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ABSTRACT 

In this article it is shown how the end effector position of a single flexible-link robot can be directly controlled by the 
angular position of its joint, so that, trajectory tracking in the end effector of the robot is possible by properly designing 
a reference trajectory for the joint angle. In order to ensure trajectory tracking of the angular position of the robot joint, 
a Sliding Modes Control (SMC) scheme is employed once the desired trajectory for the robot joint has been designed. 
SMC scheme is chosen because its known robust performance under dynamical disturbances and modeling 
inaccuracies. Then, the angular position of the robot joint plays the role of a virtual control input for the flexible 
dynamics of the link. Both, regulation and trajectory tracking of the end effector position are achieved by using the 
scheme devised in this work. The Finite Differences Method (FDM) is employed to simulate the closed loop 
performance of the flexible-link robot, because its dynamics are assumed to be governed by the undamped Partial 
Differential Equation (PDE) of the Euler-Bernoulli Beam (EBB). 
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1. Introduction 
 
Although the study of flexible-link robots have 
been the subject of intense research in the last 
three decades [1, 2, 3], flexible link robots have 
proved to be an extremely challenging problem 
for areas such as mechanical design, electronics 
and instrumentation, modeling and of course, for 
the area of control engineering [3, 4, 5, 6, 7]. 
Most of the works which deals with the modeling 
and controlling of flexible-link robots use the so 
called Assumed Modes Method (AMM) [2, 8], in 
which flexible links are considered to be flexible 
beams which are governed by the so called 
Euler-Bernoulli Beam Equation [9, 10], which is a 
PDE so that, modal analysis is often used to 
obtain a finite modal approximation to the 
dynamics of the robot [11]. Even though the 
AMM provides great insight into the overall 
phenomena [12, 13, 14. 15] which occurs in the 
flexible link robot dynamics, it has the main 
drawback that it is quite complicated to model a 
system with more than  three flexible modes 
[16]. This is the reason why, most papers using 
the AMM only consider two flexible modes.  
 

 
 
Besides, the AMM provide us with only 
information of a selected point along the flexible 
link which is usually the flexible link tip. Having 
this in mind, some researchers began to work 
directly in the PDE domain [2, 8], but still a 
simulation platform to work with PDE's is difficult 
to find. One method which allows to work directly 
with the Euler-Bernoulli PDE without having to 
perform modal analysis and which also bring 
information of several points along the flexible 
link length is the Finite Differences Method 
(FDM) [17]. 
 
In this  work,  a  cascaded control  which  allows 
to  perform  trajectory  tracking of the end 
effector of the flexible-link robot, by controlling 
the robot joint [18], is implemented using the 
FDM in order to achieve trajectory tracking 
control of the end effector of the flexible link 
robot. The platform is considered to be a single 
flexible-link robot which moves on an horizontal 
plane, so that, gravity effects are negligible, as 
depicted in Fig. 1. 
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Thus, the basic idea in this work is that the end 
effector position of the flexible-link robot is 
directly driven by the joint angular position and 
the overall system dynamics can be represented 
in a cascade-link fashion [19, 20], so that, by 
properly designing a reference trajectory for the 
joint angle, the end effector position has the 
prescribed behavior as stated in [18]. So, in 
order to ensure trajectory tracking of the angular 
position of the robot joint, a SMC scheme is 
employed over a Finite Differences model for the 
flexible-link robot, once the desired trajectory for 
the robot joint has been designed playing the 
role of a virtual control signal. In this paper it is 
show that both, regulation and trajectory tracking 
of the end effector position can be achieved to a 
satisfactory degree by using the scheme devised 
along this work. 
 

2. Modeling of a flexible-link robot using the 
Finite Differences Method 
 

The Fig. 2 depicts the geometry of a single 
flexible link robot, which moves on an horizontal 
plane, so that, gravitational effects can be 
neglected. A mass is attached to its tip in order to 
simulate the presence of an end effector which is 
manipulating a payload. It is worth noticing from 
Fig. 2 that the distributed parameters for this 
system are: the flexible link stiffness EI, its 

material density , and its cross-sectional area A. 
All of them, assumed to be constant along the 
distributed coordinate r of the robot. Also, the 
flexible link length is L and mp is the payload 
mass attached to the link tip. The coordinates to 
describe the system dynamics are: the joint 

coordinate  and w(r, t) which is the deflection 
curve of the flexible link. Finally, the control input 
is the torque u(t) which drives the robot joint. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, the system variable of interest is the 
flexible link tip position. So, a definition for this tip 
position is required in order to define the system 
output. Fig. 3 depicts the definition of a system output 
y(t), where t is the time, defined as the distance that 
the end effector travels along the arc of a circle of 
radius L centered about the joint axis of gyration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1 Finite Differences model of the PDE rotational 
dynamics for the Euler-Bernoulli Beam 
 

Let us consider the classical PDE of the EBB 
equation, in which a rotational dynamics has been 
included. Also, let us consider that the flexible link 
of the robot has its clamped base at the joint hub 
of the robot. This equation is a classical model in 
the flexible-link robots literature and can be found 
(e.g.) in [2] and is given by 
 

𝐸𝐼
𝜕4𝑤(𝑟,𝑡)

𝜕𝑟4 + 𝜌𝐴
𝜕2𝑤(𝑟,𝑡)

𝜕𝑡2 = −𝜌𝐴𝑟𝜃̈                           (1) 

 

Also, it is important to define de Boundary 
Conditions (BC) which must be valid for the 

 
 

Figure 1. A single flexible-link robot. 
 

 
Figure 2. Flexible-link robot geometry. 

 
 

Figure 3. End effector position. 
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flexible link for all the time. As the Euler-Bernoulli 
given in Eq. 1 is fourth order in the distributed 
coordinate, it is necessary to define a set of four 
BC's. The set of BC's considered in this work 
corresponds to a clamped-free beam with an 
inertial condition at the free end, so that, they are 
expressed as 
 

𝑤(0, 𝑡) = 0;   
𝜕𝑤(0,𝑡)

𝜕𝑟
=0;      𝐸𝐼

𝜕2𝑤(𝐿,𝑡)

𝜕𝑟2 = 0; 

   𝐸𝐼
𝜕3𝑤(𝐿,𝑡)

𝜕𝑟3 = 𝑚𝑝
𝜕2𝑤(𝐿,𝑡)

𝜕𝑡2 + 𝐿𝜃̈                               (2) 

 
The Finite Differences Method (FDM) employs 
approximations to the partial derivatives found in 
Eqs. 1 and 2. This approximations are obtained 
by the discretization the domain of the variables 

of the PDE. A partition t of the time t and a 

partition r of the flexible link spatial coordinate r 
are required. In this way, the Finite Differences 
(FD) approximations needed are given by Eq. 3, 
which can be found in [2] and where the notation 

wj
k 

has been used to denote w(jr, kt) in which 

the quantities t and r are fixed positive 

constants, but, in general t does not equal r. 
Also, this FD approximations are generally 
referred to as FD analogs (see e.g. [21]). Hence, 
 
𝜕2𝑤(𝑟, 𝑡)

𝜕𝑡2 ≊ 
1

Δ𝑡2 (𝑤𝑗
𝑘−1 − 2𝑤𝑗

𝑘 + 𝑤𝑗
𝑘+1) 

𝜕𝑤(𝑟, 𝑡)

𝜕𝑟
  ≊  

1

2Δ𝑡
(𝑤𝑗+1

𝑘 + 𝑤𝑗−1
𝑘 ) 

𝜕2𝑤(𝑟,𝑡)

𝜕𝑟2 ≊  
1

Δ𝑟2 (𝑤𝑗+1
𝑘 − 2𝑤𝑗

𝑘 + 𝑤𝑗−1
𝑘 )  

𝜕3𝑤(𝑟, 𝑡)

𝜕𝑟3  ≊
1

2Δ𝑟3 (𝑤𝑗+2
𝑘 − 2𝑤𝑗+1

𝑘 + 2𝑤𝑗−1
𝑘 − 𝑤𝑗−2

𝑘 ) 

𝜕4𝑤(𝑟, 𝑡)

𝜕𝑟4
≊

1

Δ𝑟4
(𝑤𝑗+2

𝑘 − 4𝑤𝑗+1
𝑘 + 6𝑤𝑗

𝑘 − 4𝑤𝑗−1
𝑘 + 𝑤𝑗−2

𝑘 ) 

 

                                                                             (3) 
 
Replacing the partial derivatives in Eq. 1 by their 
FD analogs given in Eq. 3, it yields, 
 
𝐸𝐼

Δ𝑟4
(𝑤𝑗+2

𝑘 −4𝑤𝑗+1
𝑘 +6𝑤𝑗

𝑘 − 4𝑤𝑗−1
𝑘 + 𝑤𝑗−2

𝑘 ) + 

+
𝜌𝐴

Δ𝑡2
(𝑤𝑗

𝑘+1−2𝑤𝑗
𝑘 + 𝑤𝑗

𝑘−1) = 

= −
𝑗𝜌𝐴Δ𝑟

Δ𝑡2
(𝜃𝑘+1−2𝜃𝑘 + 𝜃𝑘−1) 

                                                                             (4) 
 
in which the initial conditions of the system at 
rest are 

𝜃(0) = 𝜃0 = 0;    𝜃̇(0) =
𝜃1 − 𝜃−1

2Δ𝑡
= 0 

𝑤(𝑟, 0) = 𝑤𝑗
0 = 0;  

𝜕𝑤(𝑟,0)

𝜕𝑟
=

𝑤𝑗
1−𝑤𝑗

−1

2∆𝑡
= 0                (5) 

 
and the boundary conditions analogs are then 
given by 
 

𝑤0
𝑘 = 0;       

1

2∆𝑟
(𝑤1

𝑘−𝑤−1
𝑘 ) = 0;   

𝐸𝐼

∆𝑟2
(𝑤𝑛+1

𝑘 −2𝑤𝑛
𝑘+𝑤𝑛−1

𝑘 ) = 0;  
𝐸𝐼

2∆𝑟3
(𝑤𝑛+2

𝑘 −2𝑤𝑛+1
𝑘 + 2𝑤𝑛−1

𝑘 − 𝑤𝑛−2
𝑘 ) =  

=
𝑚𝑝

∆𝑡2
(𝑤𝑛

𝑘+1−2𝑤𝑛
𝑘+𝑤𝑛

𝑘−1) +  

+
𝑚𝑝𝐿

∆𝑡2
(𝜃𝑘+1 − 2𝜃𝑘 − 𝜃𝑘−1)   

                                                                             (6) 
 
where it must be  noticed the presence of 
fictitious points which are obtained  when t=0 (i.e., 
k=0) and whenever r=0 (i.e., j=0) of r=L (i.e., j=n). 

The fictitious point of time is wj
-1
 whereas the 

fictitious  points of the distributed coordinate are 

w-2
k
, w-1

k
 and w 

k
n+1 with also w

k
n+2. Even though 

these points are fictitious, they still can be 
calculated  by  solving some of the FD-BC given 
in Eqs. 5 and 6 or by applying these solutions to 
the recursive  equation which goes forward in 
time that is obtained by solving Eq. 4 for wj

k+1
. 

Thus, by defining  the constant kE=(EIt
2
)/(Ar

4
), 

such a recursion is found to be 
 

𝑤𝑗
𝑘+1 = 2𝑤𝑗

𝑘 − 𝑤𝑗
𝑘−1 − 𝑗Δ𝑟(𝜃𝑘+1 − 2𝜃𝑘 + 𝜃𝑘−1)    

−𝑘𝐸(𝑤𝑗+2
𝑘 − 4𝑤𝑗+1

𝑘 + 6𝑤𝑗
𝑘 − 4𝑤𝑗−1

𝑘 + 𝑤𝑗−2
𝑘 )            (7) 

 
The above equations, after a not so short 
procedure, allow to compute both, initial and 
fictitious point as 
 

𝜃0 = 0; 𝜃−1 = 𝜃1;  𝑤𝑗
0 = 0; 𝑤𝑗

−1 = 𝑤𝑗
1  

𝑤0
𝑘 = 0; 𝑤−1

𝑘 = 𝑤1
𝑘;  𝑤−2

𝑘 = 8𝑤1
𝑘 − 𝑤2

𝑘  

𝑤𝑛+1
𝑘 = 2𝑤𝑛

𝑘 − 𝑤𝑛−1
𝑘   

                                                                              (8) 
 

and, after defining mE=(2mpr
3
)/(EIt

2
) and 

LE=LmE, the last fictitious point is computed as 
 

𝑤𝑛+2
𝑘 = (4 − 2𝑚𝐸)𝑤𝑛

𝑘 − 4𝑤𝑛−1
𝑘 + 𝑤𝑛−2

𝑘 +  

+𝑚𝐸(𝑤𝑛
𝑘+1 + 𝑤𝑛

𝑘−1) + 𝐿𝐸(𝜃𝑘+1 − 2𝜃𝑘 + 𝜃𝑘−1)      (9) 
 
The expressions given in Eqs. 8 and 9 can now be 
substituted in Eq. 4 and grouped into a more 
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compact expression for a recursive equation which 
represents the dynamics of the whole flexible-link 
robot system. Therefore, the dynamics of the 
overall system is, 
 

𝑊𝑘+1 = 𝑎(𝑘)𝑨𝑊𝑘 + 𝑏(𝑘)𝑊𝑘−1 − 𝑎(𝑘){Δ𝑟𝑺 − 𝑻}𝚯 
 

                                                                            (10) 
 
where A is (n+1 x n+1) and S, T are (n+1 x 3) 
matrices. Also, W

k
=[0,w1

k
,w2

k
, ..., w

k
n-1, w

k
n-2]

T
, the 

vector =[
k+1

, 
k
, 

k-1
]
T
 and the discrete 

coefficients a(k) and b(k) are such that, [a(0), 
b(0)]=[0.5, 0], and if k > 0 then, [a(k), b(k)]=[1, -1]. 
The actualization matrix A is given by 
 

[
 
 
 
 
 
 

0 0 0 0 0 0 ⋯ 0
0 2 − 7𝑘𝐸 4𝑘𝐸 −𝑘𝐸 0 0 ⋯ 0

−𝑘𝐸 4𝑘𝐸 2 − 6𝑘𝐸 4𝑘𝐸 −𝑘𝐸 0 … 0
0 −𝑘𝐸 4𝑘𝐸 2 − 6𝑘𝐸 4𝑘𝐸 −𝑘𝐸 ⋯ 0
⋮    ⋱    
0  ⋯ 0 −𝑘𝐸 4𝑘𝐸 2 − 5𝑘𝐸 2𝑘𝐸

0  ⋯ 0 0 𝑎 𝑏 𝑐 ]
 
 
 
 
 
 

 

 

                                                                           (11) 
 
where a=-(2kE)/(1-mEkE), b=4kE/(1-mEkE) and the 
last element, c=2(1+kE(mE-1))/(1-mEkE). Also, the 
matrix S is defined to be, 
 

𝑺 =

[
 
 
 
 
 
 

0 0 0
1 −2 1
 ⋮  
𝑗 −2𝑗 𝑗
 ⋮  

𝑛 − 1 −2(𝑛 − 1) 𝑛 − 1
𝑠𝑛1 𝑠𝑛2 𝑠𝑛1 ]

 
 
 
 
 
 

                               (12) 

 
where the coefficients of the last row are defined 
to be sn1=-n/(1-mEkE) and sn2=2n/(1-mEkE). And 
finally, 
 

𝑇 =
𝑘𝐸𝐿𝐸

1−𝑚𝐸𝑘𝐸
[

0 0 0
 ⋮  
0 0 0

−1 2 −1

]                                    (13) 

 

So that, Eq. 7 allows to compute the flexible link 
deflection at every discretization point in the 
distributed coordinate r for the discrete time instant 
k+1 using only terms of the current time instant k 
and the immediate past instant k-1, which are 
always available. Notice however, that the required 

values for to compute W
k+1

 are W
k
, W

k-1
, 

k-1
 and 


k+1

 which is a future value for the joint coordinate. 

Therefore, the dynamics of the joint angle must be 
considered prior to the computation of Eq. 7, so 
that, all the needed data is available. 
 

2.2 Joint dynamics in Finite Differences terms 
 

The dynamics of the joint of the flexible-link robot 
(addressed as rigid mode) in the continuous time is 
given by 
 

𝐽0
𝑑2𝜃(𝑡)

𝑑𝑡2 = 𝑢(𝑡) − 𝑟ℎ𝑆(0, 𝑡)                                   (14) 

 

where J0 is the rotational inertia of the joint 
mechanism, u(t) is the input torque driving the 
joint and the only available control input to the 
system, rh is the perpendicular distance between 
the clamping of the flexible link and the rotation 
axis of the robot joint, and S(0,t) is the shearing 
force at the flexible link base, which produces 
the reaction torque at the joint given by the 
second term to the right of Eq. 14. The shearing 
force at the base is given by 
 

𝑆(0, 𝑡) = 𝐸𝐼
𝜕3𝑤(0,𝑡)

𝜕𝑟3                                               (15) 

 

So, in order to obtain the FD analog to the rigid 
mode dynamics given by Eqs. 14 and 15, it is 
necessary to substitute the FD equivalences of the 
derivatives and the  discretized  equivalences of 
the functions appearing in these equations. This is 
a quite straightforward calculation which yields 
 

𝜃𝑘+1 =
Δ𝑡2

𝐽0
𝑢𝑘 −

𝑟ℎ𝐸𝐼Δ𝑡2

𝐽0Δ𝑟3
(𝑤2

𝑘 − 4𝑤1
𝑘) +  

+2𝜃𝑘 − 𝜃𝑘−1                                                       (16) 
 

which depends on the current and past values of 
the system variables. Equation 16 completes the 
model of the system since it allows to compute 
all the required data to evaluate Eq. 7, so that, it 

is possible to calculate W
k+1

 and 
k+1

 once the 

initial conditions (
0
, W

0
) and the input torque u

k
 

have been specified. 
 

It is important to stress out that. for the FDM to 
work in the present case, it is necessary to obey a 
restriction upon the relative magnitudes of the 

discretization values r and t, so that, their 
magnitudes must be restricted to be such that, 
 

2𝑚𝑝∆𝑟3

𝐸𝐼∆𝑡2 <
1

4
                                                  (17) 



 

 

Trajectory Tracking Control in a Single Flexible-Link Robot using Finite Differences and Sliding Modes, J.F. Peza-Solís et al. / 70-78 

 

Vol. 13, February 2015 

 
74 

Failure in fulfilling the restriction imposed by Eq. 17 
may lead to simulation instability [21]. 
 

3. Controlling the End Effector position 
 

The end effector position is the system variable 
that is required to follow a prescribed trajectory, so, 
let the end effector position be the output of the 
system which is given by (see Fig. 3) 
 

𝑦(𝑡) = 𝐿𝜃 + 𝑤(𝐿, 𝑡)                                             (18) 
 

Also, let y*(t) be the desired trajectory for the 
output, so that, the tracking error e and its first two 

time derivatives are, e=y*(t)-y(t), 𝑒̇ = 𝑦̇∗(𝑡) − 𝑦̇(𝑡) 
 

𝑒̈ = 𝑦̈∗(𝑡) − 𝐿𝜃̈(𝑡) − 𝑤̈(𝐿, 𝑡)                                 (19) 
 

Now, let us impose a stable dynamics upon the 
error and its time derivatives, so that, 
 

𝑒̈ + 𝐾𝑑 𝑒̇ + 𝐾𝑝𝑒 = 0                                              (20) 

 
where Kd and Kp are positive constants so that, Eq. 
20 is Hurwitz. By substituting Eq. 19 into Eq. 20 
and solving for the angular acceleration, it yields, 
 

𝜃̈ =
1

𝐿
{𝑦̈∗ − 𝑤̈(𝐿, 𝑡) + 𝐾𝑑𝑒̇ + 𝐾𝑝𝑒}                         (21) 

 

Also. from Eq. 14  𝐽0𝜃̈ = 𝑢(𝑡) − 𝑟ℎ𝑆(0, 𝑡), but, as will 
be shown in the next section, the contribution of the 
reaction torque 𝑟ℎ𝑆(0, 𝑡), to the rigid mode dynamics 

is negligible. This means that 𝐽0𝜃̈ = 𝑢(𝑡). So, the 
error dynamics in Eq. 21 can be expressed as 
 

𝐾𝑑𝑒̇ = −𝐾𝑝𝑒 − 𝑦̈∗ + 𝑤̈(𝐿, 𝑡) +
𝐿

𝐽0
𝑢(𝑡)                   (22) 

 

which is a perturbed first order dynamics for the 
error e. Let a Candidate Lyapunov Function (CLF) 
for the error dynamics be 
 

𝑉(𝑒) =
1

2
𝐾𝑑𝐾𝑝𝑒2                                                  (23) 

 

which is positive definite and radially unbounded. 
Taking the time derivative of Eq. 23 along the 
trajectories of the system, it yields, 
 
𝑑𝑉(𝑒)

𝑑𝑡
= 𝐾𝑝𝑒 (−𝐾𝑝𝑒 − 𝑦̈∗ + 𝑤̈(𝐿, 𝑡) +

𝐿

𝐽0
𝑢(𝑡))        (24) 

 

Now, define the correction angle *, such that 
 

𝜃∗(𝑡) =
𝑦∗(𝑡)−𝑤(𝐿,𝑡)

𝐿
                                            (25) 

 

which is exactly the angular amount needed to 
match the current output of the system to the 
desired trajectory. Now, by taking the second 
time derivative of Eq. 25 and multiplying it by J0, 
it yields, 
 

𝑢∗(𝑡) =
𝐽0(𝑦̈∗−𝑤̈(𝐿,𝑡))

𝐿
                                           (26) 

 

Therefore, by substituting Eq. 26 into Eq. 24 as the 
nominal control input, it can be seen that the time 
derivative of the CLF in Eq. 24 is rendered negative 
definite, thus, implying that the tracking of the 
trajectory is ideally asymptotically stable. However, 
the exact controlling signal u*(t) is not achieved 
because there always exist some parametric and 
modeling uncertainties. The closest thing to do, is to 

make sure that the rigid mode trajectory for (t) 

reaches *(t) as its reference trajectory. Hence, by 

ensuring the tracking of the trajectory *(t), it is 
possible to obtain at least, a stable trajectory tracking 
for the end effector position of the flexible link robot. 
In this work, it is also assumed that the measurement 
of the end effector position is available. 
 

One possible way to achieve the tracking of the 

trajectory *(t) given in Eq. 25 is to employ a SMC 
scheme to verify that the end effector position y(t) 
tracks the specified trajectory y*(t). Having in 
mind that the rigid mode is governed by the 
perturbed second order dynamics Eq. 14, let us 
consider the first order switching function to be 
 

𝜎(𝑡) = (
𝑑

𝑑𝑡
+ 𝜆) 𝜃̃(𝑡)                                            (27) 

 

where  is a constant, and 𝜃̃(𝑡) = 𝜃(𝑡) − 𝜃∗(𝑡). 
Also, let S(t) be a storage function, so that, 
 

𝑆(𝑡) =
1

2
𝜎2(𝑡)                                                      (28) 

 

Thus, its time derivative yields 
 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜎(𝑡)𝜎̇(𝑡) = (𝜃̇̃ + 𝜆𝜃̃)(𝜃̈̃ + 𝜆𝜃̇̃)                   (29) 

 

which, after some manipulations, can be 
expressed as 
 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜎(𝑡) [𝜙(𝑡) + 𝑣(𝑡) + 𝜆𝜃̇̃(𝑡)  − 𝜃̈∗(𝑡)]          (30) 
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where v(t) is obtained after a control transform and 

(t) is a perturbation due to the flexible-link 
bending moment at the clamping, but, since the 
bending moment can be accurately measured, and 

the perturbation term (t) is assumed to be small 
and is given by 
 

𝜙(𝑡) =
𝐽1

𝐽0
[𝑘𝑓

𝜕2𝑤(0,𝑡)

𝜕𝑟2 ]                                            (31) 

 

in which J1 is the best estimation available for the 
system inertia moment respect to the robot joint 
axis, making the fraction J1/J0 close to 1 and kf is 
a small constant in which the closeness of the 
sensor to the clamping and the estimate of the 
flexible-link stiffness are accounted for. Thus, 

making (t) a bounded function of time. Also, the 
control transform u(t) to v(t) is defined, so that, 
the rigid mode dynamics of Eq. 14 can now be 
expressed by 
 

𝜃̈(𝑡) = 𝜙(𝑡) + 𝑣(𝑡)                                              (32) 
 

Therefore, Eq. 30 becomes 
 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜎 (𝜙(𝑡) + 𝜆𝜃̇̃(𝑡) − 𝜃̈∗(𝑡)) + 𝜎𝑣(𝑡)             (33) 

 

Also, the term inside the parenthesis of Eq. 33 is 
assumed to be bounded, that is, 
 

|𝜙(𝑡) + 𝜆𝜃̇̃(𝑡) − 𝜃̈∗(𝑡)| < 𝑀;   𝑀 > 0                    (34) 

 

so that, from Eq. 33 it turns out that 
 
𝑑𝑆(𝑡)

𝑑𝑡
≤ |𝜎(𝑡)|𝑀 + 𝜎(𝑡)𝑣(𝑡)                                   (35) 

 

Hence, by choosing v(t) as 
 
𝑣(𝑡) = −𝑀1𝑠𝑖𝑔𝑛(𝜎(𝑡))                                        (36) 
 

Then, Eq. 35 is equivalent to 
 
𝑑𝑆(𝑡)

𝑑𝑡
≤ −(𝑀1 − 𝑀)|𝜎(𝑡)|;     ∀𝑡 > 0                       (37) 

 
which, upon choosing M1 > M, ensures that the rigid 

mode state (𝜃, 𝜃̇) reaches the sliding surface 

defined by (t)=0 in a finite amount of time (i.e., (t) 

reaches *(t) after a finite amount of time), because 
the time derivative of the storage function of Eq. 28 
is rendered negative definite for all time. It is  

important to mention that the reference trajectory 

*(t) expressed in Eq. 25, can be treated as a virtual 
controlling signal, which can be improved by adding 
the classical PID gains for the error terms, so that, 
the improved control law for this system is given by 
 

𝜃∗(𝑡) =
1

𝐿
{𝑦∗ − 𝑤(𝐿, 𝑡) + 𝐾𝑝𝑒 + 𝐾𝑑𝑒̇ + 𝐾𝑖 ∫ 𝑒𝑑𝑡

𝑡

0
}  

                                                                            (38) 
 

where Kp, Kd, Ki >0. Thus, the FD equivalence of 
Eq. 38 is then given by 
 

𝜃∗𝑘 =
1

𝐿
{𝑦∗𝑘 − 𝑤𝑛

𝑘 + 𝐾𝑝𝑒𝑘 + 𝐾𝑑
𝑒𝑘−𝑒𝑘−1

Δ𝑡
+

𝐾𝑖 ∑ 𝑒𝑖∆𝑡∞
𝑖=0 }                                                    (39) 

 

also, the corresponding expression for the control 
law of Eq. 36 in discrete time is given by 
 

𝑢𝑘 = −𝐹𝑠𝑖𝑔𝑛(𝜎(𝑘Δ𝑡))                                         (40) 
 

Observe from Eqs. 36 and 40 that, even though 
the calculations for the control law were made in 
terms of continuous functions of time, the 
controlling action given by Eq. 40 has a constant 
value between consecutive sampling times 

(which are spaced by the time amount t). 
 

4. Simulation results 
 

The parameters employed to simulate the control 
scheme devised in the last section are divided in 
two sets: the first one is the set of mechanical 
parameters of the flexible-link robot given in the 
Table 1, and the second set is composed by the 
simulation parameters needed to implement the 
FDM, which are given in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Value 

Flexible-link length L 1[m] 

Payload mass mp 1[Kg] 

Link stiffness EI 21.76 [Pa.m
4
] 

Mass density  2700 [Kg/m
3
] 

Cross-sectional area A 8.0654 x10
-5

 [m
2
] 

Equivalent inertia J0 1.1452 [Kg.m
2
] 

Clamping eccentricity rh 0.05 [m] 

Maximum torque F 50 [N.m] 

 

Table 1. Mechanical parameters of the robot. 
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The first simulation result corresponds to the 
regulation case where y*(t)=1.6493 [m], which is 
simply a constant position corresponding to a 

rotation angle of /2. 
 
The PID parameters for this regulation scheme 
were set  to Kp=15, Kd=5, and Ki=0.1. Fig. 4 
shows in dashed line the desired tip position y*(t) 
which is constant and in  solid line the  actual 
behavior of the end effector position which starts 
from a zero initial condition. Fig. 5 shows the 
deflection at the flexible link tip and it can be seen 
that it is never continuously zero. There is always 
a remaining vibratory effect even when the 
system output has reached the desired trajectory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Also, Fig. 6 depicts the virtual control signal *(t) 
in dashed line, whereas the actual joint angle 

(t) is shown in solid line. It is worth noticing that 

the angle (t) follows only the average of the 

function *(t), yet, the tip position has been 
satisfactorily regulated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second simulation results are intended to 
show the flexible link robot behavior when the end 
effector is required to track a prescribed 
trajectory. For this case, the PID controller 
parameters were set to Kp=15, Kd=5 and Ki=1. 
The reference trajectory signal corresponds to the 
first two terms of the Fourier series of a square 
wave, which is given by 
 

𝑦∗(𝑡) =
4

𝜋
∑

1

𝑚
sin (

𝑚𝜋𝑡

𝑇𝑠
)3

𝑚=1,3                                  (41) 

 
where the square wave period is Ts=2 [s]. 

 
The results of the end effector trajectory tracking 
scheme are depicted in Fig. 7, in which it can be 
seen that there is always an overshot of the 
actual end effector position (solid line) when the 
reference signal (dashed line) changes its sing, 
but in general, the tracking of the desired 
trajectory is satisfactory even for the reference 
signal of Eq. 41, which is somewhat demanding 
for the flexible link robot kind. Fig. 8, on the 
other hand, shows that the elastic deflection at 
the flexible link tip presents sustained 
oscillations, which are significant but remain 
bounded though. Finally, Fig. 9 depicts a 
comparison between the required virtual control 

signal *(t) and the actual angular joint position 

(t), whose behavior is consistent with the 
regulation case in that only the averaging signal  
 

Parameter Value 

Number of segments n 20 

Spatial increment r 0.05 [m] 

Time increment t 0.0001 [s] 

Total simulation time 20 [s] 

 
Table 2. Simulation parameters for the FDM. 

 
 

Figure 4. Regulation of the end effector. 

 
 

Figure 5. Tip deflection for regulation. 

 
 

Figure 6. Virtual control and joint angle. 
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of the virtual control reference is reproduced. 
Yet, the trajectory tracking performance of the 
end effector position is satisfactory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions 
 
In this paper, the modeling of a single flexible link 
robot was addressed using the Finite Differences 
Method, so that, it was possible to skip the 

classical Assumed Modes Method for modeling 
this kind of robot manipulators. Also, it was found 
that the trajectory of the joint driving the flexible 
link can be used as a virtual control signal for the 
system when the output is selected as the end 
effector position. Therefore, by defining an 
adequate trajectory for the robot joint in terms of 
the end effector position, both, system regulation 
and trajectory tracking for the end effector position 
of the flexible link were achieved. Notice however, 
that in this work, the calculations made to 
synthesize the sliding modes control law, were 
made using continuous time variables because a 
discrete time analysis and control law synthesis is 
currently under development including the 
corresponding discrete time stability analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Trajectory tracking  
for the end effector position. 

 
 

Figure 8. Tip deflection of the flexible  
link for the trajectory tracking scheme. 

 
 

Figure 9. Virtual control and joint angle  
for the trajectory tracking scheme. 
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