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ABSTRACT 
Dynamic voltage/frequency scaling (DVFS) is one of the most effective techniques for reducing energy use. In this 
paper, we focus on the pinwheel task model to develop a variable voltage processor with d discrete voltage/speed 
levels. Depending on the granularity of execution unit to which voltage scaling is applied, DVFS scheduling can be 
defined in two categories: (i) inter-task DVFS and (ii) intra-task DVFS. In the periodic pinwheel task model, we 
modified the definitions of both intra- and inter-task and design their DVFS scheduling to reduce the power 
consumption of DVFS processors. Many previous approaches have solved DVFS problems by generating a canonical 
schedule in advance and thus require pseudo polynomial time and space because the length of a canonical schedule 
depends on the hyperperiod of the task periods and is generally of exponential length. To limit the length of the 
canonical schedules and predict their task execution, tasks with arbitrary periods are first transformed into harmonic 
periods and their key features are profiled. The proposed methods have polynomial time and space complexities, and 
experimental results show that, under identical assumptions, the proposed methods achieve more energy savings 
than the previous methods. 
 
Keywords: Hard real-time systems, Power-aware scheduling, Dynamic voltage scaling, Pinwheel tasks. 
 
 
1. Introduction 
 
In the last decade, energy-aware computing has 
been widely applied not only for portable electronic 
devices, but also for large systems which incur 
large costs for energy and cooling. With dynamic 
voltage/frequency scaling (DVFS) techniques [3, 7, 
8, 9, 10, 11, 12, 15, 16, 17, 18, 19], processors can 
perform at a range of voltages and frequencies. In 
the CMOS processors, the energy consumption is 
at least a quadratic function of its supply voltage 
(and hence the processor frequency) [3, 7, 8, 19, 
20, 21], and total energy consumption could be 
minimized by sharing slack time while satisfying 
the time constraints of the tasks. For DVFS hard 
real-time systems, we defined two categories of 
DVFS scheduling: inter-task DVFS and intra-task 
DVFS. In the former, speed assignments are 
determined at task dispatch or completion times. In 
other words, when an instance (job) of a task is  

 
 
assigned to a CPU, the CPU speed does not 
change until it is preempted or completed. This 
definition is somewhat different from the inter-task 
definition in [3, 13, 16, 20, 23] wherein the speed 
of each tasks is fixed and cannot be changed 
between different instances (jobs). Inter-task DVFS 
scheduling algorithms are often implemented 
under operating system control, and programs do 
not need to be modified during their runtime. On 
the contrary, intra-task DVFS algorithms adjust the 
CPU speed within the boundaries of a task. Intra-
task DVFS techniques are kept under software and 
compiler control using program checkpoints or 
voltage scaling points of the target real-time 
software. It exploits all the slack time from the run 
variations of different execution paths and the CPU 
speed is gradually increased to assure the timely 
completion of real-time tasks. However, 
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checkpoints have to be generated at the compiling 
time and indicate places in the code where the 
processor speed and voltage should be re-
calculated. These checkpoints could increase 
programming complexity and the overhead of real-
time systems. The previous definition of intra-task 
scheduling [24, 18, 25] is similar to our definition of 
inter-task DVFS. 
 
Many studies have addressed the problem of task 
scheduling with minimum energy DVFS. Yao et al. 
[21] proposed a theoretical DVFS model and an 
O(n3) algorithm for computing a min-energy DVFS 
schedule in a continuous variable voltage CPU. 
Ishihara et al. [14] proposed an optimal voltage 
allocation technique using a discrete variable 
voltage processor. However, the optimality of the 
technique is confined to a single task. Kwon et al. 
[17] proposed an optimal discrete approach based 
on the continuous version in [21] and therefore 
requires O(n3) time. Li et al. [18] proposed an O(dn 
log n) time algorithm which constructs a minimum 
energy schedule without first computing the 
optimal continuous schedule. The abovementioned 
min-energy DVFS scheduling algorithms have to 
generate certain schedules in advance as 
intermediate processing steps. For example, the 
Bipartition algorithm in [18] has to generate an s-
schedule and a reversed s-schedule in advance. 
Moreover, the Alloc-vt algorithm in [17] has first to 
generate a min-energy continuous schedule from 
[21]. Since the lengths of such schedules depend 
on the LCM of task periods, their algorithms could 
not be completed in polynomial time. In addition, in 
the periodic tasks systems, the preprocessing 
overhead produced by these approaches may 
become unsustainable when tasks frequently join 
and leave the system. Many theoretical models for 
DVFS only consider the power consumption 
function with convexity [3, 20, 21, 22]. In these 
models, the processor must be able to run at 
infinite real-number speed levels to achieve 
optimality, while an off-the-shelf processor with 
variable voltages runs only at a finite number of 
speed levels. For example, Intel’s SpeedStep® 
technology [25] and AMD’s Cool’n Quiet® [27] are 
currently used in general-purpose mobile devices 
and respectively support 3 and 5 speed levels. 
Therefore, an applicable model for DVFS 
scheduling should capture the discrete, rather than 
continuous, nature of the available speed scale. 
 

In network systems, jitter or packet delay variation 
(PDV) is defined as the variation in the time 
between successive packet arrivals caused by 
network congestion, time drift or route changes 
[19, 28]. PDV is an important quality of service 
factor to evaluate network performance. One of the 
most widely-used techniques to improve PDV is 
pinwheel scheduling [1, 5, 29, 30, 31, 32, 33]. A 
pinwheel task τi is characterized by two positive 
integer parameters, an execution requirement and 
a window-length with the understanding that the 
shared resource needs to be allocated to task i for 
at least an out of every b consecutive time units. 
Pinwheel task systems were developed to meet 
the performance requirements of satellite-based 
communications. In more recent applications, 
broadband 3G (B3G) wireless communication 
systems provide a packet-switched core network to 
support broadband wireless multimedia services. 
The resource management policies in the cell of a 
B3G system guarantee the quality-of-service 
(QoS) of real-time (RT) traffic. To guarantee the 
QoS of RT traffic in a cell, many researchers [1, 
2, 5, 4, 29, 32, 34] have proposed using 
pinwheel scheduling algorithms to reduce the 
jitter of variable bit rate (VBR) traffic in a cell. In 
addition, pinwheel scheduling has also been 
applied in channel assignment policies with 
buffer and preemptive priority for RT traffic. In 
other applications, such as the medium access 
control (MAC) layer of CDMA and TDMA-based 
wireless networks [19, 35, 36], many pinwheel 
scheduling schemes have been proposed to 
solve frame-based packet scheduling problems. 
These pinwheel methods provide low delay and 
low jitter for RT traffic and a short-queue length 
for non-RT traffic. 
 
This paper discusses theoretical power-aware real-
time scheduling. We consider a discrete DVFS 
scheduling problem for periodic task systems given 
worst-case execution times (WCET). We propose 
an algorithm that finds a min-energy intra-task 
DVFS schedule in O(d+k log k) time. An inter-task 
DVFS method is also proposed, with time and 
space complexities of O(d+n log n) and O(d+n), 
respectively. Notations k, n and d respectively 
denote the number of tasks, jobs and voltage 
levels. In section 2, we present the model and the 
notational conventions. Section 3 introduces DCTS 
and the proposed task profiling algorithms. The  
 



 

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1027

DVFS scheduling algorithms are proposed in 
Section 4. In Section 5, we present the 
performance analyses of the proposed algorithms 
and compare the consumed utilization of 
transformed task sets with those of their original 
task sets. Section 6 concludes this paper. 
 
2. Task model 
 
A pinwheel task Ti is defined by two positive 
integers, an execution requirement and a window 
length, with the understanding that the task Ti 
needs to be allocated to the shared resource for at 
least a out of every b consecutive time units. In the 
distance-constrained task systems (DCTS) [13], 
they stipulated that temporal distance between any 
two consecutive executions of each job in the 
pinwheel schedules should always be less than a 
certain value. DCTS modifies the distance-
constraints of longer task periods as a multiplier of 
a power of two (abbr. to harmonic number) shorter 
periods, neither of which is longer than its original 
distance-constraints using the Sr algorithm [13]. 
The advantage of the period transformation is that 
the produced schedules have regular start, 
preemption and finish times, and therefore provide 
good predictability. 
 
The target model focuses on synchronous, 
preemptive, and periodic task systems. In the task 
set τ={T1, …, Tk} of k periodic real-time tasks, 
every task Ti consists of an infinite sequence of 
jobs ji,1, ji,2, …. A task Ti with a WCET requirement 
ei and a period pi has a weight wi=ei/pi, where 
0<wi<1. A feasible schedule must give each job its 
WCET between the arrival-time ri and the deadline 
di. In the task model, we assume that every task 
period pi and deadline (as well as their distance 
constraints) has been transformed as harmonic in 
that they have been sorted according to their 
periods, p1≤ p2≤…<pk. Because of the jitterless 
schedule, the relative beginning bi and finishing 
time fi of Ti are fixed and can be efficiently obtained 
in Section 3. 
 
The clock speeds corresponding to d given discrete 
voltage/speed levels are denoted by s1>s2>…>sd. 
The highest speed s1 is always fast enough to 
guarantee a feasible schedule for the given tasks. 

Moreover, ei and 
g
i respectively denote the duration 

of the execution at speeds s1 and sg. The time 

overhead for varying the supply voltage and clock 
frequency is negligible. In addition, the power loss for 
the DC-DC converter is also negligible. Let 




k

i

g
i

g wU
1 denote the total weight of tasks in τ at 

speed sg where i
g
i

g
i pew / . For simplicity, U denotes 

the total weight of τ at the highest speed. The power 
P, or energy consumed per unit of time, is a convex 
function of the processor speed. The energy 
consumed by the processor during the time interval 

[t1, t2] is E(t1, t2)= 
2

1
))((

t

t
dttsP .We refer to this problem 

as discrete DVFS scheduling (abbreviated to 
IntraDVFS). The first goal is to find, for any given task 
set τ, a feasible schedule produced by IntraDVFS 
that minimizes E. In the inter-task version, every job 
has only one speed during its execution. The second 
goal is to generate the inter-task (abbreviated to 
InterDVFS) schedules and to reduce their energy 
consumption level as close as possible to that of the 
schedule produced by IntraDVFS. 
 
3. Distance-constrained task systems 
 
This section introduces the concept of an h-
schedule produced by algorithm Sr mentioned by 
DCTS [13] and discusses its important 
properties. Algorithm Sr [31] converts the 
periods into a set of specialized periods that are 
not greater than the original periods, while 
minimizing the increased weight of the total task 
set . For example, in Fig. 1(a), a system consists 
of five tasks with periods 9.2, 10.6, 21.2, 22.6 
and 23.4, for which the corresponding execution 
times are 1.0, 1.1, 9.98, 0.94 and 1.87. After 
applying Sr, the new task periods {5.3, 10.6, 
21.2, 21.2, 21.2} are illustrated in Fig. 1(b). 
Because the lengths of the task periods are 
multiples of the power of 2, the schedule for 
each task has no jitter, and their relative starting 
and ending times are fixed. 
 

 
 

(a) 



 

 

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1028 

 
 

(b) 
 

Figure 1. (a) Periodic and (b) jitterless schedule. 
 
3.1 Base speed selection 
 
In this section, we prove that any slack time in a 
jitterless schedule with harmonic task periods 
can be allocated to all jobs. By using this 
property, we provide a speed factor for a WCET 
schedule to minimize energy consumption and 
the speed adjustment times. 
 
Definition 1. An h-schedule, for which  conforms 
to the RM policy and the lengths of the task period, 
is transformed into harmonics using Sr [31]. 
 
Without loss of generality, the length of an h-
schedule is equal to the longest task period pk. 
Notably, as long as the utilization of the task set 
after transformation is less than or equal to 1, 
the task set can be feasibly scheduled. 
 
Lemma 1. Let U ≥1; there is no slack time in an 
h-schedule. 
 
Proof. This lemma is proven by contradiction. 
Let mi=pk/pi and 1≤ i≤ k, without loss of 
generality; we discuss the h-schedule over 
interval I=[0, pk]. In interval I, the total execution 

time of tasks in τ is denoted as 


iT ii em . 

Assuming that slack time exists in interval I, the 
following inequality can be satisfied,  
 

kT ii pem
i

   

 1 iT
i

k

k

i

p

p

p

e                                                   (1) 

 U <1 
 
 
 
 

This contradicts our assumption. 
 
Definition 2. In the h-schedule for τ, we define a 
deadline as being tight if task Ti finishes just on 
time at di. 
 
Theorem 2. In an h-schedule for τ, slack time 
exists if and only if all jobs in the schedule do not 
miss their deadlines and the deadline is not tight. 
 
Proof. For the “only if” direction, we prove by 
contradiction. 
 
Case 1. (k=1) When an h-schedule contains only 
one task which has tight deadline, all of its jobs 
must be finished exactly at their deadlines. 
 
Therefore, no slack time exists in the schedule. 
 
Case 2. (k>1) In an h-schedule, all jobs of a task 
have identical relative finishing times. Without 
loss of generality, assume Tk has a tight 
deadline at time t. For all Tx, x<k, thus it has 
higher priority than Tk. Because task periods are 
harmonic, we obtain  
 

x
x

k m
p

p
                                                            (2) 

 
mx denotes the power of 2. 
 
Moreover, at the time of t-pk, exactly k tasks are 
released, and they must have their jobs’ 
deadlines at the time of t. Therefore, for all Tx, 
the execution time of their jobs that complete 
over the interval [t-pk, t] can be written as 
follows: 
 













k

x
x

x
k

x

k

x x

p

e
p

em

1

1

                                                     (3) 

Since we have assumed fk≥ pk and 
k

k

x
x

x
k e

p

e
p  



1

1
, 

we can derive 
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Without loss of generality, Tk has the lowest priority 

in τ and we derive U ≥ 1. According to Lemma 1, 
this contradicts our assumption.  
 
The proof of the “if” direction is easily found. 
Suppose the h-schedule for  contains no slack 
time. Without loss of generality we only discuss the 
jobs performed in interval I. The total execution 

time of these jobs can be written as: x

k

x x em  1 . 

Since interval I contains no slack, we have: 
 

1
1

 Upe
p

p
kx

k

x
x

k                                          (5) 

 

When a U >1, h-schedule is not feasible, at 

least one job is missing its deadline. When U
=1, the latest job in interval I must have a tight 
deadline.  
 
This completes the proof. 
 
Based on Theorem 2, as long as an h-schedule 
that is executing at a constant speed is missing a 
deadline or has a tight deadline, there is no wasted 
slack time in the schedule. We define the suitable 
processor speed for h-schedule as follws: 
 
Definition 3. In an h-schedule for , we define 
the critical speed sc as the highest speed such 

that all tasks execute at speed sc and 
cU ≥ 1. 

 
The function of speed sc produced by 
CriticalSpeed(τ) in Fig. 2 generates the base speed 
for the tasks to produce a suitable h-schedule and 
to reduce the number of speed adjustments.  
 

CriticalSpeed(τ) 

Input: task set τ 
Output: critical speed sc 

g=d, gU =0 

While gU <1 and g>1 do 
gU = U  )/( 1 iss ; 

     g=g-1; 
return sg. 

 
Figure 2. Pseudo-code of Algorithm 1. 

 
3.2 Task execution profiling 
 
After computing sc, the beginning and finishing 
times of each task under speed sc can be 
derived without constructing an actual h-
schedule. In Fig. 3, Algorithm TaskProfiling 
obtains  bi and  fi  of all the tasks  that are in  
O(k) time. 
 

TaskProfiling(τ) 

Input: task set τ and speed level sc 
Output: a set of pairs (bi, fi) where 0<i≦k 

For i=1 to k do                //scaling all ei as 
c
ie // 

     
c
ie = ie ×

s

s1 ; 

a1=p1-
c
ie ; 

For i=2 to k-1 do           //compute the lengths 
of     

ai=ai-1×
1i

i

p

p －
c
ie ;            accumulative 

slack// 

b1=0, b2=f1=
c
ie ; 

For i=2 to k do    //compute bi and fi of task Tiτ//

     Gi= 








1i

c
i

a

e ×p i－1;                                       

     LGi=1－
i

i

G

a 1 ×









1i

c
i

a

e ; 

     fi=Gi× LGi＋
i

c
i

p

e , bi+1=fi 
; 

return  S* ={Tiτ | (bi, fi)}; 
 

Figure 3. Pseudo-code of Algorithm 2. 
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4. Scheduling algorithms 
 
For an h-schedule under speed sc, we define the 
following: 
 
c: the length of execution time that exceeds pk and is 

derived from k
c pU  )1(  . 

 
: the shortest execution time under execution 
speed sc-1 that prevents an h-schedule under 
speed sc from missing deadlines and denotes 

cc

c
c

ss

s








1

1 . 

 

For example, in Fig. 4(a), we can derive c=

1)1( 3
3  pU  and = 67.2

32

2
3





ss

s
. That is, the h-

schedule in Fig. 4(b) has to increase the speed of an 
interval of at least 2.67 in length from s3 to s2 to 
ensure deadlines are met.  
 
4.1 Proposed algorithm for the intra-task schedule 
 
Figure 5 presents an DVFS algorithm for the intra-
task schedule, which minimizes the number of 
speed/voltage transitions and energy consumption.  
 
Theorem-3. An h-schedule for task set    
consumes the minimum energy using the 
IntraDVFS (τ) algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proof. An h-schedule with minimum energy 
consumption has no idle period. In the algorithm 
IntraDVFS(τ), energy consumption under speed 
sc and sc-1 is determined by the total processor 
run time. According to lines 8 and 9 in IntraDVFS  
(τ), an h-schedule with WCET clearly contains 
no idle period. Moreover, because of the convex 
property of the function related to power speed, 
the wide-gapped speed adjustments will make it 
difficult to obtain significant energy savings [43]. 
Consequently, the range of speed adjustments 
of the IntraDVFS (τ) is at most one speed level, 
when an h-schedule under speed sc misses a 
deadline. Therefore, the speed adjustment for h-
schedule minimizes energy consumption, and 
this completes the proof. 
 
The algorithm in Fig. 5 has a time complexity of 
O(d+k log k) time, where k denotes the  number 
of tasks in . In the algorithm, its input periods 
have to be transformed in advance by Sr [19], 
which runs in O(k log k) time, and line 3 in 
algorithm CriticalSpeed() needs  O(d) time to 
find a critical speed. Notably, the time complexity 
of the algorithm in [30] is O(dn log n) where n 
denotes the number of jobs. In a task system, 
the number of jobs is far greater than the 
number of tasks. Therefore, our scheme 
outperforms their algorithms, even if we ignore 
the overhead incurred by producing the whole 
schedule in the method presented in [30]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) 
 

 
 

(b) 
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IntraDVFS (τ) 

1.  Input: task set τ with transformed task periods 
2.  Output: assign speed levels to h-schedule 
3.  Whenever a task completes early 
4.       Compute the critical speed sc using Algorithm 

CriticalSpeed(); 
5.       If 1cU  Then assign sc to the whole h-

schedule; 

6.       Else   c= n
c pU  )1(  ; 

7.              =
cc

c
c

ss

s








1

1
; 

8.              Assign speed sc to the interval [0, pk-]; 
9.              Assign speed sc to the interval [ pk-, pk]; 
10.      update bi and fi of each task. 

End Algorithm IntraDVFS (τ) 
 

Figure 5. The pseudo-code of Algorithm 3. 
 
4.2. Proposed algorithm for the inter-task schedule 
 
In an h-schedule produced by a InterDVFS(τ), 
each job has a unique execution speed whenever 
it performs. However, the decision for speed 
adjustment is similar to that of the knapsack 
problem with an unbroken object and identical 
value. More precisely, given that  is derived from 
the h-schedule, we have to decide which jobs can 
be placed into the interval in such a way that the 
sum of their execution time is greater than  and 
their differences are minimal. Unfortunately, the 
optimization algorithm for this decision problem 
runs in pseudo-polynomial time [14]. In other 
words, the time complexity depends on the length 
of an output schedule.  
 
The objective of our algorithm is to minimize the 
fluctuation of execution speeds. Thus, the 
proposed method has to know the task profiles 
produced by Algorithm TaskProfiling( ) in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
Jobs are arranged in order of increased speed 
by sorting all jobs by their finishing times and 
therefore interDVFS takes O(n log n) time. In Fig. 
6, from lines 7 to 10, we they search for suitable 
jobs according to this order and book the nearest 
job with the minimum execution time, thus the 
time complexity is at most O(n). For the time 
complexity of the rest of algorithm InterDVFS( ), 
the remaining period transformation takes O(k 
log k) time, finding the critical speed takes O(d), 
and computing the values of fi and bi of each 
task takes O(k). In general, the value of n is 
much larger than that of k in a periodic task 
model, and the running time of algorithm 
InterDVFS( ) is O(d+nlogn). 
 

InterDVFS (τ) 

01.  Input: task set τ with transformed task periods 
02.  Output: the assignment of speed levels to all jobs 
          Whenever a task completes early 
03.           Compute the critical speed sc using CriticalSpeed();
04.           Compute the fi and bi of Ti in τ using 

TaskProfiling(τ); 
05.           Sort the jobs according to fi in increasing order in 

JL={j1,…, jk}; 

06.           
c = n

c pU  )1(   and =
cc

c
c

ss

s








1

1
; 

J=, emin=; 
07.           For i=1 to n do 

08.                choose ji and obtain its execution length 
c
ie ; 

09.                If ≧
c
ie  Then JL=JL－ji and J=J∪ji ; 

10.                ElseIf 
c
ie <emin  Then emin=

c
ie  and jmin=ji

 
; 

11.           JL=JL－jmin, J=J∪jmin
 
; 

12.           Assign the jobs in JL to speed level sc
 
; 

13.           Assign the jobs in J to speed level sc+1
 
; 

14.           Update bi and fi of job ji in J
 
; 

End Algorithm InterDVFS (τ) 
 

Figure 6. The pseudo-code of Algorithm 4. 

 
 

(c) 
 

Figure 4. Examples of h-schedules. 
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Example. In Fig. 4(c), the first job of T1 is included 
in job set J due to the for-loop in algorithm 
InterDVFS( ). In line 12, the second job of T1 is 
finally assigned to jmin and included in J. 
 
5. Performance analysis 
 
We discuss the performance of the techniques 
proposed in [14, 17, 18, 21]. Because the methods 
belong to intraDVFS scheduling and are optimal 
power consumption solutions, we can only 
compare their time complexities.  
 
The levels of complexity for the given methods 
are shown in Table 1. The second and third rows 
present the time complexities of InterDVFS and 
IntraDVFS techniques. Notations n, k and d 
respectively denote the numbers for job, task 
and speed levels. Notably, L denotes the length 
of an input schedule. In a periodic task system, 
the number of jobs is far greater than that of 
tasks and our intraDVFS algorithm outperforms 
the others. 
 

 Proposed. Ishihara[9] Li [18] 
Kwon 
[12] 

Inter-tasks O(d+nlogn) O(dn) O(dnlogn) O(n3) 
Intra-tasks O(d+klogk) N/A N/A N/A 

space O(d+n) O(d+n) O(L) O(L) 
 

Table 1. Time and space complexities. 
 
Notably, the method proposed by Ishihlara et al. 
is formulated as a linear programming problem 
and has at least O(dn) time complexity [12]. 
However, the optimality of the technique is 
confined to a single task. Therefore, the 
optimality does not hold for the practical case in 
which every task has different execution speeds. 
In addition, the techniques proposed in [16, 18] 
have to generate a “canonical” schedule before 
voltage/speed adjustments. The memory space 
required by the above-mentioned methods is 
dominated by the length of such schedule and 
cannot be generated in polynomial time. 
 
The simulations results in Fig. 7 presentes the 
inflation of Uτ caused by Sr and (2) the energy-
efficiency of interDVFS scheme. Because of period 
transformation, Uτ is greater than its original 
utilization and the difference between them is 
called inflation. In Fig. 7, Sr is performed in the 
20,000 randomly generated task sets with varying 

sizes. For example, when every τ contains 6 tasks, 
the average inflation per task set is 0.14. The 
figure indicates that inflation will rise at a rate 
proportionate to the size of task set. 
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Figure 7. Average inflation versus the number of tasks. 
 
Since the intraDVFS scheme produces a min-
energy schedule, it can serve as a yardstick by 
which to assess the energy efficiency of 
interDVFS. Figure 8 presents the percentage of 
the normalized deviation produced by interDVFS 
as compared to that of the optimal solution 
versus task set size. Because previous works [9, 
12, 14, 15] optimized energy consumption, no 
comparison need be made with the proposed 
interDVFS. The figure shows the energy 
consumption of interDVFS does not deviate 
more than six percent from that of the optimal 
solution. It also indicates that energy 
consumption is rather sensitive to variation of 
task set size. The deviation is less than 4% 
when task set size is greater than 10. The main 
reason is that, when the number of tasks 
increases, the number of candidate tasks to 
share the slack time is also increased. 
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Figure 8. Normalized deviation produced by task. 
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In additioin, we evaluate the effectiveness of 
InterDVFS on randomly generated task sets and 
compare its energy consumption with DRA, AGR 
[1] and lpSHE [13]. Both DRA and AGR are 
modified to account for time transition overhead. 
Each task is characterized by its worst-case 
execution wci, its period pi, and its deadline di, 
where di=pi. We vary three parameters in our 
simulations: (1) number of tasks totaltasks in τ from 
2 to 20 in two task increments, (2) the probability of 
an early completion (prob. of EC) for each job, and 
(3) the bc/wc ratio of BCET to WCET, from 0.1 to 
0.9. For any given pair of totaltasks, U and bc/wc 
in T, we randomly generate 1000 task sets, and 
the experiment result is the average value over 
these 1000 task sets. In a task set, each task 
period pi is assigned randomly in the real number 
range [1, 100]ms with a uniform probability 
distribution function. The execution time wci of 
each task is assigned in the real number rang [1, 
min{pi-1, 450}]. After giving the values of tasks’ 
periods and executions, we assign the utilization U 
of a task set and rescale the pi of each task such 
that the summation of the task weights (i.e. wci/pi) 
is equal to a given U. The early completion time of 
each job in simulations (1) and (2) was randomly 
drawn from a Gaussian distribution in the range of 
[BCET, WCET], where BC/WC=0.1. In simulation 
(3), each experiment was performed by varying 
BCET from 10% to 90% of WCET. The experiment 
calculates the energy consumption of each task 
set in an interval of time I=2000. After generating 
the task set, a duplicate of the task sets are 
transformed to have powers of 2 periods. 
Therefore, the duplicate has higher actual 
utilization than initially intended. In the period 
transformation tasks, since the simulation tasks 
still complete early proportionately according to the 
experiment settings, the slack originated from 
additional utilization still be utilized by slack-time 
analysis algorithms. 
 
The processor model we assumed is base on 
the ARM8 microprocessor core. For all 
experiments we assume there are 10 frequency 
levels available in the range of 10MHz to 
100MHz, with corresponding voltage levels of 1 
to 3.3 Volts. The assumption of voltage scaling 
overhead is the same as that in [24], and an idle 
processor consumes at most 500μW at the  
 
 

processor sleep mode. The energy 
consumptions of all the experiment results are 
normalized against the same processor running 
at maximum speed without DVFS technique 
(non-DVFS). Table 2 is a summary of our 
simulated ARM8 processor core [37]. 
 

Frequency Voltage Power
Sleep (idle) 0.5V <500μW 
10MHz 0.7V 4.5mW 
20MHz 0.75V 11.2mW 
30MHz 0.85V 21.9mW 
40MHz 0.96V 36.8mW 
50MHz 1.08V 57.5mW 
60MHz 1.2V 85.8mW 
70MHz 1.33V 123.2mW 
80MHz 1.48V 174.4mW 
90MHz 1.65V 244.8mW 
100MHz 1.82V 330mW 

 
Table 2. Power specification [33, 34]. 

 
The overheads considered in the simulations are 
as follows. 
 
(1) Algorithm execution time and energy 
 
The energy overhead is obtained under the 
assumption of 80% of the maximum power [24]. 
 
(2) Voltage transition time and energy 
 
The assumption of voltage scaling overhead is the 
same as that in [24] and the transition time is at 
most 70us between maximum transitions [38]. The 
energy consumed during each transition is: 
 

12)1( dddd V-VC-nE                                        (6) 

 
where λ denotes the efficiency of DC-DC 
converter. 
 
For the voltage scaling from Vdd1 to Vdd2, the 
transition time is: 
 

12
max

2
dddd V-V

I

C
t 


                                              (7) 

 
where C and Imax denote the charge to the 
capacitor and the maximum output current of 
the converter.  
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(3) Context-switch time and energy 
 
The context-switch is assumed to be 50μs 
at the highest speed Smax as presented by 
David in [40]. 
 
Figures 9 (b), 10 (b) and 11 (b) have been done 
under the assumption that the lengths of task 
periods in the non-DVFS, DAR, AGR and lpSHE 
are transformed to the power of 2, while those in 
Figures 9 (a), 10(a) and 11 (a) are not 
transformed. As shown in Figure 9 (a), 
InterDVFS reduces the energy consumption up 
to 5% over DRA. The utilization of a given task 
set is 60%. As the number of tasks from 8 to 20, 
the energy consumption of InterDVFS is 
increased steadily. The reason for this fact is 
that InterDVFS focuses on distributing the slack 
on as many tasks as possible. When the number 
of tasks increases, the available slack can be 
shared by many tasks due to the jitterless 
schedule. Therefore InterDVFS decreases the 
number of speed/voltage scaling and benefits 
the energy saving. In Figure 9 (b), DRA, AGR 
and lpSHE have closer energy consumption with 
each other than those in Figure 9 (a). InterDVFS 
still outperforms other methods especially in the 
large totaltask. 
 
In Figure 10(a), when prob. of EC is smaller than 
0.8, InterDVFS performs 2%~12% more energy 
saving compared to AGR and DRA. When prob. 
of EC is 0.9, the results are not good as we had 
hoped, they are 7% worse than those of AGR. In 
the experiment, the totaltasks of each task set is 
randomly determined from 2 to 20. As the 
probability of early completion decreases, the 
differences between InterDVFS and DRA or 
AGR increase substantially. On the contrary, 
when the largely jobs complete early, the 
amount of current available slack would be 
changed frequently and the voltage levels of 
other related jobs have to be changed. The 
harmful effects of frequently voltage change 
compromise the advantage of InterDVFS that 
benefits the evenly distribution of slack. In Figure 
10(b), InterDVFS still outperforms up to 8% 
energy saving compared to other methods. 
 
The effect of bc/wc shown in Figure 11(a) and 
11(b) confirms our prediction that the energy 
consumption (U=0.8, prob. of EC is 0.5) would be 

highly dependent the variability of the actual 
workload. When bc/wc=0.9, the energy 
consumptions are quite close for all four 
techniques, as expected. However, once the actual 
workload decreases, the algorithms are able to 
reclaim slack time and to save more energy. 
Algorithm InterDVFS gives the best energy saving, 
followed by AGR DRA and lpSHE. Decreasing the 
ratio helps further improve the relative 
performance of InterDVFS due to the equally 
assigned voltage/speed level to the future jobs. 
 
In a jitterless schedule, more jobs have the same 
release times and deadlines as those in the 
schedule with original periods. Therefore, the 
appearances of next task arrival (NTA) become 
regular and the distances between NTAs are 
longer than that in the schedule without period 
transformation. At each scheduling point, when the 
distances between each pair of NTAs are longer, 
DRA, AGR and lpSHE obtain more energy 
savings. This is because they can derive longer 
slack between the NTAs. In addition, when more 
tasks release at the same time, they can predict 
the length of slack more precisely and easier. As 
the example shown in Figure 1(b), a schedule 
without jitters makes more jobs share available 
slack than those generated by original periods. 
Although InterDVFS has the penalty for utilization 
inflations, it still outperforms other techniques. 
 
Since non-DVFS does not as sensitive as DRA, AGR 
and lpSHE to period transformation, its energy 
savings is modest while other methods have 
relatively less energy consumption. It is likely to that 
these methods gain more savings by predicting the 
length of slack in the future interval. Moreover, in the 
Figures 9(b), 10(b) and 11(b), the energy 
consumptions of DRA, AGR and lpSHE are closer 
with each other than those without period 
transformation in Figures 9(a), 10(a) and 11(a). The 
experiments show that jitter-controlled schedule can 
decrease the energy consumptions of up-to-date 
DVFS algorithms. Therefore, it is a promising 
technique in many real-time applications. 
 
Figure 12 shows how the number of speed 
transition changes with the DVFS algorithms. The 
number of transitions is measured with varying the 
rates of bc/wc. The length of generated schedules 
and task periods is up to 2000ms and 100ms, 
respectively. Figure 12 also considers the results 
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for a clairvoyant algorithm, named bound, which 
checks all possible scheduling points in the whole 
schedule as well as looks for the best speeds, start 
and completion times. In fact, bound is extremely  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time-consuming for finding a combination with the 
minimum transition times. The results illustrate that 
lpSHE, DRA and AGR have higher frequencies of 
transitions than that of InterDVFS 
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Figure 9. Energy consumption under different totaltasks (a) tasks without period  
transformation and (b) tasks with period transformation (U=60%, bc/wc=0.5). 
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Figure 10. Effect of variations in the prob. of EC (a) tasks without period transformation  
and (b) tasks with period transformation (20 tasks, U=60%, bc/wc=0.5). 
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6. Conclusion 
 
In this paper, we consider the pinwheel task model 
on a variable voltage processor with d discrete 
voltage/speed levels. On the assumption of 
harmonic task periods, we propose an intra-task 
scheduling algorithm which constructs a minimum 
energy schedule for k periodic tasks in O(d+k log k) 
time. We also propose an inter-task scheduling 
algorithm which decreases the number of speed or  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
voltage switching events in O(d+n log n) where n 
denotes the number of jobs. Our schemes 
outperform the scheme in [18] even though the 
number of tasks is equivalent to that of given number 
of jobs. Moreover, since the schedule is obtained 
without generating an actual schedule in advance, 
our schemes are true polynomial time algorithms. We 
also propose some fundamental properties 
associated with jitterless schedules which may 
provide new insights for jitterless tasks scheduling. 
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Figure 11. Energy consumption under different bc/wc ratio sets (a) tasks without period 
transformation and (b) tasks with period transformation (2~20 tasks, U=60%, prob. of EC is 0.5). 
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Figure 12. (a) Average Transitions for the task sets versus bc/wc at U=0.5 and 
d=10 and (b) Average Transitions for the task sets versus bc/wc at U=0.5 and d=4. 
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