

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 19 (2021) 584-602

Original

The effects of applying filters on EEG signals for classifying

developers’ code comprehension

L. J. Gonçales* K. Farias L. Kupssinskü M. Segalotto

University of Vale do Rio dos Sinos (Unisinos), Applied Computing Graduate Program (PPGCA),

 Rio Grande do Sul, São Leopoldo, Brazil

Received 11 15 2020; accepted 08 05 2021

Available 12 31 2021

Keywords: EEG, high pass filter, low pass filter, ICA, software engineering,

program comprehension, machine learning

Abstract: EEG signals are a relevant indicator for measuring aspects related to human factors in

software engineering. EEG is used in software engineering to train machine learning techniques for

various applications, including classifying task difficulty and developers’ experience. The EEG signal

contains noise such as abnormal readings, electrical interference, and eye movements, which are

usually not of interest to the analysis, and therefore contribute to the lack of precision of the machine

learning techniques. However, research on software engineering has not evidenced how effective the

filtering of EEG signals is, even with evident benefits of filtering the EEG signals in signal processing and

clinical image studies. In this paper, we analyzed the effects of using filtered EEG signals for classifying

developers’ code comprehension. This filter consists of high and low pass filtering designed with an

FIR filter using a Hamming window. This filtering process also removes abnormal signals and executes

the Independent Component Analysis (ICA) using the fast ICA method for removing EOG components.

We applied the filtered EEG signals to train a random forest (RF) machine learning technique to classify

the developers' code comprehension. This study also trained another random forest classifier with

unfiltered EEG data. We evaluated both models using 10-fold cross-validation. This work measures the

classifiers' effectiveness using the f-measure metric. This work used the t-test, Wilcoxon, and U Mann

Whitney to analyze the difference in the effectiveness measures (f-measure) between the classifier

trained with filtered EEG and the classifier trained with unfiltered EEG. The tests pointed out a

significant difference after applying EEG filters to classify developers' code comprehension with the

random forest classifier. The conclusion is that the EEG filters significantly improve the effectiveness of

classifying code comprehension using the random forest technique.

∗Corresponding author.

E-mail address: lucianjosegoncales@gmail.com(L. J. Gonçales).

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

http://dx.doi.org/10.1016/j.jart.2017.02.005
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.icat.unam.mx/
mailto:lucianjosegoncales@gmail.com
https://www.unam.mx/

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 585

1. Introduction

The adoption of EEG signals has been relevant to analyze

aspects of human factors in software engineering (Crk &

Kluthe, 2016; Fucci et al., 2019; Lee et al., 2018). The

electroencephalogram (EEG) is responsible for capturing the

electrical signals generated through the interaction of neurons

(Cohen, 2017). Software engineering researchers have been

using this indicator along with machine learning techniques to

classify task difficulty (Lee et al., 2018), level of experience (Crk

& Kluthe, 2016), and categories of programming tasks artifacts

(Fucci et al., 2019), i.e., between textual prose and

programming language. The EEG signals contain noises such

as abnormal readings, electrical interference, and eye

movements, which are not of interest to the analysis and

therefore contribute to the classifiers' lack of precision as they

are not related to a specific cognitive process required in such

experiments. For this, these noises must be removed and

treated before being analyzed. The EEG filtering process is

usually the removal of abnormal readings. The literature

usually attenuated low and high cutoff frequencies by using

low and high pass filters. They also removed movement

components, such as eye movement, with an ICA algorithm.

However, despite the evident benefit of filtering EEG signals

in studies focused on research areas such as signal processing

and clinical image, it remains unknown if filtering an EEG

signal can affect the applications focused on software

engineering (Crk & Kluthe, 2016; Fucci et al., 2019; Lee et al.,

2016; Lee et al., 2018; Radevski et al., 2015). Such research

generally claims that filters in EEG signals improve the analysis

and helps to obtain more effective results. Software

engineering literature did not produce empirical evidence

about these statements (Crk & Kluthe, 2016; Fucci et al., 2019;

Lee et al., 2018). Therefore, there is a lack of a specific analysis

of the effectiveness of filtered EEG signals in software

engineering. Moreover, while the extent of the filter

application in software engineering is unknown, there is a lack

of an approach in the literature to classify developers’ code

comprehension based on EEG data. Code comprehension

consists of a task in which developers must interpret a piece of

code and deduce the result and purpose of a source code

snippet. This classifier would be a basis for recommendation

systems, for example, to recommend tasks to the developer

based on their EEG activity.

Therefore, this work seeks to analyze the effectiveness of

filters on EEG signals for classifying developers' code

comprehension. Specifically, this work analyses the

effectiveness of a classifier trained with EEG data after the

application of EEG filters. For this, a random forest (RF)

technique was both trained with filtered EEG data (EEGf) and

with the unfiltered EEG signals (EEGu). We measured the

classifier's effectiveness by the f-measure, i.e., the harmonic

mean between recall and the classifier's precision. This work

used a paired t-test, a Wilcoxon, and a Mann Whitney U test for

analyzing the effectiveness (f-measure) of EEG filters in the

classification of developers' code comprehension.

This work describes this research into seven sections: Section

2 presents the basics concepts of this work; Section 3 describes

the related works; Section 4 describes the methodology of this

work; Section 5 presents the study results; Section 6 discusses the

results; Section 7 highlights the final remarks and future work.

2. Background

This section presents the basic concepts behind this work.

Section 2.1 describes the theory related to EEG signals.

Section 2.2 introduces the concept of EEG filters used in this

work. Section 2.3 describes the metrics used to measure the

effectiveness of the classifier.

2.1. EEG

The electroencephalogram (EEG) is responsible for measuring

the variation in tensions from brain activity (Cohen, 2017).

These electrical fluctuations are a natural consequence of the

dynamics between neural populations. To capture these

activities, the EEG has sensors that are also well-known as

electrodes. The electrodes capture EEG signals in specific

regions of the users' scalp. Each electrode corresponds to an

EEG channel. In this work, we adopted the Emotiv Epoc+

(Emotiv, 2020) that contains 14 channels. Figure 1 shows the

Emotiv Epoc+ channels locations. In addition, the EEG signal

consists of five frequency bands: Alpha [8-13Hz], Beta [13-

30Hz], Theta [4-8Hz], Delta [1-4Hz], and Gamma [30-70Hz].

The electrodes of Emotiv Epoc+ consist of a sponge

containing a sponge that has direct contact with the scalp.

Behind the sponges, there is contact with golden plates

connected to the device's transmitter.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 586

2.2. EEG filters

The device captures raw EEG signals (Emotiv, 2020). The EEG

signals contain several noises, i.e., artifacts that are not of interest

to the analysis, such as involuntary eye movements (Cohen,

2017). For researchers, it is relevant to filter EEG data, highlighting

and attenuating frequencies of interest (through filters),

respectively, and removing artifacts that are not of interest to the

analysis, e.g., removing EEG signals that reflect eye movement.

Software engineering literature has adopted high and low

pass filtering (also known as bandpass filtering) to attenuate

band frequencies that are not of interest to the analysis. The

high-low pass, as the name implies, maintains frequency

waves between the low and high range. However, this filter

attenuates the frequency signals below and higher than a

respective cutoff frequency. Studies generally use a bandpass

filter from 1Hz to 40Hz on EEG signals because the literature

does not report interest in data below 1Hz, and above 40Hz.

Above the frequency of 40Hz, interferences of lamps and

devices on EEG signals that operate at an approximate

frequency can occur. Other studies have also opted to clean

up EEG signals from noise, e.g., involuntary eye movements.

For this, some reference channel, which is generally more

likely to reflect this movement, must be defined to serve as a

basis to remove these patterns from other channels.

Before filtering, we established some frequencies that are

necessary to eliminate. We eliminated the signals above 40Hz

to discard the AC powerline frequency. We also removed

frequencies below 1Hz to remove heart signals related to

pulse artifacts and low-frequency noise, such as building

vibrations and nearby electromagnetic field noise (Jiang et al.,

2019). Since the EEG sensors also capture electrooculogram

signals (EOG) due to the volume conduction effect, and the

frequencies between EEG and EOG are similar, the ICA

algorithm removes EOG artifacts in the frequencies between

1Hz and 40Hz (Jiang et al., 2019). The ECG artifacts, such as the

QRS, resides between 8 Hz and 50 Hz frequencies

(Tereshchenko & Josephson, 2015). However, the ICA

algorithm has not removed ECG artifacts because we did not

find a reference channel to serve as a basis to remove these

artifacts from EEG signals.

Figure 1. Locations of Emotiv Epoc+ EEG channels.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 587

In this work, the filtered signal consists of the flow in Figure 2.

(1) Remove abnormal signals: The first step is to remove

abnormal EEG readings. Therefore, this work rejected signals

above 8 µVolts. The value of 8uV refers to a single sample

value. We choose this value because above +8uV and below -8

µVolts were involved in briefs abnormal readings caused by

sensors malfunction. We discarded values between the range

of +8uV and –8uV. We did not replace it with other values. (2)

High- and low-pass filtering: the filter used frequencies below

1Hz and greater than 40Hz to attenuate signals. We used a

high- and low-pass filter designed with a Finite Impulse

Response (FIR), using a hamming window. More details about

the FIR design used in this work in Section 2.4. (3) Eye artifacts

removal: we run an Independent Component Analysis (ICA) to

remove eye movements from EEG signals. We used a fast ICA

algorithm to compute the eye components. Section 2.5

contains more details about the ICA we used in this work. We

set ICA to use the readings of the F8 channel as a reference for

removing the eye artifacts. There are two reasons we chose the

F8 channel to remove eyeblinks: First, the absence of a

dedicated channel to capture EOG artifacts. Second, we

observed that the F8 channel contained the components of

the eye blinking frequently. The EEG filters and ICA were

performed using python's MNE library (Gramfort et al., 2013).

The raw EEG signals, EEG filtered signals, and spectral analysis

of the respective signals of both datasets are in Goncales et al.

(2021). Appendix A contains the EEG signals and spectral

analysis of one of the participants.

Figure 2. Locations of Emotiv Epoc+ EEG channels.

2.3. High and low pass filtering

This work applies a Low- and High- pass filtering in the EEG

signal. Low-pass filtering consists of rejecting frequencies that

are higher than a defined frequency threshold. The low-pass

filter does not alter the frequencies below the cut-off limit.

Frequencies above 45Hz in EEG signals generally contain

irrelevant noise fluctuations. Literature indicates the low-pass

filter to attenuate these signals.

The high-pass filtering consists of the opposite of low-pass

filtering because it rejects frequencies below a cut-off

frequency, but it does not alter the frequencies above. The

literature indicates the high-pass filtering to attenuate slow

frequencies containing DC components and negative

deflections representing spikes of single neurons.

This work establishes specific cut-off frequencies for the low

and high pass filters. However, filters can differ in design.

Researchers usually design these filters through FIR and IIR

methods. We introduce some basic concepts about the FIR

design in the following Section.

2.4. Finite impulse response (FIR) filter design

In particular, there are two main types of filter design, the

Finite Impulse Response (FIR) filter, and the Infinite Impulse

Response (IIR) Filter (de Cheveigné & Nelken, 2019). The

Infinite Impulse Response (IIR) filters the impulse signal

indefinitely, i.e., while the signal is occurring. The calculus of

an IIR filter is recursive and combines the sum of inputs with

the last signals' outputs. In contrast, the Finite Impulse

Response (FIR) filters in each impulse signal in a finite

response. The FIR filter sums a finite range of input-weighted

signals. The convolution sum bellow represents the FIR filter:

𝑦(𝑛) = ∑ ℎ(𝑛 − 𝑚)𝑥(𝑚)𝑛−𝑁+1
𝑚=𝑛 (1)

Where:

• y(n) is the output signal;

• x(m) is the input signal;

• h(n-m) is the impulse response at instant n-m.

In this work, we designed an FIR filter with a hamming

window method. Equation 2 defines the hamming window we

used.

𝑊(𝑛) = 0.54 − 0.46 cos
2𝜋𝑛

𝑁−1
 (2)

The cut-off frequency (𝜔c) of the low pass filter in this work

is 40Hz, and the cut-off of the high pass filter of this work is 1Hz.

Given that |𝜔| is the window function in a particular range of

the EEG signal, this window function is multiplied by the

desired low pass filter when the condition |𝜔| ≤ 𝜔c is satisfied.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 588

The window function is multiplied by the signal when the

condition 𝜔c ≤ |𝜔|.

2.5. Independent component analysis (ICA)

The Independent Component Analysis (ICA) is a technique for

identifying different signals from a single source. For example,

an EEG signal from a single channel can contain eye

movements. The research on electrophysiology knows that

eye signals have well-established patterns related to different

eye movements. When these movements are not of interest to

the study, it comprises a noise, and ICA can separate these

signals. Therefore, in this case, the application of ICA holds

because it is a source separation technique. Formally, the

following generative model defines the problem of separating

independent components in a signal:

𝑥 = 𝐴𝑠 (3)

Where x is a vector of dimension m, s is a vector of

dimension n. The s contains the supposed signal with the

mixed components, and A is the matrix with mxn dimension

the model should estimate, i.e., contains the independent

components. After the algorithms estimate the matrix A, the

algorithm generates an inverse matrix W from A. There are several

methods to compute the ICA model: First, by maximizing the non-

Gaussian signals. Second, by minimizing the mutual information

between independent components. Finally, ICA also can use the

maximum likelihood for estimating statical models based on a

set of observations to find the matrix for unmixing signals and

then extract the components.

In this work, we adopted the Fast ICA algorithm

(Hyvarinen,1999). This algorithm computes the minimization

of non-Gaussian. The algorithm computes this by

approximating the negentropy of the signals using a linear

fixed-point approach. Equation 5 describes the final algorithm

of the Fast ICA. This equation shows a one-by-one estimation

of components. This Equation subtracts the projections of

previously p vectors in 𝑊𝑝+1
𝑇 𝐶𝑊𝑗𝑊𝑗 from 𝑊𝑝+1, and 𝑊𝑝+1 is

normalized consequently.

1. 𝑊𝑝+1 = 𝑊𝑝+1 − ∑ 𝑊𝑝+1
𝑇 𝐶𝑊𝑗𝑊𝑗

𝑝
𝑗=1 (4)

2. 𝑊𝑝+1 =
𝑊𝑝+1

√𝑊𝑝+1
𝑇 𝐶𝑊𝑝+1

 (5)

Hyvarinen (1999) provides a detailed description of this

algorithm and the transformations involved in this equation.

The Fast ICA (Hyvarinen, 1999) is the default algorithm of the

framework MNE in Python used to compute the ICA in this

work. MNE adopts the Fast ICA as the default algorithm

because it is faster than the infomax and Picard algorithms

most of the time. This algorithm does not require the

computation of learning rates to execute.

3. Related work

Section 3.1 presents the benefits of filters used in EEG signals

in medical and signal processing research. Section 3.2

presents related works in software engineering which applied

a gamma of filters in EEG signals.

3.1. Related work in signal processing and medical

research

Correa et al. (2007) proposed an algorithm to filter EEG signals

in a cascade for attenuating line interference, eye signal, and

electrocardiogram signals. This algorithm comprises a filtering

process consisting of a sequence of three filters. Each filter is

responsible for a single cancellation in EEG signals. The first

deals with line interference, the second cancels the

electrocardiogram signals, and the third filter cancels the eyes

signals. For each step, the authors applied an FIR filter

implementing a least mean square algorithm. Correa et al.

(2007) used this algorithm in a database containing five

participants, in which previous researchers captured eye and

electrocardiogram signals with dedicated sensors. The results

showed that the algorithm attenuated the artifacts and

consequently improved the quality of the EEG signal.

Jadav et al. (2020) proposed a scheme to remove noise data

in EEG signals and preserve the signal of interest. Jadav et al.

(2020) analyzed the application of the relative intersection of

confidence interval (RICI) algorithm. Jadav et al. (2020) applied

the algorithm in simulated data. The results are that after

denoising the EEG with the RICI algorithm, the Rényi entropy-

based analysis detected ERP components efficiently.

Kawala-Sterniuk et al. (2020) compared three smoothing

filters in EEG signals, such as smooth filter, Savitzky–Golay,

and median filter. The basic smoothing filtering conducts a

moving average with a default span. The median filter is also a

median average but with a higher windowing parameter. The

Savitzky–Golay is a smoothing filter. Kawala-Sterniuk et al.

(2020) applied the filters on a database with 52 participants.

The results confirmed that filters impacted the higher quality

of the EEG signal for use in the diagnosis for medical purposes.

The Savitzky–Golay presented the best results because it did

not distort the original signal.

3.2. Related work in software engineering

Fucci et al. (2019) investigated whether it was possible to use

psychophysiological signals, including EEG signals to train

machine learning techniques to make a binary classification of

comprehension tasks: code, in case the artifact be a source

code, or prose, i.e., in case the artifact be textual prose. Fucci

et al. (2019) used EEG signals to train an SVM technique in 10-

fold cross-validation and applied the bandpass filter in the

EEG signal. Fucci et al. (2019) also removed the eye-movement

components using ICA. The authors did not focus on

classifying developer code comprehension. The SVM

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 589

technique reached a precision of 72%, a recall of 66%, and an

f-measure of 62%.

Lee et al. (2018) used EEG signals in an SVM machine

learning technique to conduct a binary classification of the

developers' level of difficulty in code comprehension tasks

(easy/difficult), and another binary classifier, also an SVM, to

identify the expertise level of software developer

(expert/nonexpert). Lee et al. (2018) evaluated the

effectiveness of the classifiers through precision, recall, and f-

measure. The authors applied a frequency cutoff of 2Hz. The

task difficulty classifier reached an f-measure of 63.3%, and the

experience level classifier achieved an f-measure of 93.1%.

Radevski et al. (2015) developed a model to monitor the

brainwaves of software developers during daily tasks. The

objective of the work was to evaluate the feasibility of using

EEG in a realistic scenario of software development. For this,

Radevski et al. (2015) evaluated the model using the

Technology Acceptability Questionnaire (TAM). Thus,

Radevski et al. (2015) focused on assessing the developers'

point-of-view in adopting this type of system. The conclusion

is that although the EEG brings a new point of view about

software development tasks, it is difficult to use and deploy.

Crk and Kluthe (2016) analyzed the developers' EEG signals

about the developers' experience levels. The authors applied

the high-low pass filter to EEG signals. Based on the EEG

signal, the authors estimated the ERD (Event-Related

Desynchronization). Crk and Kluthe (2016) used the ANCOVA

statistical method to analyze the developers' expertise. The

authors used the ERD and the five groups of expertise levels.

The results showed a significant difference between the five

levels of developer experience.

Lee et al. (2016) compared the difference between the

power of the EEG signal between experienced and

inexperienced developers. Lee et al. (2016) applied band-pass

filters to the EEG signals to attenuate noise from external

devices. The investigation focused on the different

frequencies of the EEG signal, i.e., alpha, beta, delta,

gamma, and theta. Lee et al. (2016) identified a significant

difference between experienced and inexperienced

developers in the beta frequency.

In general, the data presented in Table 1 shows an

opportunity to verify the effectiveness of filters in EEG signals

in the classification of developers’ code comprehension.

The literature applied filters in EEG signals without

investigating the effectiveness of filters in EEG signals. They

also did not focus on the classification of developers’ code

comprehension. Thus, research on software engineering

applied filters to the EEG signals without pointing out the

effectiveness of using filters in EEG for software engineering

applications.

4.Materials and methods

This section describes the methodological aspects of this

work. First, Section 4.1 defines the main objective and the

research question of this study. Section 4.2 describes the

hypothesis that guides the investigation of this research.

Section 4.3 shows the study setup. Section 4.4 detail the

profiles of the participants. Section 4.5 describes the

effectiveness metrics of the classifiers. Finally, Section 4.6

shows the variables and the procedure of analysis we

performed in this study.

Table 1. Overview of related work.

 Focused on EEG Applied Filter Technique Classification Context

Proposed work Yes

High-Low pass,

ICA, Removal of

Abnormal Signals

Random forest Multi-class
Code

comprehension

Fucci et al. (2019) No Bandpass Random forest Binary Task type

Lee et al. (2018) No Lowpass
Support vector

machine
Binary

Difficulty and

experience Level

Radevski et al. (2015) Yes None Not used Does not apply
Code

comprehension

Crk and Kluthe (2016) Yes Bandpass Not used Does not apply Expertise level

Lee et al. (2016) Yes Bandpass Not used Does not apply Expertise level

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 590

4.1. Objective and research question

We aim to filter EEG signals with a high-and-low pass filtering

designed with a Finite Impute Response method with a hamming

window, using fast ICA to remove eye components. This work

seeks to analyze the impact of the EEG filter we designed with

respect to the effectiveness of classifying developers' code

comprehension in the context of software engineering.

Therefore, the following research question to investigate in

this work:

RQ: Does applying filters to EEG signals improve random

forest's effectiveness in classifying developers' code

comprehension?

4.2 Hypothesis
This work investigates whether a filtering process on the EEG

signals impacts the effectiveness of the machine learning

technique to classify developers’ code comprehension. The

filtering process consists of rejecting abnormal EEG signals,

followed by a bandpass filter, and removing artifacts that are not

related to the task of code comprehension of the EEG signal, e.g.,

the involuntary movement of the eyes. This work assumes that

the existence of this conjoint of unfiltered noises and artifacts in

EEG signals can impair the analysis or the use of these signals for

purposes in software engineering. In particular, this work

assumes that filters can improve the effectiveness of classifying

code comprehension of developers based on EEG signals. A

random forest technique performs the classification because this

technique is present in research on EEG signals in software

engineering. The hypotheses are specified below:

Hypothesis 1-0: The application of filters to the EEG signal

does not impact the effectiveness of the random forest

learning technique (Eff(RF)) to classify the developers' code

comprehension. Then, the effectiveness of the classifier

trained with filtered EEG data (EEGf) performs equal to or

below the classifier trained with unfiltered EEG data (EEGu):

H1-0: Eff(RF)EEGf <= Eff(RF)EEGu

Alternative hypothesis 1-1: The treatment of EEG signals

with filters impacts the effectiveness of the random forest

learning technique (Eff(RF)) to classify developer’s code

comprehension, and the effectiveness of the classifier trained

with filtered EEG data (EEGf) is greater than the classifier

trained with unfiltered EEG data (EEGu):

H1-1: Eff(RF)EEGf > Eff(RF)EEGu

4.3. Study flow

Figure 3 shows the three stages of this study: EEG monitoring

(Figure 3.1), data pre-processing (Figure 3.2), and data

classification (Figure 3.3).

Stage 1. EEG monitoring. Figure 3.1 presents the steps to

obtain the EEG data from the developers. The wireless device

Emotiv Epoc+ (Emotiv, 2020) was used and deployed on the

developers' heads. While Emotiv Epoc + captures EEG signals,

developers were performing code comprehension tasks.

These tasks consist of the developer interpreting a source

code and deducting its result. For this, the developer chooses

one of the possible answers among five options. We timed the

tasks in 60 seconds. If a participant does not answer the

comprehension tasks within this time limit, the software

considers it "Not response".

Figure 4 presents an example of this task, and Table 2

contains the description of each comprehension task

performed by the developers. The following link shows all the

code of the comprehension tasks:

https://luciangoncales.github.io/studies/jartsupplementary2020/.

Stage 2. Data pre-processing. Figure 3.2 shows the second

stage, which starts the processing of the EEG signals.

Synchronize and store: while developers perform the

comprehension tasks, the Paradigm software synchronizes

the developers' current events with the EEG signals. For this,

the software Paradigm inserts ID markers in the EEG signals,

which specifically indicate the type of event in a specific

location of the EEG signal. The software inserts the task ID

(from 1 to 10) and the ID of tasks' answers. For this, Paradigm

inserts markers corresponding to the type of response

(Correct, Incorrect, and No response), which are respectively

the markers 17, 27, and 37.

Table 2. Details of the comprehension tasks.

ID Task Objective C L M

T1 Salary calculation 1 10 1

T2 Salary calculation - Version2 1 17 5

T3 Calculate soccer points 1 8 1

T4 Calculate soccer points - Version2 2 14 2

T5 Obtain current date 1 6 1

T6 Obtain current date - Version2 5 30 5

T7 Count elements in a queue 1 10 1

T8

Count elements in a queue-

Version2 2 16 2

T9 Count type of playing cards 1 19 1

T10

Count type of playing cards-

Version2 5 44 5

Legend:

C: Number of classes, L: Number of Lines,

M: Number of methods

https://luciangoncales.github.io/studies/jartsupplementary2020/

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 591

Figure 3. Study steps.

Figure 4. Example of comprehension task conducted

 by developers (Task 3 in Table 2).

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 592

Filter: the EEG data passes by a filtering process, the same

which was described in Section 2.2, thus generating the

filtered EEG data (EEGf). The EEG unfiltered data (EEGu) refers

to the same EEG data but discarding the filtering step. EEG is a

non-invasive approach, and electrodes are deployed above

the scalp consequently. Between the scalp and the surface of

the cortex contain nerves and muscles that can produce

noises that can affect the EEG signals. Raw EEG signals (EEGu)

also might include eye blinks and heart beating signals. In

other words, there is the presence of other signals than EEG.

Removing components and filtering high and low bands are

the main difference between the filtered EEG signals and the

unfiltered ones. A filtered signal (EEGf) can lead to an improved

classification of code comprehension in machine learning

algorithms. Brainwave Attribution: This step is responsible for

assign the tasks EEG data to the class corresponding to the

developer’s answer. For instance, if the developer has

answered task number 5 correctly (marker 17), the brain waves

for that task are assigned to that this class. Thus, these waves

are now part of the respective answer class. Data

balance: both groups of data (filtered (EEGf) and unfiltered

(EEGu)) are balanced. The method used was under-sampling

without replacement. For this, we applied an under-sampled

randomly the predominant classes (incorrect and

unanswered) to the minority class (Correct). Balancing the

data classes avoids the machine learning technique to make

biased classifications. The classification bias can happen due

to a predominance of a type of class over others. After

windowing the data every ten seconds and balancing all the

EEG filtered and unfiltered data, the whole EEGf (filtered

dataset) contains 2.278 lines of EEG readings, each line

attributed to an event, i.e., the task answer (897 as correct, 440

as incorrect, and 941 as no response). The EEGu (unfiltered

dataset) contains 2.401 lines of EEG readings containing the

event (962 as correct, 467 as incorrect, and 972 as no

response). In particular, every EEG line is related to an event,

i.e., the participants answer correct, incorrect, or non-

response. The filtering process removed abnormal signals,

and consequently, the filtered signals (EEGf) have fewer EEG

readings lines about the unfiltered signals dataset (EEGu).

Stage 3. Classification. Figure 3.3 consists of classifying

developers' code comprehension based on EEG

signals. Extract features + PCA: This stage addresses the

extraction of variables from the set of unfiltered EEG signals

(EEGu) and the data set with filtered EEG signals (EEGf). This

stage uses the multitaper method in both EEG sets to extract

the variables. Multitaper transforms brain signals from the

time domain to the frequency domain (Prerau et al., 2017).

Specifically, we decomposed the waves of each of the 14

channels of the electroencephalogram into six frequency

ranges: Delta, Theta, Alpha, Low Beta, High Beta, and Gamma.

This process generated 84 variables (6 frequency ranges by

14 channels). We reduced the dimensionality of both datasets

with a Principal Component Analysis. After the PCA,

The EEGf dataset contained 14 columns by 2.278 lines, and the

PCA also reduced the EEGu 14 columns by 2.401 lines. In

particular, the PCA reduced the number of columns from 84 to

14 in both datasets. In both datasets, the PCA detected 4

components. The variance of the PCA version of EEGf about

the original data are the following: PCA component 1: has a

ratio of 0.98 and a cumulative ratio of 0.98. PCA component

2 has a ratio of 0.008 and a cumulative ratio of 0.99. PCA

component 3 has a ratio of 0.002 and a cumulative ratio of

0.99. PCA component 4 has a ratio of 0.003 and a

cumulative ratio of 0.99. The variance of the PCAs version

of EEGu about the original EEGu are the following: PCA

Component 1 has a ratio of 0.420465 and a cumulative ratio

of 0.420464, the PCA Component 2 has a ratio of 0.128873

and a cumulative ratio of 0.549337, the PCA Component has

a ratio of 0.0805973 and a cumulative ratio of 0.629935, and

the PCA Component 4 has a ratio of 0.0720947 and a

cumulative ratio of 0.702029. Classifier: This step trains the

random forest (RF) classifier using 10-Fold cross-validation,

where each fold consists of a 70% training group and a 30%

test group. We trained the classifier to perform a multiclass

classification. Based on the EEG data, the classifier must

identify whether the programmer comprehends the source

code correctly, incorrectly, or does not answer the question

(unanswered). Metrics: metrics collected from the

classification results are precision, recall, and f-measure

(section 4.4).

4.4. Participants’ profile

Consent formulary: Before performing the comprehension

tasks, the developers signed a consent form, authorizing the

authors of this study to use their psychophysiological EEG

data for research purposes.

Personal characteristics: we recruited a total of 35

participants to carry out the study. The age of the participants

varies between 17 and 46 years.

Education: Some participants have a college degree and

pursue postgraduate courses in Applied Computing (31%,

11/35). Moreover, 29% (10/35) completed higher education.

About 11% of the participants had completed high school

(4/35), 5% (2/35) of participants were pursuing a doctorate in

Applied Computing, 2% of participants finished their master's

degree (1/35), and 2% completed a specialization (1/35). One

participant was in high school (1/35). The bachelor course of

the participants is related to software development. In

particular, they were involved or finished courses such as

computer science (29%, 10/35), information systems (17%,

6/35), systems analysis (14%, 5/35), digital games (14%, 5/35),

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 593

and other courses (26%, 7/35) such as computer engineering,

electronic engineering, bachelor of science in computer

science, information security, and computer technician.

Profession: A total of 34% (12/35) of the participants mainly

work as software developers, and 23% (8/35) are students in

scientific initiation and research assistants. About 14% (5/35)

act as software analysts, 3% (1/35) as computer assistants, 2%

(1/35) are data scientists, 2% (1/35) are project managers, 2%

(1/35) are software engineers. Moreover, the participants also

work as entrepreneurs (2%, 1/35), computer technicians (2%,

1/35), and about 11% (4/35) did not specify their jobs. A total

of 34% (12/35) work at universities. Moreover, participants also

work in different companies such as Banrisul, Correios,

GetNet, Altus, CIGAM, Kenta, Ilegra, and Umbler. About 14%

(5/35) of the participants did not reveal the names of their

workplaces.

Personal skills: A total of 57% (20/35) of the participants

have up to 2 years of experience with software development.

A total of 14% (5/35) of the participants develop software

between 3 to 4 years, 9% (3/35) of participants work with

software development between 5 to 6 years, and 20% (7/35)

have more than seven years of experience developing

software. Regarding Java language, i.e., the language used in

the tasks of this study, 46% (16/35) of the participants reported

that they have basic knowledge, 26% (9/35) know the

language moderately, and 29% (10/35) are proficient.

4.5. Effectiveness metrics

This section presents the effectiveness metrics used in this

study. In this study, we measured precision, recall, Matheus

coefficient correlation (MCC), and f-measure of the

classification results.

True Positive (TP) refers to the number of classifications

reported as correct by the classifier, in which the classifier

should report it as correct. True Negative (TN) refers to the

number of classifications that technique should report as

incorrect, and the classifier correctly classified it as incorrect.

False Positive (FP), e.g., is the number of results that should be

incorrect, but the classifier reported as correct. False Negative

(FN) is simply the opposite of false positive, i.e., classier report

the results as "false" but should address as “true”.

Precision: it refers to the percentage of the correct classified

labels that we expected to be correct. However, not

considering the false positives (FP) values (Eq. 1).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6)

Recall: it refers to the percentage of the correct classified

labels not considering those labels that the classifier

pointed as incorrect, but it should treat as correct, i.e., False

Negatives (Eq. 2).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7)

Matthews correlation coefficient (MCC): MCC is a

correlation coefficient between the ground truth (observed

values) and classified labels (classifier results). This coefficient

varies from -1 and 1, where values close to zero imply the

classifier results are equivalent to a random guessing method.

Values near to -1 mean an uncorrelated classification, and

close to 1 indicates an optimal classification. Thus, this value

can point to whether the precision, recall, and f-measure are

not misleading.

𝑀𝐶𝐶 =
𝑇𝑃.𝑇𝑁 − 𝐹𝑃.𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (8)

F-measure: It refers to a harmonic average between

precision and recall.

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐 . 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
 (9)

4.6. Variables and analysis procedures

Dependent variables. The precision and recall describe the

results obtained by the random forest technique to classify

developers' code comprehension. However, the dependent

variable controlled in hypothesis testing in this work is the f-

measure. We adopted this variable because it already

encompasses recall and precision. Moreover, this metric is a

harmonic mean between these measures; the f-measure

usually penalizes more the results and generates a lower value

than precision and recall.

Independent variables. The independent variables of this

study are the Filtered EEG data (EEGf) and the unfiltered EEG

data (EEGu).

Analysis procedure. To analyze the effect that the

application of EEG filters causes on the developers' code

comprehension classification, we conducted a descriptive

analysis, normality tests of the classifiers' effectiveness (F-

measure), and hypothesis tests. We performed a descriptive

analysis of the data to observe its distribution, followed by the

normality tests Kolmogorov Smirnov and Shapiro Wilk test.

The p-value > 0.05 indicates that the normal distribution in any

of these tests. The statistical tests we conducted to analyze the

effectiveness of the machine learning classifiers (EEGf x EEGu)

were the paired t-test, the Wilcoxon test, and the Mann-

Whitney U test. These tests need a p-value < 0.05 to accept the

alternative hypothesis. We used the paired t-test and the

Wilcoxon signed-rank test because the literature already used

these tests to demonstrate the effectiveness of classifiers

(Demšar, 2006). Moreover, the conjoint use of these tests

covers the normal and not normally distributed data. The t-

test is appropriate for datasets with normal distribution and

the Wilcoxon signed-rank to test data with non-normal

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 594

distribution. Finally, we used the Mann-Whitney U test because it

provides a rank about the effectiveness of the classifiers, making

it possible to obtain a ranked result concerning the effectiveness

of the machine learning technique.

5. Results

Table 3 presents the macro precision, recall, and f-measure of

the Random Forrest classifier trained with the data set with

unfiltered EEG (EEGu) and the filtered EEG data (EEGf).

A “macro” metric means it is an average of the respective

metrics of each classified class. For instance, the precision of

the classifier trained with filtered EEG in fold one is equivalent

to the average between the precision value of correct,

incorrect, and unanswered classes. It is the same rule applied

for the recall and f-measure in the respective folds. The results

in Table 3 are relative to each of the folds of the cross-

validation. The average precision, recall, and f-measure of the

Random Forrest classifier trained with filtered data was higher

than the classifier trained with unfiltered EEG data. Random

forest trained with unfiltered EEG data obtained an average

precision and recall of 61% and 60% in f-measure.

The classifier trained with the filtered EEG data obtained a

precision and recall of 70%, and the f-measure achieved 71%

to classify developers' code comprehension. After applying

the filters, the random Forrest classifier obtained a precision

and recall of 9% higher than the Random Forrest classifier

trained with unfiltered data. The f-measure was 10% higher

than the trained classifier with filtered EEG data.

Matthews correlation coefficient (MCC): Figure 5 shows the

results of the MCC of the classifier trained with unfiltered EEG

data (green) and filtered EEG data (blue). The MCC coefficient

of the random forest trained with filtered EEG data

outperformed the MCC coefficient of the classifier trained

with unfiltered EEG data. The higher coefficient means that the

classifier trained with Filtered EEG has a stronger correlation with

the classification results than the classifier trained with unfiltered

data. Finally, the MCC values are higher than zero, meaning that

both classifiers are not making random classifications.

Descriptive analysis. Table 4 presents the descriptive

statistics about the f-measure of the random forest classifiers

trained with filtered EEG data and unfiltered EEG data.

Through Table 4, it is possible to notice that the effectiveness

of the random forest classifier without the applied filters is

lower than the classifier trained with a filtered EEG dataset to

classify the developer code comprehension. This lower

effectiveness of the classifier trained with unfiltered EEG data

is evident throughout the data distribution. The minimum

value (Min), the first quartile (25), the median, the third quartile

(25), and the maximum value are higher for random forest

classifier trained filtered EEG data. Figure 6 presents the

boxplots representing the distribution of the f-measure data

obtained by the random forest trained with filtered data (blue)

and the unfiltered data (green).

To confirm this, we performed the Kolmogorov Smirnov

and Shapiro Wilk normality tests. The Kolmogorov test

showed normality for both data sets (p > 0.05). However, the

Shapiro Wilk test showed that the filtered data set was not

normally distributed (p < 0.05). For this reason, we performed

the paired t-test and the non-parametric Wilcoxon test.

Paired T-test. A paired t-test was performed on f-measure

samples to determine if there is a difference in the mean

effectiveness between a classifier trained with filtered EEG data

and a classifier trained with unfiltered EEG data. We applied the t-

test to the respective f-measures samples of classifiers. In other

words, we collected a total of 60 data of effectiveness (f-measure).

In particular, 30 from each machine learning classifier and 10 of

each answers' class (Correct, incorrect, and unanswered). The

results showed that the effectiveness of the classifier trained with

unfiltered EEG (EEGu) was lower (0.6 ± 0.059) compared to the

classifier trained with the filtered (EEGf) EEG (0.69 ± 0.06), a

difference from the means of 0.09, that is, 9% (95% CI, 0.066 to Inf),

t (29) = 5.91, p = 0.000001.

Wilcoxon test. We performed a Wilcoxon signed-rank test

because it is non-parametric. Thus, it satisfies the requirement

to test not normally distributed datasets. It is the specific case

of the distribution of the effectiveness of the classifier trained

with filtered data. Moreover, the properties of the Wilcoxon

test provide a safer comparison between classifiers because it

does not require normal distribution and does not assume

homogeneity of variances (Demšar, 2006). The Wilcoxon test

showed that using filtered EEG data (EEGf) elicited greater

effectiveness to classify developers’ code comprehension

compared with a random forest classifier trained with

unfiltered EEG data (EEGu) filters (V = 430, p = 0.00002).

Mann Whitney U test. This test is the nonparametric version

of the t-test and is ideal for independent groups. We

performed this test to avoid the threat of independence in the

division of data between the classifiers' folds. This test

compares the difference between the average ranks of the

classifiers' effectiveness. Thus, this test ranks which classifier

was most effective. Table 5 shows that the rank points of the

random forest classifier with filtered EEG (EEGf) data are higher

than the rank of the random forest classifier trained with

unfiltered EEG (EEGf) data.

Therefore, through these results, we concluded that the f-

measure effectiveness metric of the random forest classifier

trained with filtered EEG data was higher compared to the

classifier trained with unfiltered EEG data to classify the

developers' code comprehension. Thus, the alternative

hypothesis of this study is accepted.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 595

 Table 3. Effectiveness results of RF classifiers.

RF - Filtered EEG RF - Unfiltered EEG

P R F P R F

Fold 1 0,77 0,76 0,76 0,61 0,62 0,62

Fold 2 0,69 0,69 0,69 0,65 0,64 0,64

Fold 3 0,73 0,73 0,73 0,64 0,63 0,62

Fold 4 0,73 0,72 0,72 0,56 0,56 0,56

Fold 5 0,68 0,67 0,67 0,62 0,58 0,59

Fold 6 0,60 0,60 0,60 0,58 0,59 0,58

Fold 7 0,74 0,73 0,72 0,62 0,62 0,61

Fold 8 0,70 0,70 0,69 0,60 0,60 0,60

Fold 9 0,70 0,70 0,70 0,61 0,61 0,60

Fold 10 0,68 0,68 0,67 0,60 0,63 0,60

AVG 0,70 0,70 0,70 0,61 0,61 0,60

Legend:

P: Precision, R: Recall, F: F-measure, AVG: Average

Table 4. Descriptive statistics.

Min 25 Med. 75 Max AVG SD Var.

P-Value

(Filtered > Unfiltered)

T-Test Wilcoxon

RF EEG

unfiltered
0,48 0,56 0,61 0,64 0,74 0,6 0,059 0,003

0,000001 0,000025

RF EEG

filtered
0,55 0,66 0,7 0,75 0,78 0,69 0,06 0,004

Legend: Min: Minimum, Med: Median, Max: Maximum, SD: Standard Deviation, Var: Variance.

Figure 5. MCC coefficients results of classifiers.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 596

6. Discussion

This section presents a discussion regarding the results

presented in section 5. In Section 6.1, there is a discussion

about the implications of filtering EEG signals in code

comprehension. Section 6.2 discusses the threats to the

validity of the results.

6.1. Implications

Code comprehension is a relevant cognitive process in

software engineering (Crk & Kluthe, 2016). Studies estimate

developers dedicate 70% of their time to comprehend the

source code. They apply this time before making any changes

to the source code. Classifying developers' code

comprehension could help to reduce the amount of time they

usually dedicate to comprehend programs. In this way, the

code comprehension classifier would be a means for a

recommendation system, which would allocate shorter

tasks for the developer when he has a long time without

comprehending a software task. This situation could also

be indicative of refactoring and reducing the complexity of

the source code.

According to the results, when using the random forest

technique to classify the developer code comprehension, the

Figure 6. Distribution of the effectiveness of classifiers

with filtered and unfiltered data.

Table 5. Mann Whitney U test and the respective ranks for each classifier.

Classifier

 Mean

Rank

Sum

Ranks U P-Value

RF filtered 41,03 1231
134 0,000002991

RF unfiltered 19,97 599

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 597

results showed the use of filters is related to the better

effectiveness of the random forest classifier. So, this study

points out that the filtering process used in this study (section

2.2) can effectively improve the classification of developers'

code comprehension using a Random Forrest technique. The

main advantage is the greater precision and recall achieved by

the classifier. The disadvantage is that applying the filters

consumes computational resources and would take time to

process the EEG signals. These characteristics are not

performance-friendly. To avoid the delay that filtering EEG causes

in data processing, developers should disregard the application

of filters in EEG signals. However, if future researchers apply a

random forest technique to the real-time scenario, the classifier

will show lower effectiveness when working with unfiltered EEG

data. For this, future research should test another classifier that

could deal better with the unfiltered EEG.

We also expect that this study will be used as a model to

evaluate the effectiveness of using EEG signal filters. Another

expectation is that research on software engineering and

computing evaluates the impact of EEG filters in studies of

machine learning in applied areas. For instance, this study

focused on the developers' code comprehension. Future

studies could investigate the impact of filters in the

classification of perceived difficulty or developers' cognitive

load. The investigation about filters in EEG signals in software

engineering research would bring to the reader, and

researchers, empirical reinforcement for the adoption or not

of the EEG filters. For example, in a scenario where the

difference in adopting EEG filters for trained the random forest

was not relevant, it could justify not spending computational

resources to process filters in the EEG signals.

6.2. Limitations

This work contains some limitations, which we mitigated and

addressed to avoid threats to the results obtained.

To ensure that we made the correct collection of the EEG

data, we followed instructions from the EEG device

manufacturer to ensure that the sensors were in the right place

on the users' scalp. To perform the EEG filtering, we followed

the process defined in section 2.2. For this, we used functions

from Python's MNE library. Moreover, the EEG data has markers

that relate the events to the respective parts of EEG signals.

We timed the duration of comprehension tasks in 60

seconds. We timed the comprehension task to reflect the size

of the source code and provide the necessary time for

participants to finish it. There is a threat that this time maybe

is not enough for all users and may affect their performance.

To ensure we correctly conducted the statistical analysis, we

used statistical tests adopted and reported on the machine

learning literature. Next, we performed the normality tests

Kolmogorov Smirnov and Shapiro Wilk to verify the normality

distribution of the data when p > 0.05. Thus, we adopted

parametric and non-parametric tests to analyze the

effectiveness of the classifier. Both tests pointed out the higher

effectiveness in the classifier trained with filtered data

compared to the random forest classifier trained with filtered

EEG data. We also evaluated the machine learning techniques

with 10-fold cross-validation. This method avoids the threat of

existing a supposed lucky split division between training and

test set. The EEG signals may contain EOG artifacts because we

did not have an appropriate channel that captured heart

signals. The EOG artifacts can threaten the validity of the

results. The end of the filtered EEG signal may contain spurious

frequencies. The presence of spurious frequencies may

jeopardize the performance of the classifiers.

Finally, the results of this study are limited to the laboratory

environment since it does not perform real-time classification.

Two facts can threaten the generality of the results: there is also

a limited variety of developers' profiles and the limited number

of tasks that developers performed in this study.

7. Conclusions

Research in software engineering has generally adopted

applied filters in EEG signals, claiming that the removal of

noise from the EEG signal improves the precision of the

analysis. This because the EEG filters would be responsible for

removing noises that are not of interest to such a study.

However, studies have adopted such filters based on claims in

the research of other areas. Thus, there was an evident lack of

what was a real improvement is compared to the use of

unfiltered EEG signals for software engineering purposes.

Therefore, this work investigated whether EEG filters improve

the effectiveness in the classification of code comprehension.

For this, we collected EEG data from 35 developers solving

code comprehension tasks. We used this data to train a

random forest classifier. We used the 10-fold cross-validation

to train and evaluate the classifier. Moreover, we also reported

the classifiers' precision, recall, and f-measure. We conducted

statistical analyzes to test the difference in effectiveness

between the random forest classifier trained with filtered EEG

data and the random forest classifier trained with unfiltered

EEG data to classify developers' code comprehension. The

paired t-test and the Wilcoxon test presented the average

effectiveness (f-measure) increased in a random forest

classifier after using filters in EEG signals to classify developers'

code comprehension.

As future work, we intend to extend the evaluation to other

machine learning classifiers, such as Neural Networks and

Naïve Bayes. We also aim to increase the number of

participants, the number of tasks, and testing the classifier in

a realistic scenario.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 598

Appendix A

Figure 7. EEG Raw signals captured in 14 channels.

Figure 8. Filtered EEG signals in 14 channels.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 599

Figure 9. Spectrogram of the raw EEG signals obtained

 in AF3, F7, F3, FC5, P7, O1, O2, P8, and T8 channels.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 600

Figure 9. Spectrogram of the raw EEG signals obtained in FC6, AF4, F8, and AF4.

Figure 10. Spectrogram of the filtered EEG signals obtained in AF3, F7, F3, FC5, and T7 channels.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 601

Figure 11. Spectrogram of the filtered EEG Signals obtained

in P7, O1, O2, FC5, P7, O1, O2, P8, T8, FC6, F4, F8. And AF4 channels.

L. J. Gonçales et al. / Journal of Applied Research and Technology 584-602

Vol. 19, No. 6, December 2021 602

Acknowledgments

This study was financially supported by the Coordination for

Personal Improvement (Capes) - Financial Code 001, and by

the National Council for Scientific and Technological

Development (CNPq), process 313285/2018-7.

References

Cohen, M. X. (2017). Where does EEG come from and what does

it mean?. Trends in neurosciences, 40(4), 208–218.

https://doi.org/10.1016/j.tins.2017.02.004

Correa, A. G., Laciar, E., Patiño, H. D., & Valentinuzzi, M. E. (2007).

Artifact removal from EEG signals using adaptive filters in cascade.

In Journal of Physics: Conference Series, 90(1), 26-28. IOP Publishing.

https://doi.org/10.1088/1742-6596/90/1/012081

Crk, I., & Kluthe, T. (2016). Assessing the contribution of the

individual alpha frequency (IAF) in an EEG-based study of

program comprehension. In 2016 38th Annual International

Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC) (pp. 4601-4604). IEEE.

https://doi.org/10.1109/EMBC.2016.7591752

de Cheveigné, A., & Nelken, I. (2019). Filters: when, why, and

how (not) to use them. Neuron, 102(2), 280-293.

https://doi.org/10.1016/j.neuron.2019.02.039

Demšar, J. (2006). Statistical comparisons of classifiers over

multiple data sets. Journal of Machine learning research, 7, 1-30.

Emotiv Systems, Emotiv EPOC. (2021). http://www.emotiv.com

Fucci, D., Girardi, D., Novielli, N., Quaranta, L., & Lanubile, F.

(2019, May). A replication study on code comprehension and

expertise using lightweight biometric sensors. In 2019 IEEE/ACM

27th International Conference on Program Comprehension

(ICPC) (pp. 311-322). IEEE.

https://doi.org/10.1109/ICPC.2019.00050

Goncales, L., Farias, K., Küpssinsku, L, and Segalotto, M (2021).

Article Jart – Supplementary.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier,

D., Brodbeck, C., ... & Hämäläinen, M. (2013). MEG and EEG data

analysis with MNE-Python. Frontiers in neuroscience, 7, 267.

https://doi.org/10.3389/fnins.2013.00267

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for

independent component analysis. IEEE transactions on Neural

Networks, 10(3), 626-634.

https://doi.org/10.1109/72.761722

Jadav, G. M., Lerga, J., & Štajduhar, I. (2020). Adaptive filtering

and analysis of EEG signals in the time-frequency domain

based on the local entropy. EURASIP Journal on Advances in

Signal Processing, 2020(1), 1-18.

https://doi.org/10.1186/s13634-020-00667-6

Jiang, X., Bian, G. B., & Tian, Z. (2019). Removal of artifacts from

EEG signals: a review. Sensors, 19(5), 987.

https://doi.org/10.3390/s19050987

Kawala-Sterniuk, A., Podpora, M., Pelc, M., Blaszczyszyn, M.,

Gorzelanczyk, E. J., Martinek, R., & Ozana, S. (2020). Comparison

of smoothing filters in analysis of EEG data for the medical

diagnostics purposes. Sensors, 20(3), 807.

https://doi.org/10.3390/s20030807

Lee, S., Hooshyar, D., Ji, H., Nam, K., & Lim, H. (2018). Mining

biometric data to predict programmer expertise and task

difficulty. Cluster Computing, 21(1), 1097-1107.

https://doi.org/10.1007/s10586-017-0746-2

Lee, S., Matteson, A., Hooshyar, D., Kim, S., Jung, J., Nam, G., &

Lim, H. (2016, October). Comparing programming language

comprehension between novice and expert programmers

using eeg analysis. In 2016 IEEE 16th international conference on

bioinformatics and bioengineering (BIBE) (pp. 350-355). IEEE.

https://doi.org/10.1109/BIBE.2016.30

Prerau, M. J., Brown, R. E., Bianchi, M. T., Ellenbogen, J. M., &

Purdon, P. L. (2017). Sleep neurophysiological dynamics through

the lens of multitaper spectral analysis. Physiology, 32(1), 60-92.

https://doi.org/10.1152/physiol.00062.2015

Radevski, S., Hata, H., & Matsumoto, K. (2015). Real-time

monitoring of neural state in assessing and improving software

developers' productivity. In 2015 IEEE/ACM 8th International

Workshop on Cooperative and Human Aspects of Software

Engineering (pp. 93-96). IEEE.

https://doi.org/10.1109/CHASE.2015.28

Tereshchenko, L. G., & Josephson, M. E. (2015). Frequency

content and characteristics of ventricular conduction. Journal

of electrocardiology, 48(6), 933-937.

https://doi.org/10.1016/j.jelectrocard.2015.08.034

https://doi.org/10.1016/j.tins.2017.02.004
https://doi.org/10.1088/1742-6596/90/1/012081
https://doi.org/10.1109/EMBC.2016.7591752
https://doi.org/10.1016/j.neuron.2019.02.039
http://jmlr.org/papers/v7/demsar06a.html
http://jmlr.org/papers/v7/demsar06a.html
http://www.emotiv.com/
https://doi.org/10.1109/ICPC.2019.00050
https://luciangoncales.github.io/studies/jartsupplementary2020/
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1109/72.761722
https://doi.org/10.1186/s13634-020-00667-6
https://doi.org/10.3390/s19050987
https://doi.org/10.3390/s20030807
https://doi.org/10.1007/s10586-017-0746-2
https://doi.org/10.1109/BIBE.2016.30
https://doi.org/10.1152/physiol.00062.2015
https://doi.org/10.1109/CHASE.2015.28
https://doi.org/10.1016/j.jelectrocard.2015.08.034

