

Journal of Applied Research and Technology 1025

Time and Energy Efficient DVS Scheduling for Real-Time Pinwheel
Tasks

Chen Da-Ren*1, Chen Young-Long2 and Chen You-Shyang3

1 Department of Information Management
National Taichung University of Science and Technology
Taichung city, Taiwan, R.O.C.
*danny@nutc.edu.tw
2 Department of Computer Science and Information Engineering
National Taichung University of Science and Technology
Taichung city, Taiwan, R.O.C.
3 Department of Information Management
Hwa Hsia University of Technology,
New Taipei city, Taiwan, R.O.C.

ABSTRACT
Dynamic voltage/frequency scaling (DVFS) is one of the most effective techniques for reducing energy use. In this
paper, we focus on the pinwheel task model to develop a variable voltage processor with d discrete voltage/speed
levels. Depending on the granularity of execution unit to which voltage scaling is applied, DVFS scheduling can be
defined in two categories: (i) inter-task DVFS and (ii) intra-task DVFS. In the periodic pinwheel task model, we
modified the definitions of both intra- and inter-task and design their DVFS scheduling to reduce the power
consumption of DVFS processors. Many previous approaches have solved DVFS problems by generating a canonical
schedule in advance and thus require pseudo polynomial time and space because the length of a canonical schedule
depends on the hyperperiod of the task periods and is generally of exponential length. To limit the length of the
canonical schedules and predict their task execution, tasks with arbitrary periods are first transformed into harmonic
periods and their key features are profiled. The proposed methods have polynomial time and space complexities, and
experimental results show that, under identical assumptions, the proposed methods achieve more energy savings
than the previous methods.

Keywords: Hard real-time systems, Power-aware scheduling, Dynamic voltage scaling, Pinwheel tasks.

1. Introduction

In the last decade, energy-aware computing has
been widely applied not only for portable electronic
devices, but also for large systems which incur
large costs for energy and cooling. With dynamic
voltage/frequency scaling (DVFS) techniques [3, 7,
8, 9, 10, 11, 12, 15, 16, 17, 18, 19], processors can
perform at a range of voltages and frequencies. In
the CMOS processors, the energy consumption is
at least a quadratic function of its supply voltage
(and hence the processor frequency) [3, 7, 8, 19,
20, 21], and total energy consumption could be
minimized by sharing slack time while satisfying
the time constraints of the tasks. For DVFS hard
real-time systems, we defined two categories of
DVFS scheduling: inter-task DVFS and intra-task
DVFS. In the former, speed assignments are
determined at task dispatch or completion times. In
other words, when an instance (job) of a task is

assigned to a CPU, the CPU speed does not
change until it is preempted or completed. This
definition is somewhat different from the inter-task
definition in [3, 13, 16, 20, 23] wherein the speed
of each tasks is fixed and cannot be changed
between different instances (jobs). Inter-task DVFS
scheduling algorithms are often implemented
under operating system control, and programs do
not need to be modified during their runtime. On
the contrary, intra-task DVFS algorithms adjust the
CPU speed within the boundaries of a task. Intra-
task DVFS techniques are kept under software and
compiler control using program checkpoints or
voltage scaling points of the target real-time
software. It exploits all the slack time from the run
variations of different execution paths and the CPU
speed is gradually increased to assure the timely
completion of real-time tasks. However,

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1026

checkpoints have to be generated at the compiling
time and indicate places in the code where the
processor speed and voltage should be re-
calculated. These checkpoints could increase
programming complexity and the overhead of real-
time systems. The previous definition of intra-task
scheduling [24, 18, 25] is similar to our definition of
inter-task DVFS.

Many studies have addressed the problem of task
scheduling with minimum energy DVFS. Yao et al.
[21] proposed a theoretical DVFS model and an
O(n3) algorithm for computing a min-energy DVFS
schedule in a continuous variable voltage CPU.
Ishihara et al. [14] proposed an optimal voltage
allocation technique using a discrete variable
voltage processor. However, the optimality of the
technique is confined to a single task. Kwon et al.
[17] proposed an optimal discrete approach based
on the continuous version in [21] and therefore
requires O(n3) time. Li et al. [18] proposed an O(dn
log n) time algorithm which constructs a minimum
energy schedule without first computing the
optimal continuous schedule. The abovementioned
min-energy DVFS scheduling algorithms have to
generate certain schedules in advance as
intermediate processing steps. For example, the
Bipartition algorithm in [18] has to generate an s-
schedule and a reversed s-schedule in advance.
Moreover, the Alloc-vt algorithm in [17] has first to
generate a min-energy continuous schedule from
[21]. Since the lengths of such schedules depend
on the LCM of task periods, their algorithms could
not be completed in polynomial time. In addition, in
the periodic tasks systems, the preprocessing
overhead produced by these approaches may
become unsustainable when tasks frequently join
and leave the system. Many theoretical models for
DVFS only consider the power consumption
function with convexity [3, 20, 21, 22]. In these
models, the processor must be able to run at
infinite real-number speed levels to achieve
optimality, while an off-the-shelf processor with
variable voltages runs only at a finite number of
speed levels. For example, Intel’s SpeedStep®
technology [25] and AMD’s Cool’n Quiet® [27] are
currently used in general-purpose mobile devices
and respectively support 3 and 5 speed levels.
Therefore, an applicable model for DVFS
scheduling should capture the discrete, rather than
continuous, nature of the available speed scale.

In network systems, jitter or packet delay variation
(PDV) is defined as the variation in the time
between successive packet arrivals caused by
network congestion, time drift or route changes
[19, 28]. PDV is an important quality of service
factor to evaluate network performance. One of the
most widely-used techniques to improve PDV is
pinwheel scheduling [1, 5, 29, 30, 31, 32, 33]. A
pinwheel task τi is characterized by two positive
integer parameters, an execution requirement and
a window-length with the understanding that the
shared resource needs to be allocated to task i for
at least an out of every b consecutive time units.
Pinwheel task systems were developed to meet
the performance requirements of satellite-based
communications. In more recent applications,
broadband 3G (B3G) wireless communication
systems provide a packet-switched core network to
support broadband wireless multimedia services.
The resource management policies in the cell of a
B3G system guarantee the quality-of-service
(QoS) of real-time (RT) traffic. To guarantee the
QoS of RT traffic in a cell, many researchers [1,
2, 5, 4, 29, 32, 34] have proposed using
pinwheel scheduling algorithms to reduce the
jitter of variable bit rate (VBR) traffic in a cell. In
addition, pinwheel scheduling has also been
applied in channel assignment policies with
buffer and preemptive priority for RT traffic. In
other applications, such as the medium access
control (MAC) layer of CDMA and TDMA-based
wireless networks [19, 35, 36], many pinwheel
scheduling schemes have been proposed to
solve frame-based packet scheduling problems.
These pinwheel methods provide low delay and
low jitter for RT traffic and a short-queue length
for non-RT traffic.

This paper discusses theoretical power-aware real-
time scheduling. We consider a discrete DVFS
scheduling problem for periodic task systems given
worst-case execution times (WCET). We propose
an algorithm that finds a min-energy intra-task
DVFS schedule in O(d+k log k) time. An inter-task
DVFS method is also proposed, with time and
space complexities of O(d+n log n) and O(d+n),
respectively. Notations k, n and d respectively
denote the number of tasks, jobs and voltage
levels. In section 2, we present the model and the
notational conventions. Section 3 introduces DCTS
and the proposed task profiling algorithms. The

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1027

DVFS scheduling algorithms are proposed in
Section 4. In Section 5, we present the
performance analyses of the proposed algorithms
and compare the consumed utilization of
transformed task sets with those of their original
task sets. Section 6 concludes this paper.

2. Task model

A pinwheel task Ti is defined by two positive
integers, an execution requirement and a window
length, with the understanding that the task Ti
needs to be allocated to the shared resource for at
least a out of every b consecutive time units. In the
distance-constrained task systems (DCTS) [13],
they stipulated that temporal distance between any
two consecutive executions of each job in the
pinwheel schedules should always be less than a
certain value. DCTS modifies the distance-
constraints of longer task periods as a multiplier of
a power of two (abbr. to harmonic number) shorter
periods, neither of which is longer than its original
distance-constraints using the Sr algorithm [13].
The advantage of the period transformation is that
the produced schedules have regular start,
preemption and finish times, and therefore provide
good predictability.

The target model focuses on synchronous,
preemptive, and periodic task systems. In the task
set τ={T1, …, Tk} of k periodic real-time tasks,
every task Ti consists of an infinite sequence of
jobs ji,1, ji,2, …. A task Ti with a WCET requirement
ei and a period pi has a weight wi=ei/pi, where
0<wi<1. A feasible schedule must give each job its
WCET between the arrival-time ri and the deadline
di. In the task model, we assume that every task
period pi and deadline (as well as their distance
constraints) has been transformed as harmonic in
that they have been sorted according to their
periods, p1≤ p2≤…<pk. Because of the jitterless
schedule, the relative beginning bi and finishing
time fi of Ti are fixed and can be efficiently obtained
in Section 3.

The clock speeds corresponding to d given discrete
voltage/speed levels are denoted by s1>s2>…>sd.
The highest speed s1 is always fast enough to
guarantee a feasible schedule for the given tasks.

Moreover, ei and
g
i respectively denote the duration

of the execution at speeds s1 and sg. The time

overhead for varying the supply voltage and clock
frequency is negligible. In addition, the power loss for
the DC-DC converter is also negligible. Let




k

i

g
i

g wU
1 denote the total weight of tasks in τ at

speed sg where i
g
i

g
i pew / . For simplicity, U denotes

the total weight of τ at the highest speed. The power
P, or energy consumed per unit of time, is a convex
function of the processor speed. The energy
consumed by the processor during the time interval

[t1, t2] is E(t1, t2)= 
2

1
))((

t

t
dttsP .We refer to this problem

as discrete DVFS scheduling (abbreviated to
IntraDVFS). The first goal is to find, for any given task
set τ, a feasible schedule produced by IntraDVFS
that minimizes E. In the inter-task version, every job
has only one speed during its execution. The second
goal is to generate the inter-task (abbreviated to
InterDVFS) schedules and to reduce their energy
consumption level as close as possible to that of the
schedule produced by IntraDVFS.

3. Distance-constrained task systems

This section introduces the concept of an h-
schedule produced by algorithm Sr mentioned by
DCTS [13] and discusses its important
properties. Algorithm Sr [31] converts the
periods into a set of specialized periods that are
not greater than the original periods, while
minimizing the increased weight of the total task
set . For example, in Fig. 1(a), a system consists
of five tasks with periods 9.2, 10.6, 21.2, 22.6
and 23.4, for which the corresponding execution
times are 1.0, 1.1, 9.98, 0.94 and 1.87. After
applying Sr, the new task periods {5.3, 10.6,
21.2, 21.2, 21.2} are illustrated in Fig. 1(b).
Because the lengths of the task periods are
multiples of the power of 2, the schedule for
each task has no jitter, and their relative starting
and ending times are fixed.

(a)

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1028

(b)

Figure 1. (a) Periodic and (b) jitterless schedule.

3.1 Base speed selection

In this section, we prove that any slack time in a
jitterless schedule with harmonic task periods
can be allocated to all jobs. By using this
property, we provide a speed factor for a WCET
schedule to minimize energy consumption and
the speed adjustment times.

Definition 1. An h-schedule, for which  conforms
to the RM policy and the lengths of the task period,
is transformed into harmonics using Sr [31].

Without loss of generality, the length of an h-
schedule is equal to the longest task period pk.
Notably, as long as the utilization of the task set
after transformation is less than or equal to 1,
the task set can be feasibly scheduled.

Lemma 1. Let U ≥1; there is no slack time in an
h-schedule.

Proof. This lemma is proven by contradiction.
Let mi=pk/pi and 1≤ i≤ k, without loss of
generality; we discuss the h-schedule over
interval I=[0, pk]. In interval I, the total execution

time of tasks in τ is denoted as 


iT ii em .

Assuming that slack time exists in interval I, the
following inequality can be satisfied,

kT ii pem
i

 

 1 iT
i

k

k

i

p

p

p

e (1)

 U <1

This contradicts our assumption.

Definition 2. In the h-schedule for τ, we define a
deadline as being tight if task Ti finishes just on
time at di.

Theorem 2. In an h-schedule for τ, slack time
exists if and only if all jobs in the schedule do not
miss their deadlines and the deadline is not tight.

Proof. For the “only if” direction, we prove by
contradiction.

Case 1. (k=1) When an h-schedule contains only
one task which has tight deadline, all of its jobs
must be finished exactly at their deadlines.

Therefore, no slack time exists in the schedule.

Case 2. (k>1) In an h-schedule, all jobs of a task
have identical relative finishing times. Without
loss of generality, assume Tk has a tight
deadline at time t. For all Tx, x<k, thus it has
higher priority than Tk. Because task periods are
harmonic, we obtain

x
x

k m
p

p
 (2)

mx denotes the power of 2.

Moreover, at the time of t-pk, exactly k tasks are
released, and they must have their jobs’
deadlines at the time of t. Therefore, for all Tx,
the execution time of their jobs that complete
over the interval [t-pk, t] can be written as
follows:













k

x
x

x
k

x

k

x x

p

e
p

em

1

1

 (3)

Since we have assumed fk≥ pk and
k

k

x
x

x
k e

p

e
p  



1

1
,

we can derive

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1029

)1(

)(

1

1

1

1

1

1

























k

x
x

x
kk

k

x
x

x
kkk

kk

k

x
x

x
kkk

p

e
pe

p

e
ppe

pe
p

e
ppf

 (4)






1

1
1

k

x
x

x

k

k

p

e

p

e

Without loss of generality, Tk has the lowest priority

in τ and we derive U ≥ 1. According to Lemma 1,
this contradicts our assumption.

The proof of the “if” direction is easily found.
Suppose the h-schedule for  contains no slack
time. Without loss of generality we only discuss the
jobs performed in interval I. The total execution

time of these jobs can be written as: x

k

x x em  1 .

Since interval I contains no slack, we have:

1
1

 Upe
p

p
kx

k

x
x

k (5)

When a U >1, h-schedule is not feasible, at

least one job is missing its deadline. When U
=1, the latest job in interval I must have a tight
deadline.

This completes the proof.

Based on Theorem 2, as long as an h-schedule
that is executing at a constant speed is missing a
deadline or has a tight deadline, there is no wasted
slack time in the schedule. We define the suitable
processor speed for h-schedule as follws:

Definition 3. In an h-schedule for , we define
the critical speed sc as the highest speed such

that all tasks execute at speed sc and
cU ≥ 1.

The function of speed sc produced by
CriticalSpeed(τ) in Fig. 2 generates the base speed
for the tasks to produce a suitable h-schedule and
to reduce the number of speed adjustments.

CriticalSpeed(τ)

Input: task set τ
Output: critical speed sc

g=d, gU =0

While gU <1 and g>1 do
gU = U )/(1 iss ;

 g=g-1;
return sg.

Figure 2. Pseudo-code of Algorithm 1.

3.2 Task execution profiling

After computing sc, the beginning and finishing
times of each task under speed sc can be
derived without constructing an actual h-
schedule. In Fig. 3, Algorithm TaskProfiling
obtains bi and fi of all the tasks that are in
O(k) time.

TaskProfiling(τ)

Input: task set τ and speed level sc
Output: a set of pairs (bi, fi) where 0<i≦k

For i=1 to k do //scaling all ei as
c
ie //

c
ie = ie ×

s

s1 ;

a1=p1-
c
ie ;

For i=2 to k-1 do //compute the lengths
of

ai=ai-1×
1i

i

p

p －
c
ie ; accumulative

slack//

b1=0, b2=f1=
c
ie ;

For i=2 to k do //compute bi and fi of task Tiτ//

 Gi= 








1i

c
i

a

e ×p i－1;

 LGi=1－
i

i

G

a 1 ×









1i

c
i

a

e ;

 fi=Gi× LGi＋
i

c
i

p

e , bi+1=fi
;

return S* ={Tiτ | (bi, fi)};

Figure 3. Pseudo-code of Algorithm 2.

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1030

4. Scheduling algorithms

For an h-schedule under speed sc, we define the
following:

c: the length of execution time that exceeds pk and is

derived from k
c pU )1( .

: the shortest execution time under execution
speed sc-1 that prevents an h-schedule under
speed sc from missing deadlines and denotes

cc

c
c

ss

s








1

1 .

For example, in Fig. 4(a), we can derive c=

1)1(3
3  pU and = 67.2

32

2
3





ss

s
. That is, the h-

schedule in Fig. 4(b) has to increase the speed of an
interval of at least 2.67 in length from s3 to s2 to
ensure deadlines are met.

4.1 Proposed algorithm for the intra-task schedule

Figure 5 presents an DVFS algorithm for the intra-
task schedule, which minimizes the number of
speed/voltage transitions and energy consumption.

Theorem-3. An h-schedule for task set 
consumes the minimum energy using the
IntraDVFS (τ) algorithm.

Proof. An h-schedule with minimum energy
consumption has no idle period. In the algorithm
IntraDVFS(τ), energy consumption under speed
sc and sc-1 is determined by the total processor
run time. According to lines 8 and 9 in IntraDVFS
(τ), an h-schedule with WCET clearly contains
no idle period. Moreover, because of the convex
property of the function related to power speed,
the wide-gapped speed adjustments will make it
difficult to obtain significant energy savings [43].
Consequently, the range of speed adjustments
of the IntraDVFS (τ) is at most one speed level,
when an h-schedule under speed sc misses a
deadline. Therefore, the speed adjustment for h-
schedule minimizes energy consumption, and
this completes the proof.

The algorithm in Fig. 5 has a time complexity of
O(d+k log k) time, where k denotes the number
of tasks in . In the algorithm, its input periods
have to be transformed in advance by Sr [19],
which runs in O(k log k) time, and line 3 in
algorithm CriticalSpeed() needs O(d) time to
find a critical speed. Notably, the time complexity
of the algorithm in [30] is O(dn log n) where n
denotes the number of jobs. In a task system,
the number of jobs is far greater than the
number of tasks. Therefore, our scheme
outperforms their algorithms, even if we ignore
the overhead incurred by producing the whole
schedule in the method presented in [30].

(a)

(b)

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1031

IntraDVFS (τ)

1. Input: task set τ with transformed task periods
2. Output: assign speed levels to h-schedule
3. Whenever a task completes early
4. Compute the critical speed sc using Algorithm

CriticalSpeed();
5. If 1cU Then assign sc to the whole h-

schedule;

6. Else c= n
c pU )1( ;

7. =
cc

c
c

ss

s








1

1
;

8. Assign speed sc to the interval [0, pk-];
9. Assign speed sc to the interval [pk-, pk];
10. update bi and fi of each task.

End Algorithm IntraDVFS (τ)

Figure 5. The pseudo-code of Algorithm 3.

4.2. Proposed algorithm for the inter-task schedule

In an h-schedule produced by a InterDVFS(τ),
each job has a unique execution speed whenever
it performs. However, the decision for speed
adjustment is similar to that of the knapsack
problem with an unbroken object and identical
value. More precisely, given that  is derived from
the h-schedule, we have to decide which jobs can
be placed into the interval in such a way that the
sum of their execution time is greater than  and
their differences are minimal. Unfortunately, the
optimization algorithm for this decision problem
runs in pseudo-polynomial time [14]. In other
words, the time complexity depends on the length
of an output schedule.

The objective of our algorithm is to minimize the
fluctuation of execution speeds. Thus, the
proposed method has to know the task profiles
produced by Algorithm TaskProfiling() in Fig. 3.

Jobs are arranged in order of increased speed
by sorting all jobs by their finishing times and
therefore interDVFS takes O(n log n) time. In Fig.
6, from lines 7 to 10, we they search for suitable
jobs according to this order and book the nearest
job with the minimum execution time, thus the
time complexity is at most O(n). For the time
complexity of the rest of algorithm InterDVFS(),
the remaining period transformation takes O(k
log k) time, finding the critical speed takes O(d),
and computing the values of fi and bi of each
task takes O(k). In general, the value of n is
much larger than that of k in a periodic task
model, and the running time of algorithm
InterDVFS() is O(d+nlogn).

InterDVFS (τ)

01. Input: task set τ with transformed task periods
02. Output: the assignment of speed levels to all jobs
 Whenever a task completes early
03. Compute the critical speed sc using CriticalSpeed();
04. Compute the fi and bi of Ti in τ using

TaskProfiling(τ);
05. Sort the jobs according to fi in increasing order in

JL={j1,…, jk};

06.
c = n

c pU )1( and =
cc

c
c

ss

s








1

1
;

J=, emin=;
07. For i=1 to n do

08. choose ji and obtain its execution length
c
ie ;

09. If ≧
c
ie Then JL=JL－ji and J=J∪ji ;

10. ElseIf
c
ie <emin Then emin=

c
ie and jmin=ji

;

11. JL=JL－jmin, J=J∪jmin

;

12. Assign the jobs in JL to speed level sc

;

13. Assign the jobs in J to speed level sc+1

;

14. Update bi and fi of job ji in J

;

End Algorithm InterDVFS (τ)

Figure 6. The pseudo-code of Algorithm 4.

(c)

Figure 4. Examples of h-schedules.

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1032

Example. In Fig. 4(c), the first job of T1 is included
in job set J due to the for-loop in algorithm
InterDVFS(). In line 12, the second job of T1 is
finally assigned to jmin and included in J.

5. Performance analysis

We discuss the performance of the techniques
proposed in [14, 17, 18, 21]. Because the methods
belong to intraDVFS scheduling and are optimal
power consumption solutions, we can only
compare their time complexities.

The levels of complexity for the given methods
are shown in Table 1. The second and third rows
present the time complexities of InterDVFS and
IntraDVFS techniques. Notations n, k and d
respectively denote the numbers for job, task
and speed levels. Notably, L denotes the length
of an input schedule. In a periodic task system,
the number of jobs is far greater than that of
tasks and our intraDVFS algorithm outperforms
the others.

 Proposed. Ishihara[9] Li [18]
Kwon
[12]

Inter-tasks O(d+nlogn) O(dn) O(dnlogn) O(n3)
Intra-tasks O(d+klogk) N/A N/A N/A

space O(d+n) O(d+n) O(L) O(L)

Table 1. Time and space complexities.

Notably, the method proposed by Ishihlara et al.
is formulated as a linear programming problem
and has at least O(dn) time complexity [12].
However, the optimality of the technique is
confined to a single task. Therefore, the
optimality does not hold for the practical case in
which every task has different execution speeds.
In addition, the techniques proposed in [16, 18]
have to generate a “canonical” schedule before
voltage/speed adjustments. The memory space
required by the above-mentioned methods is
dominated by the length of such schedule and
cannot be generated in polynomial time.

The simulations results in Fig. 7 presentes the
inflation of Uτ caused by Sr and (2) the energy-
efficiency of interDVFS scheme. Because of period
transformation, Uτ is greater than its original
utilization and the difference between them is
called inflation. In Fig. 7, Sr is performed in the
20,000 randomly generated task sets with varying

sizes. For example, when every τ contains 6 tasks,
the average inflation per task set is 0.14. The
figure indicates that inflation will rise at a rate
proportionate to the size of task set.

 0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 0

Number of Tasks

A
ve

ra
ge

 in
fl

at
io

n
 p

er
 t

as
k

 s
et

2 4 6 8 10 12 14 16 18 20

Figure 7. Average inflation versus the number of tasks.

Since the intraDVFS scheme produces a min-
energy schedule, it can serve as a yardstick by
which to assess the energy efficiency of
interDVFS. Figure 8 presents the percentage of
the normalized deviation produced by interDVFS
as compared to that of the optimal solution
versus task set size. Because previous works [9,
12, 14, 15] optimized energy consumption, no
comparison need be made with the proposed
interDVFS. The figure shows the energy
consumption of interDVFS does not deviate
more than six percent from that of the optimal
solution. It also indicates that energy
consumption is rather sensitive to variation of
task set size. The deviation is less than 4%
when task set size is greater than 10. The main
reason is that, when the number of tasks
increases, the number of candidate tasks to
share the slack time is also increased.








              

Figure 8. Normalized deviation produced by task.

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1033

In additioin, we evaluate the effectiveness of
InterDVFS on randomly generated task sets and
compare its energy consumption with DRA, AGR
[1] and lpSHE [13]. Both DRA and AGR are
modified to account for time transition overhead.
Each task is characterized by its worst-case
execution wci, its period pi, and its deadline di,
where di=pi. We vary three parameters in our
simulations: (1) number of tasks totaltasks in τ from
2 to 20 in two task increments, (2) the probability of
an early completion (prob. of EC) for each job, and
(3) the bc/wc ratio of BCET to WCET, from 0.1 to
0.9. For any given pair of totaltasks, U and bc/wc
in T, we randomly generate 1000 task sets, and
the experiment result is the average value over
these 1000 task sets. In a task set, each task
period pi is assigned randomly in the real number
range [1, 100]ms with a uniform probability
distribution function. The execution time wci of
each task is assigned in the real number rang [1,
min{pi-1, 450}]. After giving the values of tasks’
periods and executions, we assign the utilization U
of a task set and rescale the pi of each task such
that the summation of the task weights (i.e. wci/pi)
is equal to a given U. The early completion time of
each job in simulations (1) and (2) was randomly
drawn from a Gaussian distribution in the range of
[BCET, WCET], where BC/WC=0.1. In simulation
(3), each experiment was performed by varying
BCET from 10% to 90% of WCET. The experiment
calculates the energy consumption of each task
set in an interval of time I=2000. After generating
the task set, a duplicate of the task sets are
transformed to have powers of 2 periods.
Therefore, the duplicate has higher actual
utilization than initially intended. In the period
transformation tasks, since the simulation tasks
still complete early proportionately according to the
experiment settings, the slack originated from
additional utilization still be utilized by slack-time
analysis algorithms.

The processor model we assumed is base on
the ARM8 microprocessor core. For all
experiments we assume there are 10 frequency
levels available in the range of 10MHz to
100MHz, with corresponding voltage levels of 1
to 3.3 Volts. The assumption of voltage scaling
overhead is the same as that in [24], and an idle
processor consumes at most 500μW at the

processor sleep mode. The energy
consumptions of all the experiment results are
normalized against the same processor running
at maximum speed without DVFS technique
(non-DVFS). Table 2 is a summary of our
simulated ARM8 processor core [37].

Frequency Voltage Power
Sleep (idle) 0.5V <500μW
10MHz 0.7V 4.5mW
20MHz 0.75V 11.2mW
30MHz 0.85V 21.9mW
40MHz 0.96V 36.8mW
50MHz 1.08V 57.5mW
60MHz 1.2V 85.8mW
70MHz 1.33V 123.2mW
80MHz 1.48V 174.4mW
90MHz 1.65V 244.8mW
100MHz 1.82V 330mW

Table 2. Power specification [33, 34].

The overheads considered in the simulations are
as follows.

(1) Algorithm execution time and energy

The energy overhead is obtained under the
assumption of 80% of the maximum power [24].

(2) Voltage transition time and energy

The assumption of voltage scaling overhead is the
same as that in [24] and the transition time is at
most 70us between maximum transitions [38]. The
energy consumed during each transition is:

12)1(dddd V-VC-nE   (6)

where λ denotes the efficiency of DC-DC
converter.

For the voltage scaling from Vdd1 to Vdd2, the
transition time is:

12
max

2
dddd V-V

I

C
t 


 (7)

where C and Imax denote the charge to the
capacitor and the maximum output current of
the converter.

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1034

(3) Context-switch time and energy

The context-switch is assumed to be 50μs
at the highest speed Smax as presented by
David in [40].

Figures 9 (b), 10 (b) and 11 (b) have been done
under the assumption that the lengths of task
periods in the non-DVFS, DAR, AGR and lpSHE
are transformed to the power of 2, while those in
Figures 9 (a), 10(a) and 11 (a) are not
transformed. As shown in Figure 9 (a),
InterDVFS reduces the energy consumption up
to 5% over DRA. The utilization of a given task
set is 60%. As the number of tasks from 8 to 20,
the energy consumption of InterDVFS is
increased steadily. The reason for this fact is
that InterDVFS focuses on distributing the slack
on as many tasks as possible. When the number
of tasks increases, the available slack can be
shared by many tasks due to the jitterless
schedule. Therefore InterDVFS decreases the
number of speed/voltage scaling and benefits
the energy saving. In Figure 9 (b), DRA, AGR
and lpSHE have closer energy consumption with
each other than those in Figure 9 (a). InterDVFS
still outperforms other methods especially in the
large totaltask.

In Figure 10(a), when prob. of EC is smaller than
0.8, InterDVFS performs 2%~12% more energy
saving compared to AGR and DRA. When prob.
of EC is 0.9, the results are not good as we had
hoped, they are 7% worse than those of AGR. In
the experiment, the totaltasks of each task set is
randomly determined from 2 to 20. As the
probability of early completion decreases, the
differences between InterDVFS and DRA or
AGR increase substantially. On the contrary,
when the largely jobs complete early, the
amount of current available slack would be
changed frequently and the voltage levels of
other related jobs have to be changed. The
harmful effects of frequently voltage change
compromise the advantage of InterDVFS that
benefits the evenly distribution of slack. In Figure
10(b), InterDVFS still outperforms up to 8%
energy saving compared to other methods.

The effect of bc/wc shown in Figure 11(a) and
11(b) confirms our prediction that the energy
consumption (U=0.8, prob. of EC is 0.5) would be

highly dependent the variability of the actual
workload. When bc/wc=0.9, the energy
consumptions are quite close for all four
techniques, as expected. However, once the actual
workload decreases, the algorithms are able to
reclaim slack time and to save more energy.
Algorithm InterDVFS gives the best energy saving,
followed by AGR DRA and lpSHE. Decreasing the
ratio helps further improve the relative
performance of InterDVFS due to the equally
assigned voltage/speed level to the future jobs.

In a jitterless schedule, more jobs have the same
release times and deadlines as those in the
schedule with original periods. Therefore, the
appearances of next task arrival (NTA) become
regular and the distances between NTAs are
longer than that in the schedule without period
transformation. At each scheduling point, when the
distances between each pair of NTAs are longer,
DRA, AGR and lpSHE obtain more energy
savings. This is because they can derive longer
slack between the NTAs. In addition, when more
tasks release at the same time, they can predict
the length of slack more precisely and easier. As
the example shown in Figure 1(b), a schedule
without jitters makes more jobs share available
slack than those generated by original periods.
Although InterDVFS has the penalty for utilization
inflations, it still outperforms other techniques.

Since non-DVFS does not as sensitive as DRA, AGR
and lpSHE to period transformation, its energy
savings is modest while other methods have
relatively less energy consumption. It is likely to that
these methods gain more savings by predicting the
length of slack in the future interval. Moreover, in the
Figures 9(b), 10(b) and 11(b), the energy
consumptions of DRA, AGR and lpSHE are closer
with each other than those without period
transformation in Figures 9(a), 10(a) and 11(a). The
experiments show that jitter-controlled schedule can
decrease the energy consumptions of up-to-date
DVFS algorithms. Therefore, it is a promising
technique in many real-time applications.

Figure 12 shows how the number of speed
transition changes with the DVFS algorithms. The
number of transitions is measured with varying the
rates of bc/wc. The length of generated schedules
and task periods is up to 2000ms and 100ms,
respectively. Figure 12 also considers the results

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1035

for a clairvoyant algorithm, named bound, which
checks all possible scheduling points in the whole
schedule as well as looks for the best speeds, start
and completion times. In fact, bound is extremely

time-consuming for finding a combination with the
minimum transition times. The results illustrate that
lpSHE, DRA and AGR have higher frequencies of
transitions than that of InterDVFS

totaltasks

N
or

m
al

iz
ed

 C
on

su
m

pt
io

n
E

ne
rg

y

2 4

0.60

0.10

1.00

0.50

0.70

0.80

0.90

0.40

0.30

0.20

6 8 10 12 14 16 18

(a)

DRA AGR lpSHE InterDVFS

20

totaltasks

2 4

0.60

0.10

1.00

0.50

0.70

0.80

0.90

0.40

0.30

0.20

6 8 10 12 14 16 18

(b)

DRA AGR lpSHE

20

InterDVFS

Figure 9. Energy consumption under different totaltasks (a) tasks without period
transformation and (b) tasks with period transformation (U=60%, bc/wc=0.5).

(a) (b)

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Figure 10. Effect of variations in the prob. of EC (a) tasks without period transformation
and (b) tasks with period transformation (20 tasks, U=60%, bc/wc=0.5).

(b) (a)

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1036

6. Conclusion

In this paper, we consider the pinwheel task model
on a variable voltage processor with d discrete
voltage/speed levels. On the assumption of
harmonic task periods, we propose an intra-task
scheduling algorithm which constructs a minimum
energy schedule for k periodic tasks in O(d+k log k)
time. We also propose an inter-task scheduling
algorithm which decreases the number of speed or

voltage switching events in O(d+n log n) where n
denotes the number of jobs. Our schemes
outperform the scheme in [18] even though the
number of tasks is equivalent to that of given number
of jobs. Moreover, since the schedule is obtained
without generating an actual schedule in advance,
our schemes are true polynomial time algorithms. We
also propose some fundamental properties
associated with jitterless schedules which may
provide new insights for jitterless tasks scheduling.

bc/wc

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0.60

0.10

1.00

0.50

0.70

0.80

0.90

0.40

0.30

0.20

DRA AGR lpSHE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) bc/wc

0.60

0.10

1.00

0.50

0.70

0.80

0.90

0.40

0.30

0.20

DRA AGR lpSHE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b)

InterDVFS InterDVFS

Figure 11. Energy consumption under different bc/wc ratio sets (a) tasks without period
transformation and (b) tasks with period transformation (2~20 tasks, U=60%, prob. of EC is 0.5).

(a)

T
ra

ns
iti

on
 f

re
qu

en
cy

T
ra

ns
iti

on
 f

re
qu

en
cy

Figure 12. (a) Average Transitions for the task sets versus bc/wc at U=0.5 and
d=10 and (b) Average Transitions for the task sets versus bc/wc at U=0.5 and d=4.

(a)

(b)

(b)

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1037

Aknowledgments

The author would like to thank the National Science
Council of the Republic of China, Taiwan, for financially
supporting this research under Contract No. NSC 102-
2221-E-025-003.

References

[1] A. Menéndez-Leonel de Cervantes and H. Benítez-
Pérez. "Scheduling strategy for real-time distributed
systems," Journal of Applied Research and Technology,
vol.8, no.2, pp.177-184, Aug. 2010.

[2] Medina-Santiago, J. L. Camas Anzueto, M. Pérez-
Patricio and E. Valdez-Alemán, “Programming Real-
Time Motion Control Robot Prototype,” Journal of
Applied Research and Technology, vol.11, no. 6,
pp.297-931, Dec. 2013.

[3] H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez,
“Power-Aware Scheduling for Periodic Real-Time
Tasks,” IEEE Trans. Comput., vol. 53, no.5, pp.584-600,
May, 2004.

[4] S. K. Baruah and Azer Bestavros, “Pinwheel
Scheduling for Fault-Tolerant Broadcast Disks in Real-
time Database Systems,” in Proceedings of the IEEE
International Conference on Data Engineering,
Burlington, VT, USA, ICDE, 1997, pp.543-551.

[5] B. Ernesto and R. Monroy "Real-Time Verification of
Integrity Policies for Distributed Systems." Journal of
Applied Research and Technology, vol.11, no.6, pp.831-
843, Dec. 2013.

[6] K. Varghese Cibu, K. Shankar, “Identification of
Structural Parameters Using Combined Power Flow and
Acceleration Approach in a Substructure,” International
Journal of Engineering and Technology Innovation, vol.
1, no. 1, pp. 65-79, 2011.

[7] B. Zhao, H. Aydin and D. Zhu, “Shared recovery for
energy efficiency and reliability enhancements in real-
time applications with precedence constraints,” ACM
Transactions on Design Automation of Electronic
Systems (TODAES), vol. 18, no. 2, 23, 2013.

[8] G. M. Tchamgoue, K. H. Kim and Y. K. Jun,
“Dynamic Voltage Scaling for Power-aware Hierarchical
Real-Time Scheduling Framework,” in Computational
Science and Engineering (CSE), 2012 IEEE 15th
International Conference on, Dec. 2012, pp. 540-547.

[9] M. Zakarya, N. Dilawar, M. A. Khattak and M. Hayat,
“Energy Efficient Workload Balancing Algorithm for Real-
Time Tasks over Multi-Core,” World Applied Sciences
Journal, vol. 22, no.10, pp. 1431-1439, 2013.

[10] G. Terzopoulos and H. D. Karatza, “Dynamic
voltage scaling scheduling on power-aware clusters
under power constraints,” in Distributed Simulation and
Real Time Applications (DS-RT), 2013 IEEE/ACM 17th
International Symposium on, Delft, Netherlands, Oct.
2013, pp. 72-78.

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Vol. 12, December 2014 1038

[11] W. Wang, P. Mishra and S. Ranka, “Energy-Aware
Scheduling with Dynamic Voltage Scaling,” in Dynamic
Reconfiguration in Real-Time Systems, Springer New
York, 2013, pp. 85-127.

[12] F.Gruian, “Hard Real-Time Scheduling Using
Stochastic Data and DVS Processors,” in Proceedings of
the International Symposium on Low Power Electronics and
Design (ISLPED), Lund, Sweden, Aug. 2001, pp.46-51.

[13] C.-C.Han, K.-J Lin. and C.-J.Hou, “Distance-
Constrained Scheduling and Its Applications to Real-
Time Systems,” IEEE Trans. Comput., vol. 45, no.7, pp.
814-826, July 1996.

[14] T. Ishihara and H. Yasuura, “Voltage scheduling
problem for dynamically variable voltage processor,” in
Proceedings of International Symposium on Low Power
Electronics and Design (ISLPED), Monterey, CA, USA,
1998, pp.197-202.

[15] M. Kang, D.-I. Kang, J. Suh and J. Lee, “An energy-
efficient real-time scheduling scheme on dual-channel
networks,” Information Sciences, vol. 178, Issue 12,
15th, pp.2553-2563, June 2008.

[16] W. Kim, J. Kim, and S. L. Min, A, “A Dynamic
Voltage Scaling Algorithm for Dynamic-priority Hard
Real-Time Systems Using Slack Time Analysis,” in
Proceedings of Design, Automation and Test in Europe
(DATE’02), March 2002, pp.788-794.

[17] W.-C. Kwon and T. Kim, “Optimal voltage allocation
techniques for dynamically variable voltage processors,”
ACM Trans. Embedded Comput. Sys., vol. 4, no. 1,
pp.211-230, Feb. 2005.

[18] M. Li and F. F. Yao, “An efficient algorithm for
computing optimal discrete voltage schedules,” SIAM J.
Comput., vol. 35, no.3, pp. 658-671, 2006.

[19] W.S. Liu Jane, Real-Time Systems. Prentice Hall
PTR Upper Saddle River, NJ, USA, 2000.

[20] P. Pillai and K. G.Shin, “Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating Systems,”
in Proceedings of 18th ACM Symposium on Operating
Systems Principles (SOSP’01), Oct., 2001, pp.89-102.

[21] F. Yao, A. Demers and S. Shenker, “A Scheduling
Model for Reduced CPU energy,” in Proceedings of the
36th Annual IEEE Symposium on Foundations of
Computer Science, Milwaukee, WI, 1995, pp.374-382.

[22] D. Zhu, D. Mosse and R. Melhem, “Power-Aware
scheduling for and/or graphs in Real-time systems,”
IEEE Trans. Parallel and Distributed Sys., vol. 15, no. 9,
pp. 849-864, Sep. 2004.

[23] Y. Shin, K. Choi and T. Sakurai, “Power
Optimization of Real-Time Embedded Systems on
Variable Speed Processors,” in Proceedings of the
International Conference on Computer-Aided Design,
San Jose, CA, USA, Nov., 2000, pp. 365-368.

[24] T. D. Burd and R. W. Brodersen, “Design issues for
dynamic voltage scaling,” in Proceedings of the
International Symposium on Low Power Electronics and
Design (ISLPED), 2000, pp. 9-14.

[25] D. Shin, J. Kim and S. Lee, “Intra-Task Voltage
Scheduling for Low-Energy Hard Real-Time
Applications,” IEEE Design and Test of Computers, vol.
18, no. 2, Mar. 2001, pp.20-30.

[26] Intel Corporation, “Wireless Intel SpeedStep Power
Manager-Optimizing power consumption for the intel
PXA27x processor family,” Wireless Intel SpeedStep®
Power Manager White paper, 2004.
from:http://download.intel.com/pressroom/kits/pxa27x/wp
wireless speedstep.pdf.

[27] Advanced Micro Devices Corporation, “AMD Athlon
64 Processor Power and Thermal Datasheet,” 2006,
from:http://www.amd.com/usen/assets/content_type/whit
e_papers_and_tech_ docs/30430.pdf.

[28] M. Yishay and P.-S. Boaz, “Jitter Control in QoS
Networks,” IEEE/ACM Trans. Networking, vol. 9, no. 4,
pp.492-502, Aug., 2001.

[29] R. Holte, A. Mok, L. Rosier, I. Tulchinsky and D.
Varvel, “The Pinwheel: A Real-Time Scheduling
Problem,” in Proc. 22nd Hawaii Int'l Conf. System
Science, Kailua-Kona, HI, Jan. 1989, pp. 693-702.

[30] S. Kim and P. K. Varshney, “An Adaptive
Bandwidth Reservation Algorithm for QoS Sensitive
Multimedia Cellular Network,” in Proceedings of the
IEEE VTC2002-Fall, Vancouver, Canada, Sept. 2002,
pp.1475-1479.

[31] H.-H. Lin and C.-W. Hsueh, “Applying pinwheel
scheduling and compiler profiling for power-aware real-time
scheduling,” Real-time systems, vol.34, pp.37-51, 2006.

[32] M. Marsan, S. Marano, C. Mastroianni and M. Meo,
“Performance analysis of cellular mobile communication
networks supporting multimedia services,” Mobile
Network and Applications, vol. 5, no. 3, pp. 167-177,
March 2000.

[33] C. Oliveria, J. B. Kim and T. Suda, “An adaptive
bandwidth reservation scheme for high-speed
multimedia wireless networks,” IEEE JSAC, vol. 16, no.
6, pp. 858-873, Aug. 1998.

Time and Energy Efficient DVS Scheduling for Real‐Time Pinwheel Tasks, Chen Da‐Ren et al. / 1025‐1039

Journal of Applied Research and Technology 1039

[34] L. –L. Lu, J. –L. C. Wu and W. –Y. Chen, “The study
of handoff prediction schemes for resource reservation
in mobile multimedia wireless networks,” International
Journal of Communication Systems, vol. 17, no. 6, pp.
535-552, March, 2004.

[35] J.-C. Chen, K. M. Sivalingam, R. Acharya and P.
Agrawal, “Scheduling multimedia services for a low-power
MAC in wireless and mobile ATM networks,” IEEE trans. on
multimedia, vol. 1, no. 2, pp.187-201, June, 1999.

[36] S. Dennett, “The cdma2000 ITU-R RTT Candidate
Submission,” Tele. Industry Association(TIA), June 2, 1998.

[37] ARM 8 Data-Sheet, “Document Number ARM
DDI0080C,” Advanced RISC Machines Ltd, July 1996.

[38] T. D. Burd, T. Pering, A. Stratakos and R.
Brodersen, “A dynamic voltage scaled microprocessor
system,” IEEE journal of Solid-State Circuits, vol, 35, no.
11, pp. 1571-1580, Nov. 2000.

[39] T. Pering, T. Burd and R. Brodersen, “The
Simulation and Evaluation of Dynamic Voltage Scaling
Algorithms,” in Proceedings of the the 1998 international
symposium on Low power electronics and design, ACM,
Monterey, CA, USA, 1998, pp. 76-81.

[40] F. David, J. Carlyle and Roy Campbell, “Context-
switch overheads for Linux on ARM platforms,” in
Proceedings of the 2007 workshop on Experimental
computer science, ACM 2007, pp. 3.

