) Average response surface ))(( zx,yEZ : it 

represents the average value of a response surface 
)( zx,y  with control factor vector x  and noise factor 

vector z . 
 

b) Variance response surface ))(( zx,yVarz : it 

represents the variance of a response surface 
)( zx,y  with control factor vector x  and noise 

factor vector z . 
 
Some advantages of RSM are described as 
follows: 
 
a) Not only the average response is evaluated, but 
also the variance response is evaluated. 
 
b),Both of the average response and variance 
response are considered to optimize the 
response surface. 
 
The concept of the RSM is to define the response 
surfaces of average and variance individually. 
Therefore, the two response surfaces may be 
separately analyzed independently. However, the 
RSM might have trade-off problem between the 
two response surfaces. The trade-off problem is 
formulated by using optimization. With the 
definition of objective function and constraints, the 

trade-off problem can be solved by using 
optimization process. 
 
Therefore, the RSM is quite different from the 
Taguchi method which only uses one index, the 
SN ratio, to analyze optimal design. 
 
The RSM consists of design steps as follows: 
 
1) Design a combined array in accordance with 
selected factors and levels 
 
2) Evaluate the average response surface and the 
variance response surface. 
 
3) Optimize the two response surfaces using 
OPSO process. 
 
The design flow chart of the RSM is shown in 
Fig. 5.6. 
 

 
 

Figure 5. Design flow chart of the RSM. 
 
3.1 Design of combined array 
 
The weakness of Taguchi method is that the 
average and variance are defined together in a 
mixed way. A better strategy is to design the 
combined array with high enough resolution that 
incorporates both the control factors and noise 
factors by using response surface method. The 
average and variance can be discussed separately. 
 
3.2 Definition of two response surfaces 
 
In most of the optimal design case, the relation 
between the response and independent variables 
is usually unknown.  Therefore, in RSM, the first 
step is to find a suitable formulation to describe the 
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adequate relation between the response and the 
considered independent variables. If the response 
can be modeled by a regressive model with lower 
curvature, the response can be modeled by a first-
order model. 
 
The average response can be modeled by using 
regressive analysis. The response function for first-
order or second-order regressive model can be 
formulated by 
 

Kzx'cz'Bxx'bx'zx,  0)( by           (1) 

 
where 
 
x : vector of controllable factors; 
 
z : vector of uncontrollable factors, or called the 
noise factors; 
 

0b : term of constant; 

 

b : coefficients of the vector of controllable factors; 
 
B : matrix of the interacted term between controllable 
factors; 
 
c : coefficients of the vector of uncontrollable factors; 
 
K :-matrix of the interacted term between 
controllable factor and uncontrollable factor; 
 

bx' : linear term of controllable factors; 
 

Bxx' : interaction term between controllable factors; 
 

cz' : linear term of uncontrollable factors; 
 

Kzx' : interaction term between controllable factor 
and uncontrollable factor; 
 
After finding the response surface )( zx,y , the 

average response surface ))(( zx,yEZ
 and variance 

response surface ))(( zx,yVarz  have to be 

evaluated by the response surface )( zx,y . 
 
The two response surfaces can be modeled by 
using error propagation theory. If y is a function of 

plural controllable factors including 1 2, ..., nx x x . 

That is, the function y can be represented as 
 

1 2( , ..., )ny f x x x  

 
The average value 

y , variance 2
y , and standard 

deviation 
y  of the function y are further formulated 

as follows:  
 

 1 2
, ,....,

ny x x xf                                                (2) 
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In the following, how to model the two response 
surfaces by using the error propagation theory is 
discussed. The following assumptions should be 
discussed in advance. 
 
a) Assumption 1: 2 0x   for each controllable factor 

 
In design of experiments (DOE) method, three 
levels for each controllable factor can be selected 
to evaluate the optimal problem. Therefore, the 
system variance impacted by each controllable 
factor should be zero. That is to say, no variance 
exists among the controllable factors since they 
are controllable. 
 
b) Assumption 2: 2 1z   and 0z   for each 

noise factor 
 
The noise factor is generally an uncontrollable 
factor, since the noise often unexpectedly occurs 
in the system.  Therefore, the system variance 
impacted by each noise factor unavoidably exists 
in the system. To simplify the modeling, both the 
control factors and noise factors can be 
transformed into the coded normalized variables 
for natural variables,  .The coded procedure 

includes the following steps: 
 



 

Optimal Yield Rate in ACF Cutting Process of TFT‐LCD Module Using Orthogonal Particle Swarm Optimization Based on Response Surface Design, Jian‐Long Kuo. / 1165‐1175

Journal of Applied Research and Technology 1169

1) Estimate the average value   and the standard 

deviation   of the natural variable. 

 
2) Code and normalize the natural variable by 

using（


 

 ）. 

 
After coding, the average value and the standard 
deviation of the noise factor are 0z   and 

2 1z  . That is to say, no average value exists 

among the noise factors. The standard deviation is 
normalized to be 1. 
 
The mentioned two assumptions are considered 
based on error propagation theory to further 
establish the following two response surfaces. 
 
1) Establish the average response surface 
 
From Eq. (5.38), the average value of Eq. (5.37) 
can be represented as 
 

Kzx'cz'Bxx'bx'zx,  0))(( byEz      (5) 

 
Referring again to assumption 2, the average 
value of the noise factor is set to zero z=0. 
Therefore, the Eq.（5.41）can be rewritten 
 

Bxx'bx'zx,  0))(( byEz                            (6) 

 
2) Establish the variance response surface 
 
By using the error propagation theory, the response 
surface of variance can be represented as 
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Referring again to assumption 1, the variance of 

the control factor is set to zero 2 0x  . Therefore, 

the Eq. (5. 43) can be expressed as:  
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                                                                             (8) 

4. System formulation of cutting process using 
response surface method 
 
Dual response surfaces method is used to formulate 
the optimization problem. Based on response surface 
method, the average response surface and variance 
response surface have to be found first. The 
optimization problem is to maximize the objective 
function formulated by average response surface 
subject to constraint condition formulated by the 
variance response surface. In order to verify the 
validity of the optimization process and find optimal 
solution set, testing case is illustrated in the following. 
 
The central point experiment means that the spring 
gram elastic constant is 50 g. The plasma cleaning 
velocity is 150 mm/s. The cutter peeling speed is 
150 mm/s. The three control factors and two noise 
factors defined for response surface method are 
shown in Table 2. 
 

 
 

Table 2. Level Definition for the three 
control factors and two noise factors. 

 
The combinational array is listed in Table 3 for the 
response surface method. The temperature and 
pressure are selected as noise factors. The 
experimental runs of the yield rate values for the 
ACF cutting process for are listed in Table 3. 
Besides, the four central point repeated experiments 
are required to be measured in Table 4. 
 

 
 

Table 3. Combinational Array in Response Surface Method. 

Spring gram Plasma speed Peel speed Temp Pressure

x1 x2 x3 Noise 1 Noise 2

Level 1 30g 100mm/s 100mm/s 100℃ 0.1Mpa

Level 2 50g 150mm/s 150mm/s 120℃ 0.15Mpa

Level 3 70g 200mm/s 200mm/s 140℃ 0.2Mpa

Spring

gram(g)

Plasma

speed(mm/sec)

Peel speed

(mm/sec)

Temp

(℃)_

Pressure

(Mpa)

Yield

(%)

x1 x2 x3 Noise 1 Noise 2 y

-1(30) -1(100) -1(100) -1(100) 1(0.2) 96.93

1(70) -1(100) -1(100) -1(100) -1(0.1) 98.71

-1(30) 1(200) -1(100) -1(100) -1(0.1) 95.62

1(70) 1(200) -1(100) -1(100) 1(0.2) 97.93

-1(30) -1(100) 1(200) -1(100) -1(0.1) 92.90

1(70) -1(100) 1(200) -1(100) -1(0.1) 98.46

-1(30) 1(200) 1(200) -1(100) 1(0.2) 94.79

1(70) 1(200) 1(200) -1(100) -1(0.1) 97.57

-1(30) -1(100) -1(100) 1(135) -1(0.1) 97.31

1(70) -1(100) -1(100) 1(135) 1(0.2) 98.74

-1(30) 1(200) -1(100) 1(135) 1(0.2) 95.73

1(70) 1(200) -1(100) 1(135) -1(0.1) 97.56

-1(30) -1(100) 1(200) 1(135) 1(0.2) 96.80

1(70) -1(100) 1(200) 1(135) -1(0.1) 98.52

-1(30) 1(200) 1(200) 1(135) -1(0.1) 95.02
1(70) 1(200) 1(200) 1(135) 1(0.2) 97.64
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Table 4. Combination table and experiment  
results for the four central point experiments. 

 
For the four repeated experimental values, the 
average value is calculated as: 
 

cy =(96.94+96.38+96.38+96.37)/4=96.51          (9) 

 
For the experimental data in combinational array, 
the average value is also computed as: 
 

(96.93+96.71+95.62+97.93+92.90+98.46+94.79+97.57+97.31
+98.74+95.73+97.56+96.8+98.52+95.02+97.64)/16 96.89

Fy 


                                                                           (10) 
 
The sum of variance for the curvature is: 
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The sum of variance for the error is: 
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The F-statistic value is calculated as: 
 

)1/(
1/



CE

C

nSS

SS
F = 0.46 /1

0.23/(4 1)
=5.903                   (13) 

 
It shows that the curvature is not large. Therefore, 
it is suitable to use the first-order regressive model. 
The derived average response surface is 
computed as: 
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                                                                           (14) 

The corresponding 3-D surface plot and contour 
plot are shown in Fig. 5. 
 

 
 

(a) 3-D surface plot of average response 
surface for first-order regression model. 

 

 
 

(b) contour plot of the average response 
 for first-order regression model. 

 
Figure 6. Average response surface  

for the response surface method. 
 
The variance response surface is derived as: 
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                                                                           (15) 
 
Therefore 
 

1/ zy  =0.275113-0.3012 -0.27197 +0.2560351 2 3x x x  

2/ zy  =0.23827-0.18736 -0.1967 +0.220091 2 3x x x         (16) 

Spring

gram(g)

Plasma

speed(mm/sec)

Peel speed

(mm/sec)

Temp

(℃)_

Pressure

(Mpa)

Yield

(%)

x1 x2 x3 Noise 1 Noise 2 y

0(50) 0(150) 0(150) 0(120) 0(0.15) 96.94

0(50) 0(150) 0(150) 0(120) 0(0.15) 96.38

0(50) 0(150) 0(150) 0(120) 0(0.15) 96.38

0(50) 0(150) 0(150) 0(120) 0(0.15) 96.37
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If the standard deviation for 1z , 2z  is set to 1
1
z , 

 

1
2
z  respectively, 

 
2 2
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The corresponding 3-D surface plot and contour 
plot are shown in Fig. 6. 
 

 
 

(a) 3-D surface plot of the variance response 
 surface for first-order regression model. 

 

 
 

(b) Contour plot of variance response 
 surface for first-order regression model. 

 
Figure 7. Variance response surface 

 for the response surface method. 

Therefore, the variance response surface is 
used to be the constrained condition for the 
optimization problem. 
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                                                                           (18) 
 
where the following inequalities should be satisfied. 
 

1.0 1.01x    

1.0 1.02x    

1.0 1.03x                                                         (19) 

 
5..Orthogonal particle swarm optimization 
process 
 
With the above derived system model by response 
surface method, the optimization process is 
performed to derive the optimal solution set for this 
problem. However, the optimal solution may be 
located anywhere in the range of -1.0 and +1.0. 
The local optimal solution may not be the optimal 
in the global region. Therefore, the OPSO process 
is used to derive the optimal solution in an efficient 
way. The local searching and global searching are 
going simultaneously. Global optimal solution can 
be found. 
 
By adding the random seeds into formulation, the 
OPSO can jump out of the local optimal solution if 
the global solution is more optimal than the local 
solution.  In the following, the OSPO formulation is 
performed. Since in the response surface method, 
the nonlinear problem is formulated as first-order 
model problem. However, the curvature for this 
model is large. That means the nonlinearity 
property is still heavy in this problem. This 
influences the searching process when finding the 
optimal solution. 
 
The particle swarm optimization originates from the 
emulation of the group dynamic behavior of 
animal. For each particle in a group, it is not only 
affected by its respective particle, but also affected 
by the overall group. There are position and 
velocity vectors for each particle. The searching 
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method combines the experience of the individual 
particle with the experience of the group. For a 
particle as a point in a searching space with D-
dimensional can be defined as [14]-[19]. 
 
The i-th duty cycle particle associated with the 
MPPT controller can be defined as: 
 

 1 2, ,...,id i i iDX x x x                                             (20) 

 
where d=1,2,…,D and i=1,2,...,PS, PS is the 
population size. The respective particle electric 
power and group electric power associated with 
each duty cycle idX  are defined as 

 

 1 2, ,...,pd p p pDP p p p                                      (21) 

 

 1 2, ,...,gd g g gDP p p p                                      (22) 

 
The refreshing speed vector can be defined as 
 

 1 2, ,...,id i i iDV v v v                                         (23) 

 
The refreshing position and velocity vectors can be 
expressed as 
 

 
 

1
1

2

()

()

n n n
id id pd id

n
gd id

V V c rand P X

c rand P X

     

                              (24)
 

 
1  n n n

id id idX X V                                                  (25) 
 
When the searching begins, the initial solution is 
set. In the iteration process, the particle is updated 
by the value coming from group duty cycle and 
particle duty cycle. The convergence condition is 
dependent on the minimum of the average square 
error of the particle. Both the experience of the 
individual particle and the experience of the group 
are mixed into the searching process. 
 
In the optimization problem, there might be a local 
minimum problem. The optimal solution might jump 
into a local trap and can not jump out of the trap. 
Actually, a local minimum point does not represent 
a global solution in a wide range. In the group 
experience, random function is used to jump out of 
the local interval. An inertia weighting factor is  
 

considered in this algorithm to increase the 
convergence rate. An inertia weighting factor is 
added in the following expression. The modified 
formula can be expressed as: 
 

 
 

1
1

2

()

()

n n n
id id pd id

n
gd id

V W V c rand P X

c rand P X

      

                           (26) 

 
max min

max
max

W W
W W gen

gen


                                    (27) 

 

where the 1c  and 2c are both constants. maxW  is 

The initial weighting value. minW  is the final 

weighting value. gen is the number of current 

generation. maxgen  is the number of final 

generation. However, the above mentioned is 
actually a kind of linear modification. To make the 
algorithm suitable for nonlinear searching problem, 
there is many nonlinear modification methods 
proposed to refresh the velocity vector. The 
modified term is defined as the key factor. By setting 

the learning factors 1c  and 2c  which are larger 

than 4.0, the modification for the speed vector is 
expressed as: 
 

 
 

11

2

()

()

n n
id pd idn

id n
gd id

V c rand P X
V K

c rand P X


    
  
     

               (28) 

 

    2
1 2 1 2 1 2

2

2 4
K

c c c c c c


      
          (29) 

 
A modified PSO method called orthogonal PSO 
(OPSO) is proposed to solve the update problem 
effectively. A simple orthogonal array in Taguchi 
method is used in this algorithm to help the update. 
 
6. Orthogonal array algorithm in OPSO method 
 
To run the Taguchi method, two functions are 
defined first. The particle swarms are composed 
of individual particle swarm idO  and group 

particle swarm idA . 
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 1 ()

n n
id id id

n
pd id

O X WV

c rand P X

 

                                   (30)
 

 

 2 ()

n n
id id id

n
gd id

A X WV

c rand P X

 

                                   (31)
 

 
These two functions are specified as two control 
factors in Taguchi method. Two levels are defined 
for the control factors. Therefore, the orthogonal 
array has two factors and two levels. The electric 
power calculating from the MPPT converter is used 
as the measured value in orthogonal array. Assume 

that the optimal solution is expressed as idQ . The 

idQ  is adopted to refresh the particle position and 

velocity vectors as shown in the following 
expression. The particle refreshing process in 
OPSO optimization is illustrated in Fig. 7. 
 

1n n
id id idV Q X                                                   (32) 

 
1n

id idX Q                                                          (33) 
 
7. Discussion 
 
This paper has achieved the aim of finding 
optimal solution for the TFTLCD manufacturing 
process. The derived optimal solution can 
provided the manufacturing process under the 
optimal operating condition. 
 
By using the response surface method with OPSO 
method, the mathematical model for this problem 
is provided and verified. This will be very helpful to 
associated industrial application. 
 
The optimal solution can be found and located at 
the ends of the range. Global solution is found 
instead of local solution. Results show that the 
proposed mathematical method has the capability 
of finding appropriate searching process. 
 
8. Conclusion 
 
Through the analysis of response surface method 
combined with OPSO process, the optimal solution 

is found. The optimal solution is located at (
1

x ,
2

x ,

3
x )=(0.98,-0.97,-0.98). 

The corresponding optimal solution for yield rate is 
99.30. The local optimal solution is avoided and 
the proposed OPSO algorithm can find the optimal 
solution at the endpoints globally. In OPSO, global 
and local optimal ranges are searched at the same 
time. The related confirmation experiments show 
that the proposed methodology can provide good 
prediction with the practical case. 
 
It is convinced that the proposed optimal 
parameter solution solved by OPSO algorithm can 
increase the cutting yield rate of ACF cutting 
process for the TFT-LCD module. 
 

 
 

(a) Refreshing process from first  
generation to third generation. 
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(b) Error percentage from first 
 generation to fifth generation. 

 
Figure 8. Illustration of particle refreshing process 

 and convergence rate in OPSO optimization. 
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