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ABSTRACT 
The aim of this work is to propose the fully automated pathological area extraction from multi-parametric 2D MR 
images of brain. The proposed method is based on multi-resolution symmetry analysis and automatic thresholding. 
The proposed algorithm first detects the presence of pathology and then starts its extraction. T2 images are used for 
the presence detection and the multi-contrast MRI is used for the extraction, concretely T2 and FLAIR images. The 
extraction is based on thresholding, where Otsu's algorithm is used for the automatic determination of the threshold. 
Since the method is based on symmetry, it works for both axial and coronal planes. In both these planes of healthy 
brain, the approximate left-right symmetry exists and it is used as the prior knowledge for searching the approximate 
pathology location. It is assumed that this area is not located symmetrically in both hemispheres, which is met in most 
cases. The detection algorithm was tested on 203 T2-weighted images and reached the true positive rate of 87.52% 
and true negative rate of 93.14%. The extraction algorithm was tested on 357 axial and 443 coronal real images from 
publicly available BRATS databases containing 3D volumes brain tumor patients. The results were evaluated by Dice 
Coefficient (axial: 0.85±0.11, coronal 0.82±0.18) and by Accuracy (axial: 0.96±0.05, coronal 0.94±0.09). 
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1. Introduction 
 
Nowadays, the issue of automatic analysis of brain 
tumors is of great interest. It is the first step in 
surgical and therapy planning. The very first step 
of the automatic analysis of brain tumor is its 
detection and subsequent segmentation. The 
detection of brain tumors is generally a more 
complex task than the detection of any other image 
object. Pattern recognition usually relies on the 
shape of the required objects [1] or on the object 
movements in video sequences [2]. Since the 
tumor shape varies in each case, other properties 
have to be used. 
 
The aim of the proposed method is the presence 
detection of the brain tumor in 2D MR image and  

 
 
subsequent extraction of the whole pathological 
area including active tumor and edema. 
 
Several different and interesting methods have 
been developed in recent years. The existing 
algorithms can be classified into semi- and fully-
automatic methods from a user viewpoint and into 
region- and contour-based methods from a 
technical viewpoint. 
 
The semi-automatic [3-4] require some user 
interaction, e.g. to select the starting point lying inside 
the tumor or to select several points of foreground 
and several points of background. The automatic [5-
6] methods do not require any interaction and are 
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usually based on prior knowledge of the human brain 
structure, either tissue atlas or left-right symmetry, or 
their combination. 
 
The region-based methods [7-10] usually search 
for pixels or regions with similar properties that 
create connected regions. This includes e.g. region 
growing, classification etc. The contour-based 
methods [11] use image gradient in particular area 
to boundary detection and region creation or for 
subsequent boundary evolution. The most famous 
method of this group is active contours [12]. Some 
works [13-15] use combination of region-based 
and contour-based methods and try to combine the 
advantages of both of these groups. 
 
At present, multi-parametric image analysis is 
frequently discussed within the scientific 
community [16]. This technique, even though it 
can be based on traditional segmentation 
methods (thresholding, active contours), exploits 
information obtained from more images or 
modalities at the same time. 
 
Fully automatic exact segmentation of the tumor is 
still an unsolved problem, as the accurate image 
segmentation itself. The method proposed in this 
paper analyzes 2D magnetic resonance images 
and is fully automatic. 
 
The tumor extraction methods usually rely on other 
contrast images, such as T1-weighted contrast 
enhanced images [17]. This is the image that we 
are trying to avoid, since it requires contrast 
enhanced agent (usually gadolinium) to be injected 
into the patient blood. 
 
The great advantage of the symmetry approach is 
that the process does not need any intensity 
normalization, human work etc. 
 
2. Methodology 
 
The purpose of the proposed method is a fully 
automatic extraction of pathological areas from 
stand-alone 2D MR image of brain, where no 
neighbor slices are considered. Hence, for the 
better performance, the usage of multi-contrast MR 
is suitable. The reason for multi-contrast MRI is the 
much better distinguishing of particular tissues 
than in case of using only one contrast image. E.g. 
the edema reaches similar intensities as CSF 

(Cerebro-Spinal Fluid) in T2-weighted images, 
while in FLAIR images, the intensities are 
absolutely different. On the other hand, the 
differentiation between necrosis and white matter 
is much better in T2-weighted images. The 
example of the described problem is shown in 
Figure 1, where the normalized values in T2-FLAIR 
intensity space are depicted. 
 
In this work, FLAIR and T2-weighted images are 
used. In both images, the pathological areas are 
well visible. 
 
The method consists of two main steps: the 
detection and the extraction of the pathological 
area. Both are based on multi resolution 
symmetry analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) 
 

 
 

(b)                                       (c) 
 

Figure 1. Distinguishing of particular tissues 
 in multi-contrast T2-FLAIR MRI. Red: WM,  

Yellow: GM, Green: CSF, Violet: Tumor, Blue: 
Edema. (b) and (c) show the source T2 and FLAIR 
images, respectively. The images were taken from 

simulated images of BRATS database. 
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The tumor detection process consists of several 
steps. The flow chart can be seen in Figure 2. 
 
The first step is the skull extraction followed by 
image cutting. For this cut image, the probabilistic 
map of anomalies is computed, and features are 
extracted from this map. These features are used 
for the decision, whether a pathological area is 
present in the image. If so, this area is located 
and then the decision, which half contains the 
tumor, is made. If no pathological area is present, 
the image shows a healthy brain and no other 
computation is needed. 
 

 
 

Figure 2. Brain tumor presence detection flow diagram. 
 
2.1 Preprocessing 
 
The preprocessing consists of brain extraction, 
image registration and the symmetry axis 
detection. None of these parts is the aim of this 
work, but for this purpose, the existing algorithms 
described in [18], [19] and [20] can be used for 
brain extraction, image registration and symmetry 

axis detection, respectively. Addition of such 
methods as a preprocessing step is the aim of 
future work to complete the whole system. 
 
2.2 Symmetry Analysis 
 
The most important part of the presence detection 
process is the detection of symmetry anomalies, 
which are usually caused by a brain tumor, whose 
detection is the main purpose of this article. The 
first step of this process is dividing the input 
image into two approximately symmetric halves. 
 
Assuming that the head is not rotated and the 
skull is approximately symmetric, the symmetry 
axis is parallel to the vertical axis and divides the 
image of the detected brain into two parts of the 
same size. Since the method is not pixel-based, 
the precision of the determined symmetry axis 
does not have significant influence. 
 
Since the features are extracted from the computed 
asymmetries, the size of the image has to be 
normalized. Hence, every cropped image is resized 
into the same size, concretely 256x256 pixels. 
 
A squared block, with the side length computed as 
one quarter of the cropped image side length, is 
created. The algorithm goes through both halves 
symmetrically by this block. 
 
The step size is smaller than the block size to 
ensure the overlapping of particular areas. These 
areas are compared with their opposite symmetric 
part. In this case, the step size of one eighth of the 
block size was set. 
 
A comparison is done by the Bhattacharya 
Coefficient [21]. Normalized histograms with the 
same range are computed from both parts and the 
Bhattacharya Coefficient (BC) is computed from 
these histograms as follows [21]: 
 





N

i

irilBC
1

)()(                                              (1) 

 
where N denotes the number of bins in the 
histogram, l and r denote histograms of blocks in 
the left and the right half, respectively. The range 
of values of BC is <0;1>, where the smaller the 
value, the bigger the difference between 



 

Automated Multi‐Contrast Brain Pathological Area Extraction from 2D MR Images, P. Dvořák et al. / 58‐69

Journal of Applied Research and Technology 61

histograms. For the next computation, the 
asymmetry is computed as: 
 
A = 1 - BC                                                            (2) 
 
This asymmetry is computed for all blocks. Since 
the step size is smaller than the block size, the 
overlap exists and more values of asymmetry are 
present for most pixels. To obtain the appropriate 
asymmetry map, the mean of all values computed 
for a particular pixel is computed. The computed 
values of asymmetry create the asymmetry map, 
which expresses the probability of tumor presence 
in a particular location. The higher the asymmetry 
is, the higher is the probability of the tumor 
presence in a given location. 
 
2.3 Multi-resolution map 
 
The whole cycle of symmetry checking is 
repeated four times but with different block size. 
Height and width of the block are iteratively 
reduced to the half of the previous value. So the 
size of the block is 1/1, 1/4, 1/16, and 1/64 of the 
initial size, respectively. The purpose of smaller 
areas is more precise detection of asymmetry. 
This approach corresponds to the multi resolution 
image analysis described in [22]. A block size of 
1/256 of the initial size was tested as well, but the 
results were not improved and the maximum of 
asymmetry coefficient for this block size was 
equal to 1 for every image in database. 
 
The output of each cycle is a probabilistic map of 
anomalies. The product of values corresponding to 
a particular pixel is computed. The output is the 
new multi resolution probabilistic map. The 
examples of particular probabilistic maps are 
shown in Fig. 3. 
 
2.4 Feature extraction 
 
In the next step, features are extracted from 
computed probabilistic maps. These features are 
used for the decision whether the particular image 
contains a pathological area. According to 
experiments, the relative and absolute thresholding 
can help in distinguishing between the images of 
healthy brain and brain with tumor. The thresholding 
creates a given number of regions with a given size, 
and both of these values differ for healthy and brain 
tumor patients. The extracted features are as follows: 

• global maximum of the total probabilistic map, 
 
•-maximum of each probabilistic map for a 
particular block size, 
 
• number of regions created by absolute value 
thresholding the multi-resolution probabilistic map 
and the sum of their size, 
 
• number of regions created by relative value 
thresholding the multi-resolution probabilistic map 
and the sum of their size. 
 
Global maximum of the total probabilistic map: 
 
Since the proposed method is based on 
searching the pathological area by symmetry 
checking, the maximum of asymmetry coefficient 
is the main feature, which can be used for 
classifying the image. 
 
Maximum of each probabilistic map for a 
particular block size: 
 
Other usable features are maxima of each 
probabilistic map computed in the previous step. 
Functional dependency of the anomaly coefficient 
on the block size is non-ascending; it means that 
for a smaller block, the anomaly coefficient is 
greater or equal to that of a larger block. For 
images with large tumors, this value is high even 
for a large block, while for small tumors, the 
anomaly coefficient descends earlier and it 
reaches small values for a large block. For healthy 
brains, this function is even more shifted. 
 
The maximum asymmetry for multi-resolution 
asymmetry map and for particular block sizes is 
shown in Figure 3. 
 

 
 

(a)                                        (b) 
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(c)                                   (d) 
 

 
 

(e)                                       (f) 
 

Figure 3. Asymmetry probabilistic maps for block  
side length equal to 1/4, 1/8, 1/16, and 1/32 of  
shorter side of cut image are shown in (a), (b),  

(c) and (d), respectively. In (e) and (f), input image 
and total probabilistic map are shown, respectively. 

 
Number of regions created by absolute value 
thresholding of the total probabilistic map and 
the sum of their size: 
 
This feature assumes that the anomaly 
probabilistic map of healthy brain contains a 
smaller value compared to the brain with tumor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the thresholding is done, in case of healthy 
brain, the result is a smaller number of regions and 
also a smaller sum of their size. In most healthy 
cases, both numbers are equal to zero. 
 
Number of regions created by relative value 
thresholding of the total probabilistic map 
and the sum of their size: 
 
For the extraction of this feature, the total probabilistic 
map is thresholded by relative value computed from 
the maximum of this map. Here, it is assumed that for 
brain with tumor, there is a significant peak in the part 
where a tumor is situated. So for thresholding by a 
value computed from this maximum, healthy areas 
are filtered out, because they are usually much more 
symmetric. Moreover, the tumor is in most cases 
concentrated in one location, therefore a small 
number of regions is created by thresholding. In case 
of a healthy brain, the situation is inverse. 
 
The maximum is comparable to values in other 
parts, so more regions are created by 
thresholding; moreover, they are spread into the 
whole brain. For large tumors, the sum of areas 
is comparable to the one of healthy brain, but 
the number of regions is smaller. 
 
For both relative and absolute thresholding, 10 
different levels of threshold are set, so 10 values 
are extracted for each feature. Statistical graphs of 
number of region and sum of their size for both 
relative and absolute thresholding for different 
threshold levels are shown in Figure 4 and Figure 
5, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 
 

(a)                                                                       (b) 
 

Figure 4. Number of regions and the sum of their sizes for different  
absolute threshold levels. Blue: healthy brains, Red: brains with tumor. 
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2.5 Tumor presence detection 
 
The part of the proposed method, which detects 
the presence of a pathological area in a particular 
brain, uses a supervised machine learning 
algorithm Support Vector Machine (SVM), invented 
by Cortes and Vapnik in 1995 [22], with linear 
kernel function. The features described in the 
previous section are used for image classification. 
 
2.6 Pathological area extraction 
 
After the detection of symmetric anomalies and the 
image classification, the pathological area can be 
extracted. The pathological area extraction is based 
on the method described in [23], but multi-contrast 
images, concretely T2 and FLAIR, are involved in this 
task, now. In T2-weighted images, glioma and 
potential edema produce much stronger signal than 
the white matter, in which they are mostly located. 
For this reason, the thresholding is employed here. 
Since the intensities in image can differ from case to 
case depending on the data acquisition, it has to be 
computed from the particular image. Moreover, only 
pixels in the most asymmetric parts have to be 
involved in the threshold computation. Otherwise, the 
threshold would be computed incorrectly in case of 
small tumors. For this purpose, the asymmetry mask 
is computed. This mask includes the regions, where 
the asymmetry reached at least 10% of the maximum 
asymmetry for particular image. 
 
Since the result is both-sided mask, healthy and 
pathological areas are included. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The threshold is determined automatically by 
Otsu's algorithm [25], but any other automatic 
method can be also used. 
 
Even though, the threshold is determined only 
from the image points in the most asymmetric 
parts, the thresholding process is applied to the 
whole image. 
 
Since some incorrect areas could be extracted, 
only the regions that have the intersection with the 
asymmetry mask are labeled as pathological. 
Regions with the size smaller than 10% of the 
largest segment are eliminated as well. 
 
Since CSF appears hyper-intense in T2-weighted 
images as well, the FLAIR volume is employed. In 
FLAIR the CSF produces much weaker signal than 
the white matter and the tumor or edema itself. 
 
Hence, the areas with the lower intensity than the 
median intensity (which is most likely the intensity 
of the white matter) in FLAIR image are eliminated. 
 
3. Experiments and results 
 
3.1 Datasets 
 
Two different datasets were used for the algorithm 
evaluation. The first dataset consists of 203 T2-
weighted images of brain with various image sizes. 
The smallest image has the size of 256x256 px, 
while the largest one has the size of 630x630 px. 
Since the cropped images are resized into the 

                  
 

(a) (b) 
 

Figure 5. Number of regions and the sum of their sizes for different relative threshold  
levels to maximum in a particular image. Blue: healthy brains, Red: brains with tumor. 
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same size of 256x256 px, the image size does not 
matter. 131 of test images are the images of 
healthy brain from 11 patients. 72 images from 13 
patients are the images of brain containing a 
tumor, a tumor with an edema or only an edema. 
These images are of various resolutions and 
contain pathological areas of various shape, size 
and location. In the database, there are images of 
12 small tumors, whose size is less than 2% of the 
skull size, 30 medium tumors, whose size is 
between 2 and 9% of the skull size, and 30 large 
tumors, whose size is more than 10%. 
 
The second dataset was obtained from the 
MICCAI 2012 Challenge on Multimodal Brain 
Tumor Segmentation organized by B. Menze, A. 
Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. 
Van Leemput. The challenge database contains 
fully anonymized images from the following 
institutions: ETH Zurich, University of Bern, 
University of Debrecen, and University of Utah. 
 
For each patient, T1, T2, FLAIR, and post-
gadolinium T1 MR volumes are available. All 
volumes are linearly co-registered to the T1 
contrast image, skull stripped, and interpolated to 
1mm isotropic resolution. 
 
The data used in algorithm evaluation contains 
real volumes of 15 high-grade and 7 low-grade 
glioma subjects. 
 
From each case, several slices with pathological 
area in axial and coronal plane were taken. In total, 
the extraction algorithm was tested on 357 images 
with resolution 256x256 pixels in axial plane and 
on 443 images with resolution 256x181 in coronal 
plane. Since the proposed method is fully 
automatic and independent on image intensities, 
each image of the database can be considered as 
unique and independent on others. 
 
All the simulated images are in BrainWeb space 
[27]. The information about the simulation method 
can be found in [28]. 
 
3.2 Evaluation Criteria 
 
For the evaluation of a pathological area 
extraction, Dice Coefficient and Accuracy were 
used. The Dice Coefficient (DC) [28], in some 

works called Similarity Index, is computed 
according to the equation: 
 

BA

BA
DC





2

                                                   (3) 

 
where A and B denotes the ground truth and the 
extraction result masks, respectively. This criterion 
compares the intersection of two sets with their 
union. The range of values of DC is <0;1>, where 
the value 1 expresses the perfect agreement. 
According to [29], the DC>0.7 indicates an 
excellent similarity. 
 
Another widely measure employed for 
segmentation evaluation is Accuracy (A) defined 
as follows: 
 

FNTNFPTP

TNTP
A




                                      (4) 

 
where TP, FP, FN and TN stand for ‘‘True 
Positive’’, ‘‘False Positive’’, ‘‘False Negative’’, and 
‘‘True Negative’’, respectively [30]. This measure is 
in the same range as DC and the higher value 
indicates the better performance as well. 
 
3.3 Results 
 
At first, the detection of a pathological area 
presence in the particular image was tested by a 
five-fold cross-validation process on 203 T2 axial 
images. It means that the samples in the database 
were randomly ordered and split into five groups. 
In five cycles, each of these groups was once used 
as the validation set, while the remaining four sets 
as training data. 
 
The confusion matrix of the classification is 
summarized in Table 1. The algorithm achieved 
87.52% of true positive rate and 93.14% of true 
negative rate. 
 
 
 
 
 
 
 

 Tumor present Tumor absent 

Test positive 87.52% 6.86% 

Test negative 12.48% 93.14% 
 

Table 1. Tumor presence detection performance. 
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To avoid dependency on the order of samples, 
the cycle of random ordering and five-fold cross-
validation was repeated one hundred times. 
 
After the decision whether the image contains a 
tumor the tumor location is found. This method was 
tested on 357 axial and 443 coronal images. 
 
The summary of the extraction process results is in 
Table 2. The results are separated according to 
the tumor type and the slice plane. Slightly better  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

results were achieved for high grade gliomas (HG) 
than for low grade gliomas (LG). 
 
The worst results were achieved for LG in coronal 
planes, while in other cases the results are 
comparable and achieved the value 0.86 for DC 
and 0.96 for Accuracy. 
 
The several results for both planes, both types of 
glioma and several intervals of resulting DC are 
shown in Figures 6-9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Axial Coronal 

DC Accuracy DC Accuracy 

HG 0.86±0.09 0.97±0.03 0.86±0.12 0.96±0.06 

LG 0.85±0.12 0.96±0.05 0.79±0.22 0.92±0.12 

Overall 0.85±0.11 0.96±0.04 0.82±0.18 0.94±0.10 

 
Table 2. Segmentation evaluation by Dice Coefficient and Accuracy. 

       
 

(a)                                                                              (b) 
 

Figure 6. The average (a) and above-average (b) results for axial  
slice of high grade glioma. Red: segmentation, Blue: ground truth. 
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(a)                                                                           (b) 
 

Figure 7. The average (a) and above-average (b) results for axial  
slice of low grade glioma. Red: segmentation, Blue: ground truth. 

                
 

(a)                                                                             (b) 
 

Figure 8. The average (a) and above-average (b) results for coronal  
slice of high grade glioma. Red: segmentation, Blue: ground truth. 
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4. Conclusion 
 
The aim of this work was a detection of images 
containing an abnormality caused by tumor and 
its subsequent location. Therefore the evaluation 
was divided into 2 parts: detection of a tumor 
presence and its subsequent extraction. The 
tumor presence detection reaches the true 
positive rate of 87.52% and the true negative rate 
of 93.14%. The overall accuracy of this part of the 
proposed system is 91.15%. 
 
The second part includes the extraction of a 
pathological area in both axial and coronal planes. 
In axial and coronal plane, the DC coefficient 
reached value 0.85±0.11 and 0.82±0.18, 
respectively. Considering the statement that the 
DC>0.7 indicates an excellent similarity, the 
achieved result can be evaluated as very good. 
Moreover the algorithm considers only information 
from 2D image and it is fully automated. It is 
expected that the performance will be improved in 
future using the neighbor slices information. 
 
The extraction accuracy reached values 0.96±0.04 
and 0.94±0.10 for axial and coronal plane,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
respectively. This indicates that in average 95% of 
pixels were correctly labeled either as pathological 
or as healthy tissue. 
 
The proposed method can be also used for 
detection of tumor in 3D volume, but particular 
axial and coronal slices would be  evaluated 
separately. Hence, the  attention in the future 
work  will  also be  paid  on the relations 
between neighbor slices and after  that,  the 
work will go on to extending the proposed 
algorithm to 3D. 
 
The future work will also consist of implementing 
the automatic symmetry axis detection, based on 
literature referred in section 2, and the 
separation of the tumor and the edema. 
 
In overall evaluation, the proposed system can 
automatically detect the presence of a tumor in 
2D MR image of brain with accuracy of 91.15% 
and subsequently extract the whole pathological 
area with the Dice Similarity Coefficient of 
0.85±0.11 and 0.82±0.18 for axial and coronal 
plane, respectively, compared to the manual 
expert segmentation. 
 
 

          
 

(a)                                                                                  (b) 
 

Figure 9. The average (a) and above-average (b) results for coronal  
slice of high grade glioma. Red: segmentation, Blue: ground truth. 
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