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ABSTRACT 
This paper considers the partial differential problem of two types of multivariable functions and uses mathematical 
software Maple for verification. The infinite series forms of any order partial derivatives of these two types of 
multivariable functions can be obtained using binomial series and differentiation term by term theorem, which greatly 
reduce the difficulty of calculating their higher order partial derivative values. On the other hand, four examples are 
used to demonstrate the calculations. 
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1. Introduction 
 
In calculus and engineering mathematics, the 
evaluation and numerical calculation of the partial 
derivatives of multivariable functions are important. 
The Laplace equation, the wave equation, and other 
important physical equations involve the partial 
derivatives. The evaluation of the m  -th order partial 
derivative value of a multivariable function at some 
point, generally, requires two procedures: the 
determination of the m  -th order partial derivative of 
the function, and the substitution of the point into the 
m -th order partial derivative. These two procedures 
become increasingly complex calculations for 
increasing order of partial derivative, thus manual 
calculations become difficult. The present study 
considers the partial differential problem of the 
following two types of n -variables functions 
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where n  is a positive integer, iirba  ,,,,  are 

real numbers for all ni ,..,1 , 0, ba , and 
 
 

 
 
 

rr ba ,  exist. We can obtain the infinite series 
forms of any order partial derivatives of these 
two types of multivariable functions using 
binomial series and differentiation term by term 
theorem; these are the major results of this 
study (i.e., Theorems 1 and 2), which greatly 
reduce the difficulty of calculate their higher 
order partial derivative values. The study of 
partial differential problems can refer to [1-24]. 
The methods adopted in [1-5] are different from 
the methods used in this paper, and [6-24] 
studied the evaluation of the partial derivatives 
of different types of multivariable functions using 
differentiation term by term theorem and 
complex power series method. [25] considered 
two differential equations whose independent 
variables involve the partial derivatives. [26] 
discussed the distance functions whose 
expressions contain the partial derivatives, and 
[27] found the solutions of some type of partial 
differential equation. In this article, some 
examples are used to demonstrate the proposed 
calculations, and the manual calculations are 
verified using Maple. 
 
2. Main Results 
 
Some notations used in this paper are introduced 
below. 
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2.1 Notations 
 
2.1.1 
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2.1.2 
 
Suppose that t  is any real number, and m  is any 
positive integer. Define 
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partial derivative with respect to ix  for all 

ni ,..,1 , forms a njjj  21 -th 

order partial derivative, denoted as 

),,,( 211122

21
njjnj

n

njjj
xxx

xxx

f




 
 

 
The followings are two important theorems used in 
this study. 
 
2.2 Binomial series 
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2.3 Differentiation term by term theorem ([28, 
p230]). 
 
For all non-negative integers k , if the functions 
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The following is the first major result in this 
study, we determine the infinite series forms of 
any order partial derivatives of the n -variables 
function (1). 
 
2.4 Theorem 1 
 
Suppose that n  is a positive integer, iirba  ,,,,  

are real numbers for all ni ,..,1 , 0, ba , and 
rr ba ,  exist. If the n  -variables function 
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By differentiation term by term theorem, 

differentiating ij -times with respect to ix  

( ni ,..,1 ) on both sides of Equation (5), we have: 
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Using differentiation term by term theorem, 

differentiating ij -times with respect to ix  ( ni ,..,1 ) 

on both sides of Equation (6), we obtain: 
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2.5 Remark 1 
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is uniformly convergent. Thus, we can use 
differentiation term by term theorem to prove 
Equation (3) holds. The same reason that we can 
employ differentiation term by term theorem to 
confirm Equation (4) holds. 
 
The following is the second major result in this study, 
we obtain the infinite series forms of any order partial 
derivatives of the n  -variables function (2). 
 
2.6 Theorem 2 
 
If the assumptions are the same as Theorem 1. 
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By differentiation term by term theorem, 
differentiating ij -times with respect to ix  

( ni ,..,1 ) on both sides of Equation (9), we 

obtain: the njjj  21 -th order partial 

derivative of ),,,( 21 nxxxg  , 
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Using differentiation term by term theorem, 

differentiating ij -times with respect to ix  
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2.7 Remark 2 
 
The same reason as that in Remark 1, we can use 
differentiation term by term theorem to prove 
Equations (7) and (8) hold. 
 
3. Examples 
 
For the partial differential problem of the 
multivariable functions in this study, four examples 
are proposed. Theorems 1 and 2 are used to 
obtain the infinite series forms of any order partial 
derivatives of these functions, and to evaluate 
some of their higher order partial derivative values. 
Additionally, Maple is used to calculate the 
approximations of these higher order partial 
derivative values to verify the manual calculations. 
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Next, we use Maple to verify the correctness of 
Equation (13). 
 
>f1:=(x1,x2)->x1^(7/3)*x2^(5/2)*(9+2*x1^3*x2^4) 
^(11/5); 
 
>evalf(D[1$6,2$7](f1)(3/2,4/5),22); 
 

 
 
>evalf(9^(11/5)*sum(product(11/5-j,j=0..(k-1))/k!* 
(2/9)^k*product(3*k+7/3-p,p=0..5)*product(4*k+5/2-
q,q=0..6)*(3/2)^(3*k-11/3)*(4/5)^(4*k-9/2),k=0.. 
infinity),22); 
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>evalf(D[1$4,2$4](f1)(2,3),18); 
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,k=0..infinity),18); 
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>f2:=(x1,x2,x3)->x1^(11/6)*x2^(13/4)*x3^(8/5)/((11-
3*x1^2*x2^5*x3^4)^2)^(1/3); 
 
>evalf(D[1$4,2$6,3$5](f2)(1/6,2/3,3/4),14); 
 

 
 
>evalf(11^(-2/3)*sum(product(-2/3-j,j=0..(k-1))/k!*(-
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13/4-q,q=0..5)*product(4*k+8/5-s,s=0..4)*(1/6)^(2* 
k-13/6)*(2/3)^(5*k-11/4)*(3/4)^(4*k-17/5),k=0.. 
infinity),14); 
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>evalf(D[1$3,2$2,3$6](f2)(4,2,5),14); 
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1/12-q,q=0..1)*product(-4*k-16/15-s,s=0..5)*4^(-
2*k-5/2)*2^(-5*k-25/12)*5^(-4*k-106/15),k=0.. 
infinity),14); 
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>g1:=(x1,x2)->exp(2*x1+3*x2)*(7+9*exp(5*x1+8* 
x2))^(13/3); 
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Therefore, we can determine the 17-th order partial 
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Maple was used to verify the correctness of 
Equation (25): 
 
>evalf(D[1$8,2$9](g1)(7/2,1/6),22); 
 

 
 
>evalf(9^(13/3)*sum(product(13/3-j,j=0..(k-1))/k!*(7 
/9)^k*(-5*k+71/3)^8*(-8*k+113/3)^9*exp(-113/6*k+ 
802/9),k=0..infinity),22); 
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Thus, the 14-th order partial derivative value of 
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>g2:=(x1,x2,x3)->exp(6*x1+11*x2-8*x3)/((14-5*exp 
(7*x1-4*x2+2*x3))^8)^(1/9); 
 
>evalf(D[1$6,2$5,3$3](g2)(-1/7,2/3,-1/2),22); 
 

 
 
>evalf(14^(-8/9)*sum(product(-8/9-j,j=0..(k-1))/k!*(-
5/14)^k*(7*k+6)^6*(-4*k+11)^5*(2*k-8)^3*exp(-14/3 
*k+220/21),k=0..infinity),22); 
 

 
 
3.4.2 
 

If 
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14)247exp( 321  xxx . Using Case B of 

Theorem 2 yields: any 321 jjj  -th order partial 

derivative of ),,( 3212 xxxg , 
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Hence, the 16-th order partial derivative value of 
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>evalf(D[1$5,2$7,3$4](g2)(1/7,1/4,1),40); 
 

 
 
>evalf(5^(-8/9)*sum(product(-8/9-j,j=0..(k-1))/k!*(-
14/5)^k*(-7*k-2/9)^5*(4*k+131/9)^7*(-2k-88/9)^4* 
exp(-2*k-1555/252),k=0..infinity),22); 
 

 
 
4. Conclusion 
 
This article proposed two methods (i.e., the 
binomial series and the differentiation term by term 
theorem) to solve the partial differential problem of 
some multivariable functions. The two methods 
can be applied to evaluate any order partial 
derivatives of general multivariable functions. 
Further studies on related applications will be 
conducted in the future. Moreover, other calculus 
and engineering mathematics problems will be 
considered and solved using Maple. 
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