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Abstract: EEG signals are a relevant indicator for measuring aspects related to human factors in 

software engineering. EEG is used in software engineering to train machine learning techniques for 

various applications, including classifying task difficulty and developers’ experience. The EEG signal 

contains noise such as abnormal readings, electrical interference, and eye movements, which are 

usually not of interest to the analysis, and therefore contribute to the lack of precision of the machine 

learning techniques. However, research on software engineering has not evidenced how effective the 

filtering of EEG signals is, even with evident benefits of filtering the EEG signals in signal processing and 

clinical image studies. In this paper, we analyzed the effects of using filtered EEG signals for classifying 

developers’ code comprehension. This filter consists of high and low pass filtering designed with an 

FIR filter using a Hamming window. This filtering process also removes abnormal signals and executes 

the Independent Component Analysis (ICA) using the fast ICA method for removing EOG components. 

We applied the filtered EEG signals to train a random forest (RF) machine learning technique to classify 

the developers' code comprehension. This study also trained another random forest classifier with 

unfiltered EEG data. We evaluated both models using 10-fold cross-validation. This work measures the 

classifiers' effectiveness using the f-measure metric. This work used the t-test, Wilcoxon, and U Mann 

Whitney to analyze the difference in the effectiveness measures (f-measure) between the classifier 

trained with filtered EEG and the classifier trained with unfiltered EEG. The tests pointed out a 

significant difference after applying EEG filters to classify developers' code comprehension with the 

random forest classifier. The conclusion is that the EEG filters significantly improve the effectiveness of 

classifying code comprehension using the random forest technique. 
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1. Introduction 
 

The adoption of EEG signals has been relevant to analyze 

aspects of human factors in software engineering (Crk & 

Kluthe, 2016; Fucci et al., 2019; Lee et al., 2018). The 

electroencephalogram (EEG) is responsible for capturing the 

electrical signals generated through the interaction of neurons 

(Cohen, 2017). Software engineering researchers have been 

using this indicator along with machine learning techniques to 

classify task difficulty (Lee et al., 2018), level of experience (Crk 

& Kluthe, 2016), and categories of programming tasks artifacts 

(Fucci et al., 2019), i.e., between textual prose and 

programming language. The EEG signals contain noises such 

as abnormal readings, electrical interference, and eye 

movements, which are not of interest to the analysis and 

therefore contribute to the classifiers' lack of precision as they 

are not related to a specific cognitive process required in such 

experiments. For this, these noises must be removed and 

treated before being analyzed. The EEG filtering process is 

usually the removal of abnormal readings. The literature 

usually attenuated low and high cutoff frequencies by using 

low and high pass filters. They also removed movement 

components, such as eye movement, with an ICA algorithm. 

However, despite the evident benefit of filtering  EEG signals 

in studies focused on research areas such as signal processing 

and clinical image, it remains unknown if filtering an EEG 

signal can affect the applications focused on software 

engineering (Crk & Kluthe, 2016; Fucci et al., 2019; Lee et al., 

2016; Lee et al., 2018; Radevski et al., 2015). Such research 

generally claims that filters in EEG signals improve the analysis 

and helps to obtain more effective results. Software 

engineering literature did not produce empirical evidence 

about these statements (Crk & Kluthe, 2016; Fucci et al., 2019; 

Lee et al., 2018). Therefore, there is a lack of a specific analysis 

of the effectiveness of filtered EEG signals in software 

engineering. Moreover, while the extent of the filter 

application in software engineering is unknown, there is a lack 

of an approach in the literature to classify developers’ code 

comprehension based on EEG data. Code comprehension 

consists of a task in which developers must interpret a piece of 

code and deduce the result and purpose of a source code 

snippet. This classifier would be a basis for recommendation 

systems, for example, to recommend tasks to the developer 

based on their EEG activity. 

 

 

 

 

 

 

 

Therefore, this work seeks to analyze the effectiveness of 

filters on EEG signals for classifying developers' code 

comprehension. Specifically, this work analyses the 

effectiveness of a classifier trained with EEG data after the 

application of EEG filters. For this, a random forest (RF) 

technique was both trained with filtered EEG data (EEGf) and 

with the unfiltered EEG signals (EEGu). We measured the 

classifier's effectiveness by the f-measure, i.e., the harmonic 

mean between recall and the classifier's precision. This work 

used a paired t-test, a Wilcoxon, and a Mann Whitney U test for 

analyzing the effectiveness (f-measure) of EEG filters in the 

classification of developers' code comprehension.  

This work describes this research into seven sections: Section 

2 presents the basics concepts of this work; Section 3 describes 

the related works; Section 4 describes the methodology of this 

work; Section 5 presents the study results; Section 6 discusses the 

results; Section 7 highlights the final remarks and future work. 

 
2. Background 

 
This section presents the basic concepts behind this work. 

Section 2.1 describes the theory related to EEG signals. 

Section 2.2 introduces the concept of EEG filters used in this 

work. Section 2.3 describes the metrics used to measure the 

effectiveness of the classifier. 

 
2.1. EEG 

The electroencephalogram (EEG) is responsible for measuring 

the variation in tensions from brain activity (Cohen, 2017). 

These electrical fluctuations are a natural consequence of the 

dynamics between neural populations. To capture these 

activities, the EEG has sensors that are also well-known as 

electrodes. The electrodes capture EEG signals in specific 

regions of the users' scalp. Each electrode corresponds to an 

EEG channel. In this work, we adopted the Emotiv Epoc+ 

(Emotiv, 2020) that contains 14 channels. Figure 1 shows the 

Emotiv Epoc+ channels locations. In addition, the EEG signal 

consists of five frequency bands: Alpha [8-13Hz], Beta [13-

30Hz], Theta [4-8Hz], Delta [1-4Hz], and Gamma [30-70Hz]. 

The electrodes of Emotiv Epoc+ consist of a sponge 

containing a sponge that has direct contact with the scalp. 

Behind the sponges, there is contact with golden plates 

connected to the device's transmitter. 
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2.2. EEG filters 

The device captures raw EEG signals (Emotiv, 2020). The EEG 

signals contain several noises, i.e., artifacts that are not of interest 

to the analysis, such as involuntary eye movements (Cohen, 

2017). For researchers, it is relevant to filter EEG data, highlighting 

and attenuating frequencies of interest (through filters), 

respectively, and removing artifacts that are not of interest to the 

analysis, e.g., removing EEG signals that reflect eye movement. 

Software engineering literature has adopted high and low 

pass filtering (also known as bandpass filtering) to attenuate 

band frequencies that are not of interest to the analysis. The 

high-low pass, as the name implies, maintains frequency 

waves between the low and high range. However, this filter 

attenuates the frequency signals below and higher than a 

respective cutoff frequency. Studies generally use a bandpass 

filter from 1Hz to 40Hz on EEG signals because the literature 

does not report interest in data below 1Hz, and above 40Hz. 

Above the frequency of 40Hz, interferences of lamps and 

devices on EEG signals that operate at an approximate 

frequency can occur. Other studies have also opted to clean  

 

 

up EEG signals from noise, e.g., involuntary eye movements. 

For this, some reference channel, which is generally more 

likely to reflect this movement, must be defined to serve as a 

basis to remove these patterns from other channels. 

Before filtering, we established some frequencies that are 

necessary to eliminate. We eliminated the signals above 40Hz 

to discard the AC powerline frequency. We also removed 

frequencies below 1Hz to remove heart signals related to 

pulse artifacts and low-frequency noise, such as building 

vibrations and nearby electromagnetic field noise (Jiang et al., 

2019). Since the EEG sensors also capture electrooculogram 

signals (EOG) due to the volume conduction effect, and the 

frequencies between EEG and EOG are similar, the ICA 

algorithm removes EOG artifacts in the frequencies between 

1Hz and 40Hz (Jiang et al., 2019). The ECG artifacts, such as the 

QRS, resides between 8 Hz and 50 Hz frequencies 

(Tereshchenko & Josephson, 2015). However, the ICA 

algorithm has not removed ECG artifacts because we did not 

find a reference channel to serve as a basis to remove these 

artifacts from EEG signals.  

 
 

Figure 1. Locations of Emotiv Epoc+ EEG channels. 
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In this work, the filtered signal consists of the flow in Figure 2. 

(1) Remove abnormal signals: The first step is to remove 

abnormal EEG readings. Therefore, this work rejected signals 

above 8 µVolts. The value of 8uV refers to a single sample 

value. We choose this value because above +8uV and below -8 

µVolts were involved in briefs abnormal readings caused by 

sensors malfunction. We discarded values between the range 

of +8uV and –8uV. We did not replace it with other values. (2) 

High- and low-pass filtering: the filter used frequencies below 

1Hz and greater than 40Hz to attenuate signals. We used a 

high- and low-pass filter designed with a Finite Impulse 

Response (FIR), using a hamming window. More details about 

the FIR design used in this work in Section 2.4. (3) Eye artifacts 

removal: we run an Independent Component Analysis (ICA) to 

remove eye movements from EEG signals.  We used a fast ICA 

algorithm to compute the eye components. Section 2.5 

contains more details about the ICA we used in this work. We 

set ICA to use the readings of the F8 channel as a reference for 

removing the eye artifacts. There are two reasons we chose the 

F8 channel to remove eyeblinks: First, the absence of a 

dedicated channel to capture EOG artifacts. Second, we 

observed that the F8 channel contained the components of 

the eye blinking frequently. The EEG filters and ICA were 

performed using python's MNE library (Gramfort et al., 2013). 

The raw EEG signals, EEG filtered signals, and spectral analysis 

of the respective signals of both datasets are in Goncales et al. 

(2021). Appendix A contains the EEG signals and spectral 

analysis of one of the participants. 

 

 
 

Figure 2. Locations of Emotiv Epoc+ EEG channels. 

 

2.3. High and low pass filtering 

This work applies a Low- and High- pass filtering in the EEG 

signal. Low-pass filtering consists of rejecting frequencies that 

are higher than a defined frequency threshold. The low-pass 

filter does not alter the frequencies below the cut-off limit. 

Frequencies above 45Hz in EEG signals generally contain 

irrelevant noise fluctuations. Literature indicates the low-pass 

filter to attenuate these signals.  

The high-pass filtering consists of the opposite of low-pass 

filtering because it rejects frequencies below a cut-off 

frequency, but it does not alter the frequencies above. The 

literature indicates the high-pass filtering to attenuate slow 

frequencies containing DC components and negative 

deflections representing spikes of single neurons.  

This work establishes specific cut-off frequencies for the low 

and high pass filters. However, filters can differ in design. 

Researchers usually design these filters through FIR and IIR 

methods. We introduce some basic concepts about the FIR 

design in the following Section. 

 

2.4. Finite impulse response (FIR) filter design 

In particular, there are two main types of filter design, the 

Finite Impulse Response (FIR) filter, and the Infinite Impulse 

Response (IIR) Filter (de Cheveigné & Nelken, 2019). The 

Infinite Impulse Response (IIR) filters the impulse signal 

indefinitely, i.e., while the signal is occurring. The calculus of 

an IIR filter is recursive and combines the sum of inputs with 

the last signals' outputs. In contrast, the Finite Impulse 

Response (FIR) filters in each impulse signal in a finite 

response. The FIR filter sums a finite range of input-weighted 

signals. The convolution sum bellow represents the FIR filter: 

 

𝑦(𝑛) = ∑ ℎ(𝑛 − 𝑚)𝑥(𝑚)𝑛−𝑁+1
𝑚=𝑛                                                            (1) 

 
Where: 

•  y(n) is the output signal; 

•  x(m) is the input signal; 

•  h(n-m) is the impulse response at instant n-m. 

 
In this work, we designed an FIR filter with a hamming 

window method. Equation 2 defines the hamming window we 

used. 

 

𝑊(𝑛) = 0.54 −  0.46 cos
2𝜋𝑛

𝑁−1
                                                               (2) 

 
The cut-off frequency (𝜔c) of the low pass filter in this work 

is 40Hz, and the cut-off of the high pass filter of this work is 1Hz. 

Given that |𝜔| is the window function in a particular range of 

the EEG signal, this window function is multiplied by the 

desired low pass filter when the condition |𝜔| ≤ 𝜔c is satisfied. 
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The window function is multiplied by the signal when the 

condition 𝜔c ≤ |𝜔|. 

 

2.5. Independent component analysis (ICA) 

The Independent Component Analysis (ICA) is a technique for 

identifying different signals from a single source. For example, 

an EEG signal from a single channel can contain eye 

movements. The research on electrophysiology knows that 

eye signals have well-established patterns related to different 

eye movements. When these movements are not of interest to 

the study, it comprises a noise, and ICA can separate these 

signals. Therefore, in this case, the application of ICA holds 

because it is a source separation technique. Formally, the 

following generative model defines the problem of separating 

independent components in a signal: 

 

𝑥 = 𝐴𝑠                                                                                                                   (3) 
 

Where x is a vector of dimension m, s is a vector of 

dimension n. The s contains the supposed signal with the 

mixed components, and A is the matrix with mxn dimension 

the model should estimate, i.e., contains the independent 

components. After the algorithms estimate the matrix A, the 

algorithm generates an inverse matrix W from A. There are several 

methods to compute the ICA model: First, by maximizing the non-

Gaussian signals. Second, by minimizing the mutual information 

between independent components. Finally, ICA also can use the 

maximum likelihood for estimating statical models based on a 

set of observations to find the matrix for unmixing signals and 

then extract the components.  

In this work, we adopted the Fast ICA algorithm 

(Hyvarinen,1999). This algorithm computes the minimization 

of non-Gaussian. The algorithm computes this by 

approximating the negentropy of the signals using a linear 

fixed-point approach. Equation 5 describes the final algorithm 

of the Fast ICA. This equation shows a one-by-one estimation 

of components. This Equation subtracts the projections of 

previously p vectors in 𝑊𝑝+1
𝑇 𝐶𝑊𝑗𝑊𝑗 from 𝑊𝑝+1, and 𝑊𝑝+1 is 

normalized consequently. 
 

1. 𝑊𝑝+1 = 𝑊𝑝+1 − ∑ 𝑊𝑝+1
𝑇 𝐶𝑊𝑗𝑊𝑗

𝑝
𝑗=1                                                     (4) 

2. 𝑊𝑝+1 =  
𝑊𝑝+1

√𝑊𝑝+1
𝑇 𝐶𝑊𝑝+1

                                                                      (5) 

 

Hyvarinen (1999) provides a detailed description of this 

algorithm and the transformations involved in this equation. 

The Fast ICA (Hyvarinen, 1999) is the default algorithm of the 

framework MNE in Python used to compute the ICA in this 

work. MNE adopts the Fast ICA as the default algorithm 

because it is faster than the infomax and Picard algorithms 

most of the time. This algorithm does not require the 

computation of learning rates to execute.  

3. Related work 

Section 3.1 presents the benefits of filters used in EEG signals 

in medical and signal processing research. Section 3.2 

presents related works in software engineering which applied 

a gamma of filters in EEG signals. 

 

3.1. Related work in signal processing and medical 

research 

Correa et al. (2007) proposed an algorithm to filter EEG signals 

in a cascade for attenuating line interference, eye signal, and 

electrocardiogram signals. This algorithm comprises a filtering 

process consisting of a sequence of three filters. Each filter is 

responsible for a single cancellation in EEG signals. The first 

deals with line interference, the second cancels the 

electrocardiogram signals, and the third filter cancels the eyes 

signals. For each step, the authors applied an FIR filter 

implementing a least mean square algorithm. Correa et al. 

(2007) used this algorithm in a database containing five 

participants, in which previous researchers captured eye and 

electrocardiogram signals with dedicated sensors. The results 

showed that the algorithm attenuated the artifacts and 

consequently improved the quality of the EEG signal. 

Jadav et al. (2020) proposed a scheme to remove noise data 

in EEG signals and preserve the signal of interest. Jadav et al. 

(2020) analyzed the application of the relative intersection of 

confidence interval (RICI) algorithm. Jadav et al. (2020) applied 

the algorithm in simulated data. The results are that after 

denoising the EEG with the RICI algorithm, the Rényi entropy-

based analysis detected ERP components efficiently. 

Kawala-Sterniuk et al. (2020) compared three smoothing 

filters in EEG signals, such as smooth filter, Savitzky–Golay, 

and median filter. The basic smoothing filtering conducts a 

moving average with a default span. The median filter is also a 

median average but with a higher windowing parameter. The 

Savitzky–Golay is a smoothing filter. Kawala-Sterniuk et al. 

(2020) applied the filters on a database with 52 participants. 

The results confirmed that filters impacted the higher quality 

of the EEG signal for use in the diagnosis for medical purposes. 

The Savitzky–Golay presented the best results because it did 

not distort the original signal.  

 

3.2. Related work in software engineering 

Fucci et al. (2019) investigated whether it was possible to use 

psychophysiological signals, including EEG signals to train 

machine learning techniques to make a binary classification of 

comprehension tasks: code, in case the artifact be a source 

code, or prose, i.e., in case the artifact be textual prose. Fucci 

et al. (2019) used EEG signals to train an SVM technique in 10-

fold cross-validation and applied the bandpass filter in the 

EEG signal.  Fucci et al. (2019) also removed the eye-movement 

components using ICA. The authors did not focus on 

classifying developer code comprehension. The SVM 
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technique reached a precision of 72%, a recall of 66%, and an 

f-measure of 62%. 

Lee et al. (2018) used EEG signals in an SVM machine 

learning technique to conduct a binary classification of the 

developers' level of difficulty in code comprehension tasks 

(easy/difficult), and another binary classifier, also an SVM, to 

identify the expertise level of software developer 

(expert/nonexpert). Lee et al. (2018) evaluated the 

effectiveness of the classifiers through precision, recall, and f-

measure. The authors applied a frequency cutoff of 2Hz. The 

task difficulty classifier reached an f-measure of 63.3%, and the 

experience level classifier achieved an f-measure of 93.1%. 

Radevski et al. (2015) developed a model to monitor the 

brainwaves of software developers during daily tasks. The 

objective of the work was to evaluate the feasibility of using 

EEG in a realistic scenario of software development. For this, 

Radevski et al. (2015) evaluated the model using the 

Technology Acceptability Questionnaire (TAM). Thus, 

Radevski et al. (2015) focused on assessing the developers' 

point-of-view in adopting this type of system. The conclusion 

is that although the EEG brings a new point of view about 

software development tasks, it is difficult to use and deploy.  

Crk and Kluthe (2016) analyzed the developers' EEG signals 

about the developers' experience levels. The authors applied 

the high-low pass filter to EEG signals. Based on the EEG 

signal, the authors estimated the ERD (Event-Related 

Desynchronization). Crk and Kluthe (2016) used the ANCOVA 

statistical method to analyze the developers' expertise. The 

authors used the ERD and the five groups of expertise levels. 

The results showed a significant difference between the five 

levels of developer experience. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lee et al. (2016) compared the difference between the 

power of the EEG signal between experienced and 

inexperienced developers. Lee et al. (2016) applied band-pass 

filters to the EEG signals to attenuate noise from external 

devices. The investigation focused on the different 

frequencies of the EEG signal, i.e., alpha, beta, delta, 

gamma, and theta. Lee et al. (2016) identified a significant 

difference between experienced and inexperienced 

developers in the beta frequency. 

In general, the data presented in Table 1 shows an 

opportunity to verify the effectiveness of filters in EEG signals 

in the classification of developers’ code comprehension. 

The literature applied filters in EEG signals without 

investigating the effectiveness of filters in EEG signals. They 

also did not focus on the classification of developers’ code 

comprehension. Thus, research on software engineering 

applied filters to the EEG signals without pointing out the 

effectiveness of using filters in EEG for software engineering 

applications. 
 

4.Materials and methods 
 

This section describes the methodological aspects of this 

work. First, Section 4.1 defines the main objective and the 

research question of this study. Section 4.2 describes the 

hypothesis that guides the investigation of this research. 

Section 4.3 shows the study setup. Section 4.4 detail the 

profiles of the participants. Section 4.5 describes the 

effectiveness metrics of the classifiers. Finally, Section 4.6 

shows the variables and the procedure of analysis we 

performed in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Overview of related work. 

 

  Focused on EEG Applied Filter Technique Classification Context 

Proposed work Yes 

High-Low pass, 

ICA, Removal of 

Abnormal Signals 

Random forest Multi-class 
Code 

comprehension 

Fucci et al. (2019)  No Bandpass Random forest Binary Task type 

Lee et al. (2018) No Lowpass 
Support vector 

machine 
Binary 

Difficulty and 

experience Level 

Radevski et al. (2015) Yes None Not used Does not apply 
Code 

comprehension 

Crk and Kluthe (2016) Yes Bandpass Not used Does not apply Expertise level 

Lee et al. (2016) Yes Bandpass Not used Does not apply Expertise level 
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4.1. Objective and research question 

We aim to filter EEG signals with a high-and-low pass filtering 

designed with a Finite Impute Response method with a hamming 

window, using fast ICA to remove eye components. This work 

seeks to analyze the impact of the EEG filter we designed with 

respect to the effectiveness of classifying developers' code 

comprehension in the context of software engineering.  

Therefore, the following research question to investigate in 

this work: 

RQ: Does applying filters to EEG signals improve random 

forest's effectiveness in classifying developers' code 

comprehension? 

 

4.2 Hypothesis 
This work investigates whether a filtering process on the EEG 

signals impacts the effectiveness of the machine learning 

technique to classify developers’ code comprehension. The 

filtering process consists of rejecting abnormal EEG signals, 

followed by a bandpass filter, and removing artifacts that are not 

related to the task of code comprehension of the EEG signal, e.g., 

the involuntary movement of the eyes. This work assumes that 

the existence of this conjoint of unfiltered noises and artifacts in 

EEG signals can impair the analysis or the use of these signals for 

purposes in software engineering. In particular, this work 

assumes that filters can improve the effectiveness of classifying 

code comprehension of developers based on EEG signals. A 

random forest technique performs the classification because this 

technique is present in research on EEG signals in software 

engineering. The hypotheses are specified below: 

Hypothesis 1-0: The application of filters to the EEG signal 

does not impact the effectiveness of the random forest 

learning technique (Eff(RF)) to classify the developers' code 

comprehension. Then, the effectiveness of the classifier 

trained with filtered EEG data (EEGf) performs equal to or 

below the classifier trained with unfiltered EEG data (EEGu): 

H1-0: Eff(RF)EEGf <= Eff(RF)EEGu 
 

Alternative hypothesis 1-1: The treatment of EEG signals 

with filters impacts the effectiveness of the random forest 

learning technique (Eff(RF)) to classify developer’s code 

comprehension, and the effectiveness of the classifier trained 

with filtered EEG data (EEGf) is greater than the classifier 

trained with unfiltered EEG data (EEGu): 

H1-1: Eff(RF)EEGf > Eff(RF)EEGu 

 

4.3. Study flow 

Figure 3 shows the three stages of this study: EEG monitoring 

(Figure 3.1), data pre-processing (Figure 3.2), and data 

classification (Figure 3.3). 

 

 

Stage 1. EEG monitoring. Figure 3.1 presents the steps to 

obtain the EEG data from the developers. The wireless device 

Emotiv Epoc+ (Emotiv, 2020) was used and deployed on the 

developers' heads. While Emotiv Epoc + captures EEG signals, 

developers were performing code comprehension tasks. 

These tasks consist of the developer interpreting a source 

code and deducting its result. For this, the developer chooses 

one of the possible answers among five options. We timed the 

tasks in 60 seconds. If a participant does not answer the 

comprehension tasks within this time limit, the software 

considers it "Not response". 

Figure 4 presents an example of this task, and Table 2 

contains the description of each comprehension task 

performed by the developers. The following link shows all the 

code of the comprehension tasks: 

https://luciangoncales.github.io/studies/jartsupplementary2020/. 

Stage 2. Data pre-processing. Figure 3.2 shows the second 

stage, which starts the processing of the EEG signals. 

Synchronize and store: while developers perform the 

comprehension tasks, the Paradigm software synchronizes 

the developers' current events with the EEG signals. For this, 

the software Paradigm inserts ID markers in the EEG signals, 

which specifically indicate the type of event in a specific 

location of the EEG signal. The software inserts the task ID 

(from 1 to 10) and the ID of tasks' answers. For this, Paradigm 

inserts markers corresponding to the type of response 

(Correct, Incorrect, and No response), which are respectively 

the markers 17, 27, and 37. 

 
Table 2. Details of the comprehension tasks. 

 

ID Task Objective C L M 

T1 Salary calculation 1 10 1 

T2 Salary calculation - Version2 1 17 5 

T3 Calculate soccer points 1 8 1 

T4 Calculate soccer points - Version2 2 14 2 

T5 Obtain current date 1 6 1 

T6 Obtain current date - Version2 5 30 5 

T7 Count elements in a queue 1 10 1 

T8 

Count elements in a queue- 

Version2 2 16 2 

T9 Count type of playing cards 1 19 1 

T10 

Count type of playing cards- 

Version2 5 44 5 
 

Legend:  

C: Number of classes, L: Number of Lines,  

M: Number of methods 

 

 

 

https://luciangoncales.github.io/studies/jartsupplementary2020/
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Figure 3. Study steps. 

 

 

 

 
 

Figure 4. Example of comprehension task conducted 

 by developers (Task 3 in Table 2). 
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Filter: the EEG data passes by a filtering process, the same 

which was described in Section 2.2, thus generating the 

filtered EEG data (EEGf). The EEG unfiltered data (EEGu) refers 

to the same EEG data but discarding the filtering step. EEG is a 

non-invasive approach, and electrodes are deployed above 

the scalp consequently. Between the scalp and the surface of 

the cortex contain nerves and muscles that can produce 

noises that can affect the EEG signals. Raw EEG signals (EEGu) 

also might include eye blinks and heart beating signals. In 

other words, there is the presence of other signals than EEG. 

Removing components and filtering high and low bands are 

the main difference between the filtered EEG signals and the 

unfiltered ones. A filtered signal (EEGf) can lead to an improved 

classification of code comprehension in machine learning 

algorithms. Brainwave Attribution: This step is responsible for 

assign the tasks EEG data to the class corresponding to the 

developer’s answer. For instance, if the developer has 

answered task number 5 correctly (marker 17), the brain waves 

for that task are assigned to that this class. Thus, these waves 

are now part of the respective answer class. Data 

balance: both groups of data (filtered (EEGf) and unfiltered 

(EEGu)) are balanced. The method used was under-sampling 

without replacement. For this, we applied an under-sampled 

randomly the predominant classes (incorrect and 

unanswered) to the minority class (Correct). Balancing the 

data classes avoids the machine learning technique to make 

biased classifications. The classification bias can happen due 

to a predominance of a type of class over others. After 

windowing the data every ten seconds and balancing all the 

EEG filtered and unfiltered data, the whole EEGf (filtered 

dataset) contains 2.278 lines of EEG readings, each line 

attributed to an event, i.e., the task answer (897 as correct, 440 

as incorrect, and 941 as no response). The EEGu (unfiltered 

dataset) contains 2.401 lines of EEG readings containing the 

event (962 as correct, 467 as incorrect, and 972 as no 

response). In particular, every EEG line is related to an event, 

i.e., the participants answer correct, incorrect, or non-

response. The filtering process removed abnormal signals, 

and consequently, the filtered signals (EEGf) have fewer EEG 

readings lines about the unfiltered signals dataset (EEGu). 

Stage 3. Classification. Figure 3.3 consists of classifying 

developers' code comprehension based on EEG 

signals. Extract features + PCA: This stage addresses the 

extraction of variables from the set of unfiltered EEG signals 

(EEGu) and the data set with filtered EEG signals (EEGf). This 

stage uses the multitaper method in both EEG sets to extract 

the variables. Multitaper transforms brain signals from the 

time domain to the frequency domain (Prerau et al., 2017). 

Specifically, we decomposed the waves of each of the 14 

channels of the electroencephalogram into six frequency 

ranges: Delta, Theta, Alpha, Low Beta, High Beta, and Gamma.  

This process generated 84 variables (6 frequency ranges by 

14 channels). We reduced the dimensionality of both datasets 

with a Principal Component Analysis. After the PCA, 

The EEGf dataset contained 14 columns by 2.278 lines, and the 

PCA also reduced the EEGu 14 columns by 2.401 lines. In 

particular, the PCA reduced the number of columns from 84 to 

14 in both datasets. In both datasets, the PCA detected 4 

components. The variance of the PCA version of EEGf about 

the original data are the following: PCA component 1: has a 

ratio of 0.98 and a cumulative ratio of 0.98. PCA component 

2 has a ratio of 0.008 and a cumulative ratio of 0.99. PCA 

component 3 has a ratio of 0.002 and a cumulative ratio of 

0.99. PCA component 4 has a ratio of 0.003 and a 

cumulative ratio of 0.99. The variance of the PCAs version 

of EEGu about the original EEGu are the following: PCA 

Component 1 has a ratio of 0.420465 and a cumulative ratio 

of 0.420464, the PCA Component 2 has a ratio of 0.128873 

and a cumulative ratio of 0.549337, the PCA Component has 

a ratio of 0.0805973 and a cumulative ratio of 0.629935, and 

the PCA Component 4 has a ratio of 0.0720947 and a 

cumulative ratio of 0.702029. Classifier: This step trains the 

random forest (RF) classifier using 10-Fold cross-validation, 

where each fold consists of a 70% training group and a 30% 

test group. We trained the classifier to perform a multiclass 

classification. Based on the EEG data, the classifier must 

identify whether the programmer comprehends the source 

code correctly, incorrectly, or does not answer the question 

(unanswered). Metrics: metrics collected from the 

classification results are precision, recall, and f-measure 

(section 4.4).  

 

4.4. Participants’ profile 

Consent formulary: Before performing the comprehension 

tasks, the developers signed a consent form, authorizing the 

authors of this study to use their psychophysiological EEG 

data for research purposes. 

Personal characteristics: we recruited a total of 35 

participants to carry out the study. The age of the participants 

varies between 17 and 46 years. 

Education: Some participants have a college degree and 

pursue postgraduate courses in Applied Computing (31%, 

11/35). Moreover, 29% (10/35) completed higher education. 

About 11% of the participants had completed high school 

(4/35), 5% (2/35) of participants were pursuing a doctorate in 

Applied Computing, 2% of participants finished their master's 

degree (1/35), and 2% completed a specialization (1/35). One 

participant was in high school (1/35). The bachelor course of 

the participants is related to software development. In 

particular, they were involved or finished courses such as 

computer science (29%, 10/35), information systems (17%, 

6/35), systems analysis (14%, 5/35), digital games (14%, 5/35),  
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and other courses (26%, 7/35) such as computer engineering, 

electronic engineering, bachelor of science in computer 

science, information security, and computer technician. 

Profession: A total of 34% (12/35) of the participants mainly 

work as software developers, and 23% (8/35) are students in 

scientific initiation and research assistants. About 14% (5/35) 

act as software analysts, 3% (1/35) as computer assistants, 2% 

(1/35) are data scientists, 2% (1/35) are project managers, 2% 

(1/35) are software engineers. Moreover, the participants also 

work as entrepreneurs (2%, 1/35), computer technicians (2%, 

1/35), and about 11% (4/35) did not specify their jobs. A total 

of 34% (12/35) work at universities. Moreover, participants also 

work in different companies such as Banrisul, Correios, 

GetNet, Altus, CIGAM, Kenta, Ilegra, and Umbler. About 14% 

(5/35) of the participants did not reveal the names of their 

workplaces. 

Personal skills: A total of 57% (20/35) of the participants 

have up to 2 years of experience with software development. 

A total of 14% (5/35) of the participants develop software 

between 3 to 4 years, 9% (3/35) of participants work with 

software development between 5 to 6 years, and 20% (7/35) 

have more than seven years of experience developing 

software. Regarding Java language, i.e., the language used in 

the tasks of this study, 46% (16/35) of the participants reported 

that they have basic knowledge, 26% (9/35) know the 

language moderately, and 29% (10/35) are proficient. 

 

4.5. Effectiveness metrics 

This section presents the effectiveness metrics used in this 

study. In this study, we measured precision, recall, Matheus 

coefficient correlation (MCC), and f-measure of the 

classification results. 

True Positive (TP) refers to the number of classifications 

reported as correct by the classifier, in which the classifier 

should report it as correct. True Negative (TN) refers to the 

number of classifications that technique should report as 

incorrect, and the classifier correctly classified it as incorrect. 

False Positive (FP), e.g., is the number of results that should be 

incorrect, but the classifier reported as correct. False Negative 

(FN) is simply the opposite of false positive, i.e., classier report 

the results as "false" but should address as “true”. 

Precision: it refers to the percentage of the correct classified 

labels that we expected to be correct. However, not 

considering the false positives (FP) values (Eq. 1). 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                              (6) 

 

Recall: it refers to the percentage of the correct classified 

labels not considering those labels that the classifier 

pointed as incorrect, but it should treat as correct, i.e., False 

Negatives (Eq. 2). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                     (7) 

 

Matthews correlation coefficient (MCC): MCC is a 

correlation coefficient between the ground truth (observed 

values) and classified labels (classifier results). This coefficient 

varies from -1 and 1, where values close to zero imply the 

classifier results are equivalent to a random guessing method. 

Values near to -1 mean an uncorrelated classification, and 

close to 1 indicates an optimal classification. Thus, this value 

can point to whether the precision, recall, and f-measure are 

not misleading. 

 

𝑀𝐶𝐶 =  
𝑇𝑃.𝑇𝑁 − 𝐹𝑃.𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                         (8) 

 

F-measure: It refers to a harmonic average between 

precision and recall. 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2.
𝑃𝑟𝑒𝑐 .  𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
                                                               (9) 

 

4.6. Variables and analysis procedures 

Dependent variables. The precision and recall describe the 

results obtained by the random forest technique to classify 

developers' code comprehension. However, the dependent 

variable controlled in hypothesis testing in this work is the f-

measure. We adopted this variable because it already 

encompasses recall and precision. Moreover, this metric is a 

harmonic mean between these measures; the f-measure 

usually penalizes more the results and generates a lower value 

than precision and recall. 

Independent variables. The independent variables of this 

study are the Filtered EEG data (EEGf) and the unfiltered EEG 

data (EEGu). 

Analysis procedure. To analyze the effect that the 

application of EEG filters causes on the developers' code 

comprehension classification, we conducted a descriptive 

analysis, normality tests of the classifiers' effectiveness (F-

measure), and hypothesis tests. We performed a descriptive 

analysis of the data to observe its distribution, followed by the 

normality tests Kolmogorov Smirnov and Shapiro Wilk test. 

The p-value > 0.05 indicates that the normal distribution in any 

of these tests. The statistical tests we conducted to analyze the 

effectiveness of the machine learning classifiers (EEGf x EEGu) 

were the paired t-test, the Wilcoxon test, and the Mann-

Whitney U test. These tests need a p-value < 0.05 to accept the 

alternative hypothesis. We used the paired t-test and the 

Wilcoxon signed-rank test because the literature already used 

these tests to demonstrate the effectiveness of classifiers 

(Demšar, 2006). Moreover, the conjoint use of these tests 

covers the normal and not normally distributed data. The t-

test is appropriate for datasets with normal distribution and 

the Wilcoxon signed-rank to test data with non-normal 
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distribution. Finally, we used the Mann-Whitney U test because it 

provides a rank about the effectiveness of the classifiers, making 

it possible to obtain a ranked result concerning the effectiveness 

of the machine learning technique. 

 

5. Results 

Table 3 presents the macro precision, recall, and f-measure of 

the Random Forrest classifier trained with the data set with 

unfiltered EEG (EEGu) and the filtered EEG data (EEGf).  

A “macro” metric means it is an average of the respective 

metrics of each classified class. For instance, the precision of 

the classifier trained with filtered EEG in fold one is equivalent 

to the average between the precision value of correct, 

incorrect, and unanswered classes. It is the same rule applied 

for the recall and f-measure in the respective folds. The results 

in Table 3 are relative to each of the folds of the cross-

validation. The average precision, recall, and f-measure of the 

Random Forrest classifier trained with filtered data was higher 

than the classifier trained with unfiltered EEG data. Random 

forest trained with unfiltered EEG data obtained an average 

precision and recall of 61% and 60% in f-measure. 

The classifier trained with the filtered EEG data obtained a 

precision and recall of 70%, and the f-measure achieved 71% 

to classify developers' code comprehension. After applying 

the filters, the random Forrest classifier obtained a precision 

and recall of 9% higher than the Random Forrest classifier 

trained with unfiltered data. The f-measure was 10% higher 

than the trained classifier with filtered EEG data. 

Matthews correlation coefficient (MCC): Figure 5 shows the 

results of the MCC of the classifier trained with unfiltered EEG 

data (green) and filtered EEG data (blue). The MCC coefficient 

of the random forest trained with filtered EEG data 

outperformed the MCC coefficient of the classifier trained 

with unfiltered EEG data. The higher coefficient means that the 

classifier trained with Filtered EEG has a stronger correlation with 

the classification results than the classifier trained with unfiltered 

data. Finally, the MCC values are higher than zero, meaning that 

both classifiers are not making random classifications. 

Descriptive analysis. Table 4 presents the descriptive 

statistics about the f-measure of the random forest classifiers 

trained with filtered EEG data and unfiltered EEG data. 

Through Table 4, it is possible to notice that the effectiveness 

of the random forest classifier without the applied filters is 

lower than the classifier trained with a filtered EEG dataset to 

classify the developer code comprehension. This lower 

effectiveness of the classifier trained with unfiltered EEG data 

is evident throughout the data distribution. The minimum 

value (Min), the first quartile (25), the median, the third quartile 

(25), and the maximum value are higher for random forest 

classifier trained filtered EEG data. Figure 6 presents the  

boxplots representing the distribution of the f-measure data 

obtained by the random forest trained with filtered data (blue) 

and the unfiltered data (green). 

To confirm this, we performed the Kolmogorov Smirnov 

and Shapiro Wilk normality tests. The Kolmogorov test 

showed normality for both data sets (p > 0.05). However, the 

Shapiro Wilk test showed that the filtered data set was not 

normally distributed (p < 0.05). For this reason, we performed 

the paired t-test and the non-parametric Wilcoxon test. 

Paired T-test. A paired t-test was performed on f-measure 

samples to determine if there is a difference in the mean 

effectiveness between a classifier trained with filtered EEG data 

and a classifier trained with unfiltered EEG data. We applied the t-

test to the respective f-measures samples of classifiers. In other 

words, we collected a total of 60 data of effectiveness (f-measure). 

In particular, 30 from each machine learning classifier and 10 of 

each answers' class (Correct, incorrect, and unanswered). The 

results showed that the effectiveness of the classifier trained with 

unfiltered EEG (EEGu) was lower (0.6 ± 0.059) compared to the 

classifier trained with the filtered (EEGf) EEG (0.69 ± 0.06), a 

difference from the means of 0.09, that is, 9% (95% CI, 0.066 to Inf), 

t (29) = 5.91, p = 0.000001. 

Wilcoxon test. We performed a Wilcoxon signed-rank test 

because it is non-parametric. Thus, it satisfies the requirement 

to test not normally distributed datasets. It is the specific case 

of the distribution of the effectiveness of the classifier trained 

with filtered data. Moreover, the properties of the Wilcoxon 

test provide a safer comparison between classifiers because it 

does not require normal distribution and does not assume 

homogeneity of variances (Demšar, 2006). The Wilcoxon test 

showed that using filtered EEG data (EEGf) elicited greater 

effectiveness to classify developers’ code comprehension 

compared with a random forest classifier trained with 

unfiltered EEG data (EEGu) filters (V = 430, p = 0.00002). 

Mann Whitney U test. This test is the nonparametric version 

of the t-test and is ideal for independent groups. We 

performed this test to avoid the threat of independence in the 

division of data between the classifiers' folds. This test 

compares the difference between the average ranks of the 

classifiers' effectiveness. Thus, this test ranks which classifier 

was most effective. Table 5 shows that the rank points of the 

random forest classifier with filtered EEG (EEGf) data are higher 

than the rank of the random forest classifier trained with 

unfiltered EEG (EEGf) data. 

Therefore, through these results, we concluded that the f-

measure effectiveness metric of the random forest classifier 

trained with filtered EEG data was higher compared to the 

classifier trained with unfiltered EEG data to classify the 

developers' code comprehension. Thus, the alternative 

hypothesis of this study is accepted. 

 



 
 

 

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602 

 

Vol. 19, No. 6, December 2021    595 

 

 Table 3. Effectiveness results of RF classifiers. 

 

  

RF - Filtered EEG RF - Unfiltered EEG 

P R F P R F 

Fold 1 0,77 0,76 0,76 0,61 0,62 0,62 

Fold 2 0,69 0,69 0,69 0,65 0,64 0,64 

Fold 3 0,73 0,73 0,73 0,64 0,63 0,62 

Fold 4 0,73 0,72 0,72 0,56 0,56 0,56 

Fold 5 0,68 0,67 0,67 0,62 0,58 0,59 

Fold 6 0,60 0,60 0,60 0,58 0,59 0,58 

Fold 7 0,74 0,73 0,72 0,62 0,62 0,61 

Fold 8 0,70 0,70 0,69 0,60 0,60 0,60 

Fold 9 0,70 0,70 0,70 0,61 0,61 0,60 

Fold 10 0,68 0,68 0,67 0,60 0,63 0,60 

AVG 0,70 0,70 0,70 0,61 0,61 0,60 

Legend: 

P: Precision, R: Recall, F: F-measure, AVG: Average 

 
 

Table 4. Descriptive statistics. 
 

  

Min 25 Med. 75 Max AVG SD Var. 

P-Value 

(Filtered > Unfiltered) 

T-Test Wilcoxon 

RF EEG 

unfiltered 
0,48 0,56 0,61 0,64 0,74 0,6 0,059 0,003 

0,000001 0,000025 

RF EEG 

filtered 
0,55 0,66 0,7 0,75 0,78 0,69 0,06 0,004 

Legend: Min: Minimum, Med: Median, Max: Maximum, SD: Standard Deviation, Var: Variance. 

 

 

 
Figure 5. MCC coefficients results of classifiers. 
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6. Discussion 

 

This section presents a discussion regarding the results 

presented in section 5. In Section 6.1, there is a discussion 

about the implications of filtering EEG signals in code 

comprehension. Section 6.2 discusses the threats to the 

validity of the results. 
 

6.1. Implications 

Code comprehension is a relevant cognitive process in 

software engineering (Crk & Kluthe, 2016). Studies estimate 

developers dedicate 70% of their time to comprehend the  

 

source code. They apply this time before making any changes 

to the source code. Classifying developers' code 

comprehension could help to reduce the amount of time they 

usually dedicate to comprehend programs. In this way, the 

code comprehension classifier would be a means for a 

recommendation system, which would allocate shorter 

tasks for the developer when he has a long time without 

comprehending a software task. This situation could also 

be indicative of refactoring and reducing the complexity of 

the source code. 

According to the results, when using the random forest 

technique to classify the developer code comprehension, the 

 
 

Figure 6. Distribution of the effectiveness of classifiers  

with filtered and unfiltered data. 

 

 

 

Table 5. Mann Whitney U test and the respective ranks for each classifier. 

 

Classifier 

 Mean 

Rank 

Sum 

Ranks U P-Value 

RF filtered  41,03 1231 
134 0,000002991 

RF unfiltered  19,97 599 
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results showed the use of filters is related to the better 

effectiveness of the random forest classifier. So, this study 

points out that the filtering process used in this study (section 

2.2) can effectively improve the classification of developers' 

code comprehension using a Random Forrest technique. The 

main advantage is the greater precision and recall achieved by 

the classifier. The disadvantage is that applying the filters 

consumes computational resources and would take time to 

process the EEG signals. These characteristics are not 

performance-friendly. To avoid the delay that filtering EEG causes 

in data processing, developers should disregard the application 

of filters in EEG signals. However, if future researchers apply a 

random forest technique to the real-time scenario, the classifier 

will show lower effectiveness when working with unfiltered EEG 

data. For this, future research should test another classifier that 

could deal better with the unfiltered EEG. 

We also expect that this study will be used as a model to 

evaluate the effectiveness of using EEG signal filters. Another 

expectation is that research on software engineering and 

computing evaluates the impact of EEG filters in studies of 

machine learning in applied areas. For instance, this study 

focused on the developers' code comprehension. Future 

studies could investigate the impact of filters in the 

classification of perceived difficulty or developers' cognitive 

load. The investigation about filters in EEG signals in software 

engineering research would bring to the reader, and 

researchers, empirical reinforcement for the adoption or not 

of the EEG filters. For example, in a scenario where the 

difference in adopting EEG filters for trained the random forest 

was not relevant, it could justify not spending computational 

resources to process filters in the EEG signals. 

 

6.2. Limitations 

This work contains some limitations, which we mitigated and 

addressed to avoid threats to the results obtained. 

To ensure that we made the correct collection of the EEG 

data, we followed instructions from the EEG device 

manufacturer to ensure that the sensors were in the right place 

on the users' scalp. To perform the EEG filtering, we followed 

the process defined in section 2.2. For this, we used functions 

from Python's MNE library. Moreover, the EEG data has markers 

that relate the events to the respective parts of EEG signals. 

We timed the duration of comprehension tasks in 60 

seconds. We timed the comprehension task to reflect the size 

of the source code and provide the necessary time for 

participants to finish it. There is a threat that this time maybe 

is not enough for all users and may affect their performance. 

To ensure we correctly conducted the statistical analysis, we 

used statistical tests adopted and reported on the machine 

learning literature. Next, we performed the normality tests 

Kolmogorov Smirnov and Shapiro Wilk to verify the normality  

distribution of the data when p > 0.05. Thus, we adopted 

parametric and non-parametric tests to analyze the 

effectiveness of the classifier. Both tests pointed out the higher 

effectiveness in the classifier trained with filtered data 

compared to the random forest classifier trained with filtered 

EEG data. We also evaluated the machine learning techniques 

with 10-fold cross-validation. This method avoids the threat of 

existing a supposed lucky split division between training and 

test set. The EEG signals may contain EOG artifacts because we 

did not have an appropriate channel that captured heart 

signals. The EOG artifacts can threaten the validity of the 

results. The end of the filtered EEG signal may contain spurious 

frequencies. The presence of spurious frequencies may 

jeopardize the performance of the classifiers. 

Finally, the results of this study are limited to the laboratory 

environment since it does not perform real-time classification. 

Two facts can threaten the generality of the results: there is also 

a limited variety of developers' profiles and the limited number 

of tasks that developers performed in this study. 

 

7. Conclusions  
 

Research in software engineering has generally adopted 

applied filters in EEG signals, claiming that the removal of 

noise from the EEG signal improves the precision of the 

analysis. This because the EEG filters would be responsible for 

removing noises that are not of interest to such a study. 

However, studies have adopted such filters based on claims in 

the research of other areas. Thus, there was an evident lack of 

what was a real improvement is compared to the use of 

unfiltered EEG signals for software engineering purposes. 

Therefore, this work investigated whether EEG filters improve 

the effectiveness in the classification of code comprehension. 

For this, we collected EEG data from 35 developers solving 

code comprehension tasks. We used this data to train a 

random forest classifier. We used the 10-fold cross-validation 

to train and evaluate the classifier. Moreover, we also reported 

the classifiers' precision, recall, and f-measure. We conducted 

statistical analyzes to test the difference in effectiveness 

between the random forest classifier trained with filtered EEG 

data and the random forest classifier trained with unfiltered 

EEG data to classify developers' code comprehension. The 

paired t-test and the Wilcoxon test presented the average 

effectiveness (f-measure) increased in a random forest 

classifier after using filters in EEG signals to classify developers' 

code comprehension. 

As future work, we intend to extend the evaluation to other 

machine learning classifiers, such as Neural Networks and 

Naïve Bayes. We also aim to increase the number of 

participants, the number of tasks, and testing the classifier in 

a realistic scenario. 

 



 
 

 

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602 

 

Vol. 19, No. 6, December 2021    598 

 

 

Appendix A 
 

 
 

Figure 7. EEG Raw signals captured in 14 channels. 

 

 

 

 
 

Figure 8. Filtered EEG signals in 14 channels. 
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Figure 9. Spectrogram of the raw EEG signals obtained 

 in AF3, F7, F3, FC5, P7, O1, O2, P8, and T8 channels. 
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Figure 9. Spectrogram of the raw EEG signals obtained in FC6, AF4, F8, and AF4. 

 

 

 
 

Figure 10. Spectrogram of the filtered EEG signals obtained in AF3, F7, F3, FC5, and T7 channels. 
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Figure 11. Spectrogram of the filtered EEG Signals obtained  

in P7, O1, O2, FC5, P7, O1, O2, P8, T8, FC6, F4, F8. And AF4 channels. 
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