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ABSTRACT 

This paper focuses on an innovative hypothesis test for discrimination of wireless mobile channels based on higher 
order statistics to possibly start-up coherent combining. We have devised a new testing procedure, namely the 
Rakeness test, that statistically measures how much the series under investigation (amplitude samples of matched 
filter receiver's output) fits Rice vs. non-Rice models. This is equivalent to discriminate between the cases of a 
channel with one single dominant path (strong propagation), or with few dominant paths (weak propagation). Then, 
mathematical expressions for the bias and variance of the new testing variable are derived, by a 3-D reduced Taylor’s 
expansion up to the second order. The achieved results, obtained throughout theory and simulations, evidence the 
robustness of this innovative test. Our test can hence be used as a preliminary signal processing method to decide if 
simpler choices (i.e. matched filters) or cumbersome coherent combining strategies (i.e. Rake receivers) can be 
effectively implemented at the receiver’s side. 
 
Keywords: Wireless channel modeling, Hypothesis testing, Higher order statistics, Coherent combining, Rake 
receiver. 
 

 
1. Introduction 
 
Wireless has recently become an increasingly 
viable option for indoor communication systems [1, 
and references therein]. Multi-path interference, or 
interference due to the reception of multiple copies 
of a signal due to reflections and/or diffractions, is 
known to be a problem in all types of indoor 
communication channels [2]. As a result, the study 
of indoor propagation characteristics has become 
an area of increased importance [3]. The location 
methods time-of-arrival (TOA) and time-difference-
of-arrival (TDOA) will become essential for position 
computation in these wireless scenarios [4]. A 
major disadvantage of TOA and TDOA is that 
these methods require line-of-sight (LOS) 
propagation. In fact, as stated in [5], an important 
assumption for all time measurements is LOS. If 
LOS is not available, that is in non-LOS (NLOS) 
conditions, timing errors occur when these 
methods are applied. The popular LOS/NLOS 
identification methods introduced in the literature 
take into account some channel parameters to 
form a binary hypothesis test [6]. The channel 
marginal probability density function (PDF)  

 
 
reduces to the Rayleigh distribution in case of 
NLOS propagation [7]. Although important, the 
results for Rayleigh channels cannot describe 
communication environments with LOS 
components, which is the case of microcells in 
mobile systems [8]. A Rice fading model is more 
appropriate as it includes the LOS components. 
However, for most purposes, the Rayleigh and Rice 
cases are not sufficient to characterize the 
performance of systems in mobile channels: in fact, 
some channels are neither Rice nor Rayleigh [1]. An 
alternative distribution is known as the Nakagami-m 
distribution. This assumes that the received signal is 
a sum of vectors with random magnitude and 
random phases, leading to more flexibility and 
potentially more accuracy in matching experimental 
data than the use of Rayleigh or Rician distributions. 
In addition, it is well known that the short-term 
fading conditions of the received envelope in 
wireless communications channels can be modeled 
by means of the Nakagami-m distribution [1]. 
Conversely, the Rice distribution gives the exact 
distribution of the amplitude of a non-zero-mean 
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complex Gaussian distribution. Hence, the Rice 
fading model is not central. 
 
The mean values relate to LOS component 
strength. In order to parameterize the non-
centrality, many studies define a Rice factor 
denoted by K, which define the importance of the 
LOS component. In particular, the authors in [8] 
have classified the propagation condition as: 
strong, that occurs whenever K ≥ 1 and weak, that 
occurs whenever K < 1. Strong propagation 
conditions imply the presence of one dominant 
component, and a large number of non-dominant 
components (i.e. single-path with a Rician 
distribution). Weak propagation conditions imply 
the presence of few dominant paths and a large 
number of non-dominant components (i.e. few-
path with a non-Rician distribution, such as the 
Nakagami-m).  
 
Here, we propose a Ricianity strength test for 
multi-dominant-path discrimination of LOS wireless 
mobile channels, to distinguish between strong 
(or single-path) and weak (or few-path) 
propagation conditions. This information is 
extremely important in the design of low-
complexity receiver structures for wireless 
communications (see Fig. 1). In particular, the 
generalized selection combining (GSC) scheme 
aims to mitigate the fading effects experienced in 
wireless channels by applying an optimal linear 
combining rule to a subset of the “strongest”  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

available dominant paths [9]-[11]. Hence, if the 
channel model is identified as weak propagation 
(few-path), it could be useful for an improved 
resource management to adopt a 2-D (space-time) 
signal processing receiver’s strategy (i.e. the Rake 
receiver) based on an antenna array (e.g. multiple-
input-multiple-output, MIMO systems). Conventional 
schemes using simpler 1-D signal processing (time-
domain processing, e.g. single-input-single-output, 
SISO systems) are still preferable in the strong case 
(single-path) for their implementation and 
computational costs. 
 
This paper discusses an innovative binary 
hypothesis test, namely the Rakeness test, 
based on higher order statistics, to provide 
statistical channel discrimination between single- 
versus few dominant-paths channel (i.e. Rice 
versus non-Rice distributions, e.g. Nakagami-m). 
In a recent development [12], the Rakeness test 
was originally introduced and its efficiency 
proved only by simulation results. Here, we 
move further theoretically demonstrating the 
rationale of the Rakeness test: Then, 
mathematical expressions for the bias and 
variance of the new testing variable are derived, 
by a reduced Taylor’s expansion up to the 
second order. Here, we aim to evaluate and 
define a new testing procedure, which measures 
how much the series under investigation fits the 
Rice model, hence discriminating between Rice 
and non-Rice distributions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Rationale of the Rakeness test to possibly start-up coherent combining at the receiver side. 
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The remainder of this paper is organized as 
follows. Section 2 highlights both the motivations 
and system model that form the basis of the 
proposed innovative test, whose implementation 
is described in Section 3. Performance analysis is 
carried out in Section 4 by means of a 3-D 
reduced Taylor’s expansion up to the second 
order Discussions and numerical results, from 
theory and simulations are outlined in Section 5. 
Finally, our conclusions are depicted in Section 6. 
 
2. Materials and methods 
 

2.1 Motivations 
 
We have searched through the literature, finding 
many works about statistical discrimination of 
mobile wireless channels (see for example [5], 
[6], [13]-[15] and references therein). They are 
all accounting for statistical discrimination 
between LOS and NLOS propagation. Here, we 
move further not considering the discrimination 
between a physical LOS or NLOS connection. 
Conversely, we focus on which can be the most 
suited signal processing strategy at the 
receiver’s side, discriminating between channels 
with one or few dominant paths without stating if 
the channel is LOS or NLOS. 
 

As one can easily imagine, the case of few 
dominant paths typically characterizes NLOS 
propagation. Nonetheless, even a LOS channel 
can present few dominant paths. In fact, let us now 
consider the Digital Video Broadcasting—
Handheld (DVB-H) standard [16], where multiple 
antenna transmission is exploited (see Fig. 2). 
Hence, it is possible to have more dominant paths 
arriving at the receiver side, where each dominant 
path corresponds to a LOS transmission by a 
different antenna [17].  
 

This technique is used to overcome fading and 
reach the receiver also inside buildings, 
guaranteeing high quality of service 
communications [18]. Moreover, it has to be noted 
that also the case of one single dominant path can 
correspond to NLOS as well as to LOS conditions. 
In fact, the single dominant path can be originated, 
in NLOS cases, from strong reflections and/or 
diffractions with obstacles (see Fig. 3). Hence, the 
Rakeness test is here not used for a LOS/NLOS 

decision but rather to preliminary assess the best 
signal processing receiver strategy. 
 

 
 

Figure 2. DVB-H equipment receiving few  
LOS dominant paths by multiple antenna  

transmission (i.e. antenna diversity). 
 

 
 

Figure 3. Single NLOS dominant path originated from 
strong reflections and/or diffractions with obstacles. 

 
2.2 System Model 
 
Nakagami-m distributions are used to model dense 
scatters (few-path), while Rician distributions 
model fading with a single dominant path. The 
Nakagami-m distribution has been used 
extensively in the literature to model complicated 
fading channels. The PDF of the Nakagami-m 
distribution is given by [1]: 
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where (•) is the well-known Gamma function,  

is the second moment (i.e.  = E[r
2
]) and the m 

parameter defines the fade depth. The value of 
the m parameter, also called shape factor, 
indicates the severity of multipath fading, and is 
a measure of channel quality, making its 
estimation necessary in many applications. The 
Nakagami-m distribution covers a wide range of 
fading conditions and, in particular, can be 
reduced to the Rayleigh distribution if m = 1(and 

 = 2
 2

), while it is a one sided Gaussian 
distribution if m = 0.5 [1]. 
 
Conventional testing methods for the presence of 
a pilot synchronization signal (with a given 
spreading code offset) distinguish between two 
different hypotheses: the in-sync condition 
(hypothesis H1), which corresponds to the case of 
presence of the tested code with the offset 
detected by the receiver’s systematic timing 
offset; and the out-of-sync case (hypothesis H0) 
which conversely states the absence of that code 
with the considered offset [19]. The constant false 
alarm rate (CFAR) criterion, often employed to 
perform effective tests, is adopted to determine 
the threshold value. The two opposite cases of 
acquired or mismatched code offset are often 
referred to as in-sync and out-of-sync conditions. 
These cases differ because the output of a 
matched filter is ideally constant in the former 
condition, while it randomly varies in the latter 
one. In fact, it is well known that the user codes 
employed are orthogonal only if the users are 
chip-synchronized with each other [20]. In 
practice, any pair of codes may present a relevant 
cross-correlation for nonzero chip offset. Such a 
residual correlation acts as a random variable 
(the codes are usually modulated by independent 
data streams), characterized by a noise-plus-
interference variance depending on the effective 
time synchronization. In addition, let us consider 
an additive independent and identically distributed 
(i.i.d.) zero-mean complex Gaussian random 
series, say a = [a1, …, ai]

T
, with variance 2σ

2
, that 

affects the estimated cross-correlation sample. It 
accounts for both the background noise and the 
random interference effects of the same code with 
erroneous shift (self-interference) or other co-
users in the same cell (multi-user interference) 
[19]. Because we aim to perform a testing 
procedure suited in the presence of a large 
number of interferers, the Gaussianity of the  

series can be asymptotically assumed as a direct 
consequence of the central limit theorem. We are 
then assuming that the series at the output of a 
non-coherent correlator, matching the correct 
code shift, referred as Γ'=[│μ+ε'1│, …,│μ+ε'i│]

T
 

with mean μ≠ 0, is corrupted by the zero-mean 

complex i.i.d. Gaussian random noise '=[│ε'1│, 
…,│ε'i│]

T
 with variance 2σ'

2
. Testing for the 

presence of useful signal should discriminate over 
the following two hypotheses operating on the 
observed series Γ = [│R1│, …, │Ri│]

T
: H1 stands 

for the in-sync case (i.e. presence of signal, LOS 
component), while H0 represents the out-of-sync 
case (i.e. absence of signal, NLOS propagation). 
The statistical distribution of the observed 
variable is the Rice probability density function 
(PDF) in the former hypothesis, while becomes 
the Nakagami-m PDF in the latter case. As a 
consequence, the hypothesis testing is equivalent 
to decide for the “best fitting” statistical model of 
the real and positive-valued observed series Γ = 
[│R1│, …, │Ri│]

T
 between the Nakagami-m and 

the Rice cases. 
 
2.3 The Rakeness Test 
 
Referring to the same system model of the 

previous Section, let us now consider for sake of 

notational convenience and without loss of 

generality in the following |Ri|= |R| and: 

 
2 4 6

2 4 6, ,A E R A E R A E R       
     

          (2) 

 
Then, the fourth order of a real positive Rice 

random variable, ideally generated as the 

magnitude of a random complex Gaussian 

variable, depends on the second-order moment 

according to the following [21] 

 

   
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4 2 2 2
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2 2 2
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 

 

   
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                      (3) 

 

where = E[|R|] and 
2
 stands for the mean value 

and variance, respectively, of the observed series. 

Now, using (3) in (2), after some algebra the sixth 

order moment rewrites as: 

 
6 4 2 2 4 6

6 18 72 48A                                  (4) 
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Then, using (3), equation (4) can be rewritten as: 
 

   
1

2 2 2

6 2 4 2 4

3

2 2 4

4 2 2

     12 9

A A A A A

A A A

    

    
                          (5) 

 

From (5), it follows: 
 

   
2 3

3 2

6 2 2 4 2 412 9 16 2A A A A A A                   (6) 

 

and finally, we have the decision variable for the 
new test expressed as follows: 
 

   
2 3

3 2

6 2 2 4 2 412 9 16 2A A A A A A                (7) 

 

We can divide each member of (7) by the variance of 

R and, after some algebra, we can obtain the testing 

variable of the normalized Rakeness test as follows: 
 

   
2 3

3 2

6 2 2 4 2 4

6

2

12 9 16 2A A A A A A

A


       
      (8) 

 

In this way, from (8) we obtain a normalized 
version of the new test expressed by (7), that 
now avoids the evaluation of the variance of the 
received symbols, i.e. the test is self-tunable in 
respect to the power of the received signal. 
Hence, the estimation of (8) is our new testing 
variable according to the following: 
 

   
2 3

3 2

6 2 2 4 2 4

6

2

ˆ ˆ ˆ ˆ ˆ ˆ12 9 16 2
ˆ

ˆ

A A A A A A
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
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      (9) 

 

where the estimates 2Â , 4Â , and 6Â  of the 

second, fourth, and sixth order moments are 
obtained, respectively, as 
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Then, considering a threshold  , the test is finally 

expressed as follows: 

 

0

1

ˆ:    ,           

ˆ:    .

H

H





 
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


                                         (11) 

 
It means that if the testing variable is greater 
than the threshold value, then the algorithm 
decides for the hypothesis H0, otherwise the 
choice is for H1. 

 
3. Performance Analysis 

 
In order to statistically quantify the estimation 
error we are  now  considering the  mean  value 
and  the  variance  of the  testing  variable  in  
(8). Let us define, for the sake of compactness 
and following the same approach as in [22]: 

2 2 2
ˆ ˆA [A ]E   , 

4 4 4
ˆ ˆA [A ]E    ,

6 6 6
ˆ ˆA [A ]E   ,  

as the three moment-estimation’s errors, which 
are assumed  to  be  zero-mean random  
variables. Then, under  the  assumption  of  
small errors for  the high-order moment 

estimators (
2 4 6

ˆ ˆ ˆA ,A ,A ), the bias and  variance 

of the estimation error can be accordingly 
evaluated by a three-dimensional (3-D)  reduced  
Taylor expansion up to the second order as 
follows, respectively [23]: 
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                (13) 
 

where var[·] and cov[·] stand for variance and 
covariance, respectively. The partial derivatives, in 
(12) and (13), are given by: 
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Then, let us focus in the evaluation of the 
expressions for the mean values, the variances 
and the covariances of the estimators. In 

particular, since E[i] = 0 with i = 2, 4, 6, for the 
mean values we have: 
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Then, the variances of the estimators can be 
derived by means of the following [24]: 
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with i = 2, 4, and 6. In the same way, the 
covariances of the estimators can be derived 
according to [24]: 
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Now, we  note  that  to  evaluate  the  variances 
in (24)  and  the  covariances  in  (25),  the 
eighth (A8), tenth (A10) and twelfth (A12) order 
moments need to be calculated. Recalling the 
system model previously described and following 
the same approach as before, the above 
mentioned high-order moments can be easily 
derived as follows: 
 
 

(23) 
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Finally, the variances are now given by: 
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While the covariances are as follows: 
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Finally, the desired expressions of (12) and (13) 
can be obtained as follows: 
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It has to be noted that both the estimations in (29) 
and (30) vary with 1/N, meaning that the 
estimator is consistent (i.e. as N becomes larger 
and larger, the estimates tend to the true value). 
Then, the test threshold can be asymptotically 
tuned from a straightforward evaluation of the 
Gaussian integral for a fixed probability of false 
alarm, under the null-hypothesis [25]: 
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where erfc

-1
(·) is the complementary inverse of the 

error function, and PFA is the false alarm 
probability. The probability of detection PD is 
determined in the H1 hypothesis as [26]: 
 

ˆ
1

2 ˆ2
D

E
P = erfc

var

 



    
 

  
  

                                    (32) 

 
Finally the probability of Miss-detection is 
obtained as: 
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4. Numerical Results and Discussion 
 
The parameter m of Nakagami-m statistical 

model is closely related with the Rician 

parameter K of Rician fading statistical model as 

follows [27]: 
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and inverting (34) we can write the following: 
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Now, it is interesting to underline some 
considerations about our innovative test, 
depending on the values assumed by the 
parameter m (or K). In particular, when m = 1 (i.e. 
K = 0) the distributions of Rice and Nakagami-m 
tilt towards the Rayleigh distribution. In fact, a 
value of K = 0, means that no single dominant 
path exists, and all the power is dispersed on the 
multi-path components. Then, increasing the 
value of m, from m = 1 to m = 4/3 (i.e. from K = 0, 
to K = 1) corresponds to a change in the 
propagation conditions (from multi-path to few-
path) meaning that the distribution is well fitted by 
a Nakagami-m instead of a simpler Rayleigh 
distribution. In particular, a value of the Rician 
factor K = 1 means that there are few dominant 
paths (more than one single dominant path). 
Then, increasing the value of the Rician factor K, 
(i.e. for K >> 1) means that the propagation 
conditions can be considered evolving towards a 
strong propagation environment: a stronger 
single-path corresponds to the increasing of the 
value of K (from K = 1 to K >> 1), i.e. the power 
on this single dominant path is always greater 
that the power on all the other components. 
 
All these situations are illustrated in Fig. 4 and 
related with the behavior we expect from our 
test, in terms of PD. In fact, as we can easily see 
from Fig. 4, when the Rician K factor is equal to 
0, the Rice, Nakagami-m and Rayleigh 
distributions are perfectly overlapped. Then, for 
0 < K < 1, our test is expected to show better  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

detection performances because the channel 
tends to the few dominant path condition and its 
distribution tends to a Nakagami-m from a 
Rayleigh distribution. For K >> 1 the Nakagami-
m distribution tends to the Rice distribution (see 
again Fig. 4, where the curves referring to 
Nakagami-m and Rice distributions are perfectly 
overlapped for K >> 1) and hence the 
performances of our test are expected to 
decreases in terms of detection. In particular, we 
expect that in this case the PD tends to the PFA 
since we are verifying the hypothesis H1 that is 
now equal to the hypothesis H0 (i.e. the 
searched distribution is a Rice distribution and 
not a Nakagami-m distribution). In conclusion, 
our PD is hence defined as the probability of 
finding a weak propagation condition (i.e. a 
Nakagami distribution). 
 
Several trials were performed to validate the 
statistical model assumptions (here derived) on 
the asymptotic performance of the proposed 
testing method. We show the performance of the 
system in terms of miss-detection probability, 
PM, for different values of practical interest of the 
parameter N (i.e. the number of samples) and of 
the Rician factor, K, here considered as a quality 
measure of the propagation condition strength 
(i.e. weak or strong propagation). Fig. 5 shows 
the probability of miss-detection evaluated 
versus the values of the number of samples for 
different false alarm probabilities (from 10

-3
 to 

10
-6

) and with a Rician factor K = 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Discrimination between the single- and few-path propagation  
conditions in terms of probability distributions by the Rakeness test. 
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As we can see, the behavior of the curves for 
different PFA is very similar, hence, in all the following 
results we adopt the value of PFA = 10

-3
, as done in 

the operating modes, to obtain miss-detection 
probabilities of practical interest. Then, in all the 
following results we have evaluated the miss-
detection PM both in an analytic way, i.e. using 
equation (33), and by means of simulations. 
 
In particular, the theoretical curves have been 
obtained by exploiting (33), where the mean value 
and the variance of the testing variable are 
provided by (29) and (30), respectively, while (31) 
gives us the threshold value according to the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CFAR criterion. This means that, once we have 
fixed the target false alarm probability and the 
Rician factor, we are able to theoretical evaluate all 
the higher order moments of interest to be used in 
the theoretical expressions. 
 
Fig. 6 shows the probability of miss-detection 
obtained with a PFA equal to 10

-3
 and for different 

values  of the Rician factor. As we can easily 
see from the graph, the simulation results (dots) 
well match the theoretical ones (solid lines) 
ensuring the correctness of the adopted 
mathematical model and assumptions of the 
previous Sections.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Theoretical (Theor.) and simulated (Sim.) results of the miss-detection (PM =1- PD)  
for several values of the probability of false alarm versus the number of samples. 

 
 

Figure 6. Theoretical (Theor.) and simulated (Sim.) results of the miss-detection (PM =1- PD) 
 for several values of the Rician factor (with K > 1) versus the number of samples. 
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Then, we have focused our attention only on 
values of the Rician factor between 0 and 1 
because, as stated in [6], for typical urban macro 
cellular environments with a root mean square 

delay spread on the order of 1 s, 1, i.e. power 
on the main path equal to the power of the 
diffusive (multi-path) components. 
 

Fig. 7 reports the probability of miss-detection 
obtained with a PFA equal to 10

-3
 and for different 

values of the Rician  factor between 0 and 1. 
The best working point on the graph is 
represented by the best trade-off between the 
computational complexity of the algorithm (i.e. 
the values of the requested number N of 
samples) and the values of the probability of 
detection in bad cases (i.e. with low values of 
the Rician factor). We can see that for low 
values of the Rician factor, we always need a 
greater number of samples to obtain detection 
probability of practical interest. This is a 
consequence of the fact that, in typical urban 
environments, the power on the main path 
equals the power of the diffusive (multi-path) 
components. This means that the proposed test 
needs more samples before a correct acquisition 
is identified because of the dense structure of 
the multi-path propagation under investigation. 
 
Finally, let us now have a look about the 
computational complexity of the proposed 
technique by analyzing the required number of 
performed operations, in terms of real sums and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

multiplications. In particular, let us focus on the 
evaluation of the three higher order moments in 
(2), while the further evaluation of (9) and (11) 
represents a negligible increasing of the system 
computational complexity. The overall number of 
operations required to perform the moments’ 
estimations in (10) is represented by (see Tab. 1) 
3•N real sums and 10•N real multiplications. This 
means that our method improves the system 
acquisition performances with a small increasing of 
the system computation complexity.  
 
For the sake of the compactness, in Tab. 1 we 
have reported only the number of real products 
and sums, assuming that: 
 
--in sequential implementation, the time of one 
complex product is the same as four real products 
and two real sums, whereas the time of one 
complex sum time is equivalent to two real sums; 
 
–-in parallel implementation, the time of one 
complex product is the same as one real product 
and one real sum, whereas the time of one 
complex sum time is equivalent to one real sum 
 
However, it is opinion of the authors that the 
implementation of the proposed technique is going 
to be feasible on a mobile device as the mobile 
receiver, in a short time, will host large processing 
capabilities because of the monotonically 
decreasing cost of very large-scale integration as 
well as the ever increasing running speed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Theoretical (Theor.) and simulated (Sim.) results of the miss-detection (PM =1- PD) 
for several values of the Rician factor (with K > 1) versus the number of samples. 



 

 

A Novel “Single-Path” vs. “Few-Path” Test Based on Higher Order Statistics to Possibly Start-Up Coherent Combining, F. Benedetto et al. / 7-19 
 

Journal of Applied Research and Technology 17 

 
Sequential 
processing 

Parallel 
processing 

# real sums 3•N N 

# real products 10•N N 

 
Table 1. Operations required by the Rakeness test. 

 
As a final conclusion, it has to be noted that, even 
if the Rake should always be used, since its 
hardware is already ready, this is not always the 
best receiving strategy. In [28], it is shown that the 
advantages and disadvantages of a rake receiver, 
as compared with a simpler 1-D correlation 
receiver, depend greatly on the fading 
characteristics of the individual multipath 
components. In general, rake receivers are more 
appropriate for direct sequence (DS) systems with 
a smaller number of chips per data symbol and for 
channels that have only diffuse, Rayleigh fading 
multipath components. On the other hand, a 
correlation receiver is preferred for DS systems 
with a large number of chips per data symbol if the 
channel has a strong specular multipath 
component in addition to one or more diffuse 
components. Moreover, in wideband CDMA 
applications, the number of available correlators 
will limit the number of multi-paths that can be 
utilized in a typical rake combiner [9]. In fact, if the 
signal at the receiver can be resolved into several 
components, a decision must be made as to which 
components, and how many, the rake receiver 
should attempt to capture [28]. One approach is to 
collect the greatest passible amount of energy by 
using the same number of tap as the number of 
signal components that can be resolved, up to the 
limit of the number of taps available. If square-law 
combining is employed, it cannot be stated a priori 
that this approach gives the best performance. The 
optimal detection of multipath components to be 
combined depends on the characteristics of the 
multipath channel; in particular, the inclusion of 
additional components does not necessarily 
improve performance [28]. In addition, even if the 
use of extra taps improves performance, the 
performance gains may not justify the required 
increase in receiver complexity. In conclusion, the 
benefit of employing multiple taps in a rake 
receiver depends upon the characteristics of the 
channels that will be encountered by the system. 
For a low chip rate the use of multiple taps is 
beneficial with many channel containing strong 

specular components. In contrast, the correlation 
receiver may be the best choice for use with a high 
chip rate if the channel has a significant specular 
component, even if less than one-half of the 
energy is in that component. Hence, discriminating 
between a weak or strong propagation case would 
be very relevant in order to adopt the optimal 
receiving strategy, regardless of the required 
computational complexity. 
 
5. Conclusions 
 
An innovative Ricianity strength test for few-single-
dominant-path discrimination of (weak/strong) 
wireless mobile channels was here presented, to 
possibly start-up coherent combining. The decision 
between Rice and non-Rice (e.g. Nakagami-m) 
distributions is made exploiting higher order 
statistics of the series under investigation. Then, 
mathematical expressions for the bias and 
variance of the new testing variable are derived, by 
a 3-D reduced Taylor’s expansion up to the second 
order. The theoretical results substantiated by 
computer simulations have evidenced the 
robustness of this innovative test, to discriminate 
the best signal processing receiving strategy. In 
fact, different strategies could be employed at the 
receiver’s side: conventional 1-D systems in the 
case of strong or single-path propagation (i.e. 
Rician distributions) or 2-D (Rake) receivers in the 
case of weak or few-path propagation (i.e. non-
Rice distributions). 
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