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Abstract: Machine tool chatter causes machining instability, surface roughness, and tool wear in metal 

cutting processes. According to the different chatter mechanisms, chatter can be categorized into 

regenerative chatter, mode coupling chatter, frictional chatter, and force-thermal chatter. Both mode 

coupling chatter and regenerative chatter may occur during the machining process, depending on the 

specific machinery and machining condition. The regenerative chatter happens locally at workpieces 

or cutting tools. The mode coupling chatter happens globally, including the entire configuration. This 

article extends chatter stability analysis to a decoupled parallel kinematic machine (PKM). The 

vibration model of the PKM focuses on the regenerative chatter while the decoupled design of the 

machine is proposed to eliminate any occurrence of mode coupling chatter. Thus, the features that 

make it suitable for machining tasks are highlighted. A stability lobe diagram based on the theory of 

regenerative vibration is an effective tool to predict chatter. The vibration model of the PKM is derived 

in which the dynamic behaviour of the spindle/holder/tool system is considered. Then, the 

regenerative cutting dynamics is combined with the vibration model and stability analysis is 

performed. A step-by-step procedure provides a stability lobe diagram. The chatter stability charts for 

various machining parameters are examined, with the example of the decoupled PKM that is specially 

designed for machine tool use. 
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1. Introduction 
 

In the context of machining operations, the main problems 

affecting the quality of the machined workpiece are 

fundamentally (i) the static bending error of the workpiece, (ii) 

the machine-tool setup, and (iii) the dynamic problem known 

as “regenerative vibration” or “chatter”.  

The first problem (i), namely the static bending error of the 

workpiece or cutting tool, results in undesirable final 

geometries; often, there is an excess of material. This problem 

can be solved by choosing optimized cutting strategies, by 

increasing the stiffness of the workpiece as much as possible, 

or, more analytically, by calculating the bending error to 

compensate the tool path. 

Then, the error associated with the amplitude of the forced 

vibration (ii) appears in the same manner as the static error. If 

all rotating elements of the machine tool operate in dynamic 

balance, the only source of forced vibration is the tapping of 

the blades against the workpiece surface.  

It can be noticed by observing the wear of the cutting edges 

or by the misalignment of the cutting tool (run-out). 

Finally, the chatter phenomenon (iii) is a dynamic problem 

that results in the occurrence of undesirable vibrations. Such 

chatter tends to have very high amplitude, which can lead to 

either damage to the machine tool or to premature tool 

failure. It results in poor surface finishing in machining 

operations, tool breakage, and wear on the spindle 

components. Chatter directly affects the integrity of the 

machine performance and the workpiece quality. 

Chatter theory was developed by Tobias and Fishwick 

(1958) in the late 1950s, followed by Tlusty and Polacek 

(1963), although Stone (2014) mentions the oldest 

reference about this topic is (Arnold, 1946). Tobias and 

Trusty explains the chatter phenomena as a regenerative 

phenomenon which is widely accepted because of self-

excited vibrations in machine tools. 

For half a century, many researchers have contributed to 

the theory of regenerative chatter development, including 

(Altintas & Budak, 1995; Defant & Albertelli, 2020; Guo et al., 

2020; Merritt, 1965; Smith & Tlusty, 1990; Tlusty, 1985, 1986), 

among others (Azka et al., 2020a; Munoa et al., 2016; Paliwal & 

Babu, 2020; Urbikain et al., 2019). 

Chatter research focuses on three areas, i.e. offline chatter 

prediction, online chatter detection and chatter suppression. 

Among them, chatter is avoided by offline chatter prediction 

and online chatter detection is the premise of chatter 

suppression. There are many literatures addressing the 

chatter issues during the machining process including the 

chatter mechanism (Altintas & Weck, 2004; Quintana & 

Ciurana; 2011; Wan et al., 2021) and mitigation strategies 

(Altintas et al. 2020). Studies discussed the machining stability 

influenced by the directional cutting force coefficients and 

directional stiffness of cutting systems in both serial 

machine tools (Azka et al., 2020a), and parallel kinematic 

machines (Azka et al., 2020b). 

Zhu and Liu (2020) categorized different chatter 

mechanisms: regenerative chatter, mode coupling chatter, 

frictional chatter, and force-thermal chatter. Traditionally, the 

regenerative chatter is viewed as the main cause of the 

instability of the machine tool and CNC. Nevertheless, the 

mode coupling chatter frequently occurs in the robotic milling 

(Gienke et al., 2019; Yuan et al., 2018), such as serial robots or 

parallel kinematic machines (PKM). However, evidence shows 

robotic milling term refers to serial robots (Chen & Dong, 2013; 

Ji & Wang, 2019; Kim et al., 2019; Mejri et al., 2016; Mousavi et 

al., 2017; Nguyen et al., 2020; Pan et al., 2006; Zhu et al., 2021), 

rather than parallel configurations (Najafi et al. 2016; 

Pedrammehr et al., 2012; Shi et al., 2020; Tunc & Shaw, 2016). 

Serial robots are susceptible to mode coupling chatter due to 

the low structure stiffness of the robot. Thus, the entire robot 

structure can vibrate before regenerative chatter occurs. 

Although the regenerative chatter and mode coupling 

chatter are co-existed, there are differences between 

them. The regenerative chatter happens locally at 

workpieces or cutting tools and it originates from the 

phase difference between the waves left on the upper and 

lower sides of the chip. 

The mode coupling chatter happens globally, including the 

entire mechanical configuration and it occurs when the 

cutting plane vibrates in two directions. From the view of the 

frequency range, the frequency of the mode coupling chatter 

is lower (around 10 to 30 Hz, (Yuan et al., 2018). On the other 

hand, the frequency of the regenerative chatter is higher (from 

hundred to thousand Hz). Moreover, regenerative chatter 

occurs prior to mode coupling chatter.  

Recently, regenerative chatter mechanism was shown to 

describe the stability of cutting tests much more effectively 

than mode coupling chatter in milling (Celikag et al., 2021). In 

addition, both chatters may occur depending on the 

distribution of the stiffness of an industrial configuration. 

Stiffness is a very important factor in machine tool design 

(Dong et al., 2021; Zhang, 2009), as it affects the precision of 

machining. Induced vibration is explicitly linked to machine 

tool stiffness. For a metal-cutting machine tool, high stiffness 

allows higher machining speeds and feeds while providing the 

desired precision, thus reduces vibration, such as chatter. 

Therefore, to build and study a general stiffness model of 

parallel kinematic machines is very important for machine 

tool design. Moreover, a parallel kinematic machine promises 

to increase stiffness, higher speed, and acceleration due to 

reduced moving mass. 

Where static stiffness is concerned, the aim is to remove 

mass maintaining a threshold value of stiffness, and for 

dynamic stiffness, the aim is to improve material removal rate 
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and productivity. Moreover, it is the primary reason to define 

the dimensions and shapes of the machine tool structural 

components. For an accurate definition of the threshold 

values for dynamic stiffness, the best utility available is the 

stability lobes diagram (SLD) (Pan et al., 2006; Yue et al., 2019; 

Zhu & Liu, 2020). The SLD is a plot that separates stable and 

unstable machining operations for different spindle speeds. 

Stable cuts occur in the region below the stability boundary, 

while unstable cuts occur above the stability boundary. Also, 

to improve material removal rate and productivity, SLD is 

applied during the machining process to optimize the 

maximum depth of cut at the highest spindle speed. 

This method can calculate analytically the approximate 

optimum depths of cut and determine the corresponding 

spindle speeds by obtaining four sets of input parameters, the 

cutting force coefficient, system dynamic behavior, process 

parameters, and tool geometry (Yue et al. 2019). Among them, 

cutting force coefficients and dynamic behaviour are two 

important inputs of SLD (Zhu & Liu, 2020).  

In this paper, a method is presented to create the stability 

lobe diagram, based on (Yue, 2006), using common 

computational tools, applied to a 3 degree of freedom parallel 

kinematic machine. Therefore, the features that make the PKM 

ideal for machining tasks will be highlighted. Thus, the 

description on the progress of this work will be focused on 

three stages: (i) the resistance analysis of the structure 

withstanding static forces, (ii) the analysis of the natural 

frequencies and modes, and (iii) chatter prediction from the 

aspects of cutting force coefficient and the dynamic behaviour 

of the spindle/holder/tool system. 
 

2. Theoretical development 
 

2.1. Mobility 

Fundamentally, material removal processes consist of three 

basic steps: i) positioning the placement head in the Cartesian 

x–y plane with sufficient precision, ii) translating/orientating 

about the z-axis, and iii) removing the chip using a wedge-

shaped workpiece tool to obtain a finished product of the 

desired size, shape, and surface quality; meanwhile, the tool 

should be able to withstand the forces from the material-

removal process. One of the main steps in the design and 

construction of a material-removal machine tool is the 

definition of its main motion. For a face-milling operation, 

mainly three-axis mechanisms are used. The three-axis 

movement is solved using a Cartesian configuration. In certain 

cases, all movements were assigned to the tool, whereas in 

other cases, movements were divided between the tool and 

the workpiece; less frequently, all movements are assigned to 

the workpiece. 

 

 

2.2. Kinematic decoupling 

A coupled mechanical configuration exhibits dependence on 

the mobility (i.e., most of parallel mechanisms (PMs)), this 

implies movement in two directions when only one actuator is 

activated. This type of motion requires advanced control 

techniques to be transformed into linear movements. Strong 

coupling refers to strong dependence of most operating 

parameters on the position and orientation. In a machining 

process, relative motion is required between the tool and the 

workpiece to perform a machining operation. In a basic metal 

cutting process, either the motion of the tool or the motion of 

the workpiece should follow a uniform path to guarantee a 

good surface finish, as well as to facilitate the analysis, the 

design, and the motion control. This uniform path depends on 

the ability of the configuration to perform a decoupled 

motion. Axis decoupling itself does not ensure a better surface 

finishing because the final surface finishing relies on several 

factors, including backlash and axis vibration; however, axis 

decoupling contributes to achieving it (Hong et al., 2003). 

 

2.3 Isotropy 

While in manipulation and assembly systems applications the 

domain over surface forces is more relevant, in machining 

applications the attention is focused on the direction of the 

cutting force. The machining processes require the same 

machining parameters along the entire tool path, and, 

simultaneously, the use of the entire available workspace. The 

force and the velocity direction of the tool, as well as the cutting 

conditions along the entire tool path, must be constant 

(Rehsteiner, 1999). This means that PMs must provide an 

isotropic force within a usable Cartesian workspace. 

Using the concept of manipulability, it can be interpreted as 

the capability of a mechanism to move and apply forces in 

arbitrary directions (Staffetti, 2002). Manipulability can be 

represented geometrically as an ellipsoid for each position of 

the mechanism. The Jacobian matrix is assumed to map a unit 

sphere in the joint space onto the corresponding ellipsoid in 

the task space. When the ellipsoid becomes a sphere, the end-

effector can move uniformly in all directions; such 

configuration is known as the isotropic configuration.  

Zanganeh and Angeles (1997) defined the manipulability 

measures via the reciprocal of the condition number of the 

Jacobian matrix, J, which relates the gripper velocity, �̇�, to that 

of actuators, q  , as well as the actuators forces or torques, Fq, 

to forces and torques, Fw, applied to the end-effector, which is 

given by 

 
𝑤𝐼(𝐽) =

𝜎𝑘

𝜎1
0 ≤ 𝑤𝐼 ≤ 1                                                                                        (1) 
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Geometrically, manipulability is the ratio of the length of the 

minor axis to the length of the major axis of the manipulability 

ellipsoid. In terms of achievable force, the isotropy properties 

of a parallel mechanism can be studied using the Jacobian 

matrix, J. The definition of the force ellipsoid is 

 

𝑭𝑤
𝑇 𝐽𝐽𝑇𝑭𝑤 = 1                                                                                                           (2) 

 

where J=Jp
-1Js, with 

 

𝐽𝑠 =

[
 
 
 
 
 
𝜕𝑓11

𝜕𝑞11
0 . . . 0

0
𝜕𝑓12

𝜕𝑞12
. . . 0

⋮ ⋮ ⋮ ⋮

0 0 . . .
𝜕𝑓𝑘𝑔𝑘

𝜕𝑞𝑘𝑔𝑘]
 
 
 
 
 

                                                                              (3) 

 

as the serial Jacobian matrix, and 

 

𝐽𝑝 = −

[
 
 
 
 
 

𝜕𝑓11

𝜕𝑤1

𝜕𝑓11

𝜕𝑤2
. . .

𝜕𝑓11

𝜕𝑤6

𝜕𝑓12

𝜕𝑤1

𝜕𝑓12

𝜕𝑤2
. . .

𝜕𝑓12

𝜕𝑤6

⋮ ⋮ ⋮ ⋮
𝜕𝑓𝑘𝑔𝑘

𝜕𝑤1

𝜕𝑓𝑘𝑔𝑘

𝜕𝑤2
. . .

𝜕𝑓𝑘𝑔𝑘

𝜕𝑤6 ]
 
 
 
 
 

                                                                 

(4) 

 

as the parallel Jacobian matrix. 

 

2.4. Introducing the 3 DoF PKM 

The. three-prismatic-revolute-revolute-revolute (3-PRRR) 

configuration is a parallel mechanism with three legs, each 

being a 4 DoF serial mechanism (Gosselin et al., 2004) (Figure 1). 

Each leg constrains two rotations. Therefore, the 3-PRRR 

configuration is an over-constrained mechanism. The terminal 

revolute joints of the three legs are connected to the mobile 

platform. The most influential design parameters of the 3-PRRR 

are angles α1, α2, and α3 (Gosselin & Kong, 2004). These angles 

determine the output resolution as well as the overall shape of 

the mechanism. The three resolutions are equal when α1 = α2 = 

α3 as well as the elements of the diagonal Jacobian matrix; the 

resulting mechanism is assumed to be isotropic (Zanganeh & 

Angeles, 1997). Moreover, the mechanism behaves exactly as a 

serial Cartesian mechanism when α1 = α2 = α3 = 0 (X-Y-Z stage) 

(Gosselin et al., 2004). 
 

2.5. Assembly modes 

The forward kinematic of the 3-PRRR PM yields an eight-degree 

polynomial in Px (Kim & Tsai, 2003). Therefore, it is possible to 

build eight different assembly modes from the same mechanism.  

 

 

The Z actuator can be located anywhere perpendicular to the 

X-Y plane. The limbs that joint the moving platform and the XYZ 

actuators could have the “elbow” facing either up or down. 

The 3-PRRR PM has a complete decoupling architecture, 

and it provides linear motion for each axis. Figure 2 shows a 

sketch of the machine. 

Regarding the kinematic analysis, a simple kinematic 

relation can be written as 

 

[

𝑃𝑥

𝑃𝑦

𝑃𝑧

] = [

𝑑01 + 𝛥𝑑1

𝑑02 + 𝛥𝑑2

𝑑03 + 𝛥𝑑3

]                                                                                                  (5) 

 

where Px, Py and Pz define the position of the coordinate 

frame, XYZ. The starting point of a prismatic joint is defined 

by d0i and the sliding distance is defined by Δdi. The motion 

in each axis follows a linear trajectory, which implies that 

there is movement in one direction only when one actuator 

is activated. 

Because the concept of the 3-PRRR PM is thoroughly 

symmetric, the length of all limbs is the same. The 3-PRRR PM 

presents an uncoupled kinematics and orthogonal 

configuration. Equation (5) shows that the Jacobian matrix of 

the 3-PRRR parallel configuration is the identity matrix.  

By substituting the identity matrix into Equation (2), we get 

 

𝑓𝑥
2 + 𝑓𝑦

2 + 𝑓𝑧
2 = 1                                                                                                   (6) 

 
Equation (6) represents the equation of a sphere, as 

shown in Figure 3. Because the 3PRRR parallel architecture 

presents an uncoupled kinematics and orthogonal 

configuration, each of the linear actuators controls one of 

the translations. According to the isotropic index, the ratio 

of the length of the major semi axis and that of the minor 

semi axis is the same, i.e., wI(J) = 1. 

 

2.6. Transmission factor 

Because the Jacobian matrix is configuration-dependent, the 

force manipulability ellipsoid is configuration dependent as 

well. It may be observed from Equation (4) that the Jacobian 

matrix of the PKM is the identity matrix. Therefore, the 

mechanism is entirely decoupled. In addition, it can be 

guaranteed that there will never be any singularity inside the 

workspace. The force manipulability ellipsoid is equal to a 

sphere within the entire workspace and the transmission factor 

is equal to one in each assembly mode (Figure 4). 

All the aforementioned features are suitable in a machine 

structure to develop cutting operations. 
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Figure 1. Schematic of the 3PRRR translational PM. 

 

 

 

 
 

Figure 2. Sketch of the PKM. 
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Figure 3. Force ellipsoid of the 3-PRRR PM. 

 

 

 
 

Figure 4. Transmission factor of the PKM. 
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3. Stability model 
 

For the evaluation of stability in working conditions it is 

necessary to have a model of the process where the cutting 

parameters, the workpiece material properties and the tool 

geometry are involved. The model follows the following steps: 

a) relation between the chip thickness and the vibration of the 

system is formulated, b) cutting forces model is proposed, c) 

the system dynamics is introduced, and finally d) the 

eigenvalue problem that defines the stability of the process is 

solved. 

 

3.1 Equation of motion 

For this stability model, the equations of motion will have the 

following form (Hong et al., 2003) 

 

𝐌𝛥�̈�(𝑡) + 𝐂𝛥�̇�(𝑡) + 𝐊𝛥𝑥(𝑡) = 𝛥𝐅(𝑡)                                                    (7) 

 

where Δ before the displacement and force vectors (namely, 

x(t) and F(t)) denotes small derivations from the equilibrium state, 

where the cutting force is balanced with the external driving force. 

Matrices M, C, and K represent the inertia, the damping, and the 

stiffness, respectively. The link mass is small compared with to the 

platform mass. The moving platform is assumed to be a rigid 

body and both mass and inertia are included in formulating the 

equation of motion. The links of the mechanism are modeled 

with springs and dampers of 1-DOF. This simplified model is 

reasonable, as is explained in (Hong et al., 2003), because only the 

axial force is exerted on the links of the PM.  

Moreover, regarding chatter analysis, the overall analysis of the 

PM is not important because the mechanism moves with relatively 

slow speed within a workspace. Additionally, the first modal 

frequencies of the machine tool structure, workspace, and cutter 

are typically dominant in terms of causing chatter vibration. The 

modeling is limited to the end-milling and face-milling operation, 

where x and y with respect to the tool frame are the most decisive 

directions because they determine the machining accuracy and 

are based on regenerative chatter theory. 

The model for the cutting force assumes the force, Fc, is 

proportional to the undeformed chip cross-sectional area (Lai, 

2000; Stone, 2014), which in turn corresponds to the products 

between the depth of cut, p, and the chip thickness, d, 

 

𝐹𝑐 = 𝑘𝑠𝑝𝑑                                                                                                                    (8) 

 

where ks is conventionally called the cutting force 

coefficient. It is assumed that this force does not depend on 

the cutting speed and so only vibration in the chip thickness 

direction is important. For constant amplitude sinusoidal  

 

motion and because of the regenerative effect of cutting, ΔF(t) 

depends on the difference of the present and the delayed tool 

position. 

 

𝐹𝑐 = 𝑘𝑠𝑝𝑑 = −𝑘𝑠𝑝[𝑥(𝑡) − 𝑥(𝑡 − 𝜏)]                                                          (9) 

 

Here, τ denotes the time taken for one revolution of the 

work. Depending on the rotational speed and the frequency of 

vibration there will be a phase angle between the tool vibration 

x(t) and the surface wave x(t-τ). By substituting Eq. (9) in the 

general Eq. (7), we obtain the equation for the depth of cut 

(Stone, 2014; Tlusty, 1985). 

 

𝑝 = −
1

2𝑘𝑠𝐺𝑅
                                                                                                          (10) 

 

where GR is the real part of the frequency response function 

(FRF), G, as the standard solution of Eq. (11) (Yue, 2006), which is 

 
𝑥

𝐹𝑐
=

1−𝑟2

𝑘[(1−𝑟2)2+(2𝜁𝑟)2]
+ 𝑖

−2𝜁𝑟

𝑘[(1−𝑟2)2+(2𝜁𝑟)2]
= 𝐺𝑅 + 𝑖𝐺𝐼 = 𝐺  

                                                                                                                    (11) 

 

where k is the stiffness (k = F/x), r is the ratio of the chatter 

frequency to the natural frequency (r = f/fn), and ζ is the ratio of 

the damping coefficient, ζ = c/cc with cc = 2(km)1/2. By solving 

Eq. (5) and (7), the depth of cut, p, depends on the frequency of 

the regenerative vibration, f, or the natural frequency, fn, 

through ratio r. Thus, there is a critical depth of cut for each 

regenerative frequency in a machining process. Then, the 

metal-cutting process is assumed to be stable when its depth 

of cut is less than the critical value, and unstable when its depth 

of cut is greater than the critical value. 

 

3.2. Cutting force 

The engagement of the cutting edge with the rotating tool at a 

given depth of cut and feed rate generates a cutting force. This force 

undercuts a layer of material and separates it from a workspace in 

the form of chips. Such cutting force combines tangential (Ft), feed 

(Ff), and radial (Fr) forces in an orthogonal manner. 

The specifications and the cutting forces that are present in 

a machining milling process are listed in Table 1. They were 

generated based on the mechanical properties of the work 

materials, the cutting condition, and the variables of the 

metal-cutting process state. All cutting conditions are 

proposed on the basis of practical knowledge and 

mathematic formulas taken from (Isakov, 2004), in which a 

method based on the definition of power, the cutting force 

and the cutting speed has been developed to increase 

accuracy when calculating machining power. 
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3.3. Stability 

A limit in the machining process is the minimum depth of cut, 

pmin. It is independent of the frequency of regenerative 

vibration; therefore, the materials and geometries of the cutter 

and the workpiece determine a fixed value determined for the 

minimum depth of cut. A metal cutting process is stable when 

the depth of cut is below the critical value. A dimensionless 

depth of cut may be represented by the ratio of depth of cut to 

the minimum depth of cut. 

From eq. (10) and (11) the minimum depth of cut occurs at 

the maximum negative value of GR when r = (1+2 ζ)1/2 (Yue, 2006). 

This is 
 

min

,min

1 2 (1 )

2 s R s

k
p

k G k

 − +
= =                                                                           (12) 

 

thus, 

 
2 2

2

min

(1 ) (2 )

4 (1 )(1 )

p r r

p r



 

− +
=
− + −

                                                               (13) 

 

The regenerative vibration equation is calculated assuming 

that there is always roughness or waviness on the machined 

surface of the workpieces owing to vibrations. The equation of 

the regenerative chatter is (Yue, 2006). 

 
𝑓

𝑓𝑡
=

𝑟

𝑟𝑡
= 𝑛 +

1

2
+

1

𝜋
𝑡𝑎𝑛−1 −2𝜁𝑟

1−𝑟2                                                                    (14) 

 

Equation (14) represents the relationship between the 

regenerative frequency, f, the cutoff frequency, ft and the 

lobe number, n. For each frequency generated, there is a  

 

 

corresponding critical depth of cut. Thus, the metal cutting 

process is unconditionally stable when the value of the depth 

of cut is below this critical value; otherwise, it is conditionally 

unstable. It may be graphically represented as the relationship 

between the depth of cut and the spindle speed by means of 

scallop-shaped chatter lines; the graph is referred to as a 

stability lobe diagram. The step-by-step procedure, based on 

(Yue, 2006), for generating the lobes is summarized in Table 2. 

Finally, Table 3 sums up a schematic description of the 

model for directly obtaining the SLD. 

 

4. Case study 

 

In the previous sections, we described the procedures to 

derive the frequency response function and the minimum 

depth of cut as stability limit for a PKM, with respect to the axial 

depth of cut and the spindle speed, utilizing the regenerative 

relations between the dynamic chip thickness and the cutting 

forces. In this section, the developed theories are applied to 

the case of a decoupled PKM. 

 

4.1. The prototype description 

For this prototype, the leg configurations were chosen in a 

manner that they would not interfere with the space that is 

around the end-effector. In turn, the mobile platform was 

designed to avoid leg interference and minimize the necessary 

lengths of the links. Regarding the links, they were chosen to be 

as long as necessary to allow the machine to have its maximum 

cube workspace of 250 × 250 × 250 mm. Furthermore, the 3-

DOF PKM was designed in such a manner as to avoid any link 

interference.  

Table 1. Specifications and cutting forces of machining milling process. 
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 [MPa] [mm] [r.p.m.]
[mm/

min]
[mm] [N] [N] [N]

Aluminum 

(6061-T6)
200

20-

300

0,02-

2,00

0,77-

367,6

0,33-

157,7

0,16-

77,56

Brass 

(272)
300

20-

250

0,02-

2,00

1,31-

516,9

0,56-

221,7

6

0,27-

109,0

Stainless 

steel (AISI 

304)

480 20-50
0,02-

1,00

4,20-

165,4

1,80-

70,96

0,88-

34,9

Titanium 

(Ti6Al4V)
900 20-30

0,02-

1,00

6,56-

155,0

2,81-

66,5

1,38-

32,72

0,2-

6,35

36 000-

3 600

Specification Cutting forces

M
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ri
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This structure has advantages on linear motions along the 

coordinate axes. In addition, the decoupled design of the 

machine is proposed to eliminate any occurrence of mode 

coupling chatter, not only because of its decoupled design 

(kinematic decoupling), also because the spindle-toolholder-

tool subsystem is independent to the structure of the machine.  

A prototype of the 3-DOF PKM is shown in Figure 5. Standard 

thin-wall aluminum extrusion rectangular tubes were selected 

to be used as the proximal and distal links. The lengths of each 

link are listed in Table 4. 

The critical-stiffness element of the machine is the 

spindle/holder/tool system. For chatter stability analysis only 

the frequency response function at the tool tip is required. 

Therefore, to obtain a reference measure of the required 

stiffness, the stiffness values of various modes of end mills 

clamped onto low-speed spindles were reviewed. The spindle 

inevitably has a limited stiffness because of the diameter of the 

bearing, the spindle shaft, and the thin tool. Typically, a low-

speed spindle ranges within 5 000 to 35 000 rpm; produces a 

maximum power of 215 W. The toolholder consists of a single 

piece of material and is adjusted to an aluminum base that 

elevates the workpiece. End mills range between 3 and 13 mm 

in diameter and 30 and 50 mm in length. Three different 

brands of spindles with several different end mills were tested 

and measured. 

The natural frequencies of the most dominant modes 

ranged within 1 300 and 2 800 Hz and the values of modal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stiffness ranged within k = 1,5 N/μm and 6,9 N/μm with rather 

small damping ratios of ζ = 0,01–0,05, Figure 6. Therefore, it is 

possible to use these as references values and require that 

none of the structural modes of a well-designed PKM should 

have the kζ values of less than the kζ = 6,9 × 0,05 = 0,345 

N/μm of the spindle modes, when reflected onto the tool 

end. Table 5 lists the geometric parameters and the 

mechanical properties of the PKM system that are required 

for the calculation of the stability lobe. 

It is convenient to write a code to calculate the approximate 

optimum depth of cut at the highest available spindle speed. 

Following the procedure described in Table 2, the results are 

summarized in Table 6. 

In Table 6, subscript j indicates the regenerative chatter 

frequency, f, after the jth increment. The real part of the frequency 

response of the spindle/holder/tool is shown in Figure 7. Once the 

FRF at a point is obtained, the dynamics rigidity of the PKM and its 

stability against chatter vibrations can be evaluated, Figure 7. 

The optimal intersections or points of the consecutive 

series of lobes provide the optimum depth of cut. The results 

show that the intersection of the larger lobes (on the right of 

the diagram), provides a stable machining at the highest 

spindle speed, as well as the deepest depth of cut. A 

compromise is made between the spindle speed and the 

depth of cut for the smaller lobes (on the left of the diagram), 

where the spindle speed is lower. The location of these lobes 

depends on the mechanical properties of the PKM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Procedure to create SLD of N~p. 

 
a Obtain parameters k, ks, r, and γ and specify the number 

of teeth on the cutter, nt. 

b For each increment of j (1, 2, 3, 4, …) of the chatter 

frequency fj, calculate rj and p from Eq. (10). 

c For each lobe number, n, calculate its corresponding rtjn 

from Eq. (14). 

d For each rtjn, calculate the spindle speed using N = 

60rtfn/nt. 

e The points for each n value are plotted to form a single 

lobe, and a series of lobes (n = 0,1, 2, …) are plotted to 

form the stability lobe diagram, N~p. 
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Table 3. Schematic method for directly obtaining the SLD. 

 

Approach 

Resolution of the periodic delay-differential equation 

Method 

Semi discretization 

a) Chip thickness model 

ℎ𝑗(𝜙, 𝑧) = 𝑓𝑡 𝑠𝑖𝑛 𝜙𝑗 (𝑧) 

b) Cutting force model 

𝑑𝐹𝑡𝑗 = 𝐾𝑡ℎ(𝜙𝑗)𝑑𝑧,    𝑑𝐹𝑟𝑗 = 𝐾𝑟𝑑𝐹𝑡𝑗  

𝐹𝑖𝑗 = ∫ 𝑑𝐹𝑖𝑗𝑑𝑧,   𝑖 = 𝑥, 𝑦
𝑎

0

 

c) System dynamics 

Modal parameters at the tool tip 
[𝐌(Ω)]{ẍ} + [𝐂(Ω)]{ẋ} + [𝐊(Ω)]{x} = {𝐅(t)} 

d) Stability analysis procedure 

Analyze machining 

parameters and construct 

SLD 

For a grid of cutting 

conditions, test if the 

eigenvalues of the matrix 

that defines the stability of 

the process have a modulus 

lower than 1. 
1
2

(1 )ci T

tK a e
−

 = − −  

Nomenclature 

a: Axial depth of cut. 

hj: Dynamic chip thickness of the jth cutting edge.  

ft: Feed per tooth. 

Fij: Total cutting forces over the axial depth of cut. 

Kt: Cutting force coefficients in the tangential direction. 

Kr: Cutting force coefficients in the radial directions. 

dz: Infinitesimal axial depth of cut. 

T: Tooth period. 

ωc: Frequency of chatter in rad/s. 

ᴧ: Reciprocal of the eigenvalues of the FRF G. 

Ω: Spindle speed in rad/s. 

 
 

Table 4. Link lengths. 

 

Axis 

direction 

Proximal 

link 

[mm] 

Distal 

link 

[mm] 

End-

effector 

[mm] 

X, Y, Z 220 230 95 
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Figure 5. Prototype of the PKM. 

 

 

 

 

 

 

 

Table 5. Mechanical properties of the PKM. 

 
Components Mechanical properties                         

End-effector m = 0.202 kg, Ix = 7.0x10-4 kg m2, Iy 

3.4x10-4 kg m2  

Spindle/holder fn = 1305.9 Hz, k=1.9 N/μm,  

ζ =0.05 

Cutter (end mill) ks = 0.19 N/μm, nt = 4 
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Figure 6. Normal modes of the low-speed spindle. 

 

 

 

 

Table 6. Calculating the stability lobes of N~p. 

 

n  = 0 n  = 1 n  = 2 n  = 3 …

1 1306 1 6.33 9.967x10
3

6.616x10
3

4.951x10
3

3.956x10
3 …

2 1307 1.01 3.24 1.014x10
4

6.704x10
3

5.006x10
3

3.995x10
3 …

3 1308 1.01 2.24 1.031x10
4

6.791x10
3

5.061x10
3

4.034x10
3 …

4 1309 1.02 1.76 1.049x10
4

6.878x10
3

5.616x10
3

4.072x10
3 …

5 1310 1.02 1.49 1.066x10
4

6.964x10
3

5.115x10
3

4.072x10
3 …

6 1311 1.02 1.32 1.084x10
4

7.048x10
3

5.169x10
3

4.110x10
3 …

7 1312 1.03 1.21 1.100x10
4

7.130x10
3

5.221x10
3

4.147x10
3 …

… … … … … … … … …

j f j r j p j

r tjn
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Figure 7. Lobe diagram for the prediction of the stability in the milling process. 
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5. Conclusions  
 

Improving the machining stability has been an interest of 

research in recent years. This article extends chatter stability 

analysis to a decoupled parallel kinematic machine. The 

features that make it suitable for machining tasks are 

highlighted. Chatter vibration can be completely prevented 

calculating the stability lobes diagrams. As a case study, the 

stability charts for a decoupled parallel kinematic machine are 

simulated and it is demonstrated that in high-speed 

machining local modes of the spindle-toolholder-tool 

subsystem are excited because the tooth passing frequency is 

high above the modal frequencies of the machine structure. 

The theoretical model derived in this work can be used to 

allow the machine operators to practically choose the cutting 

parameters, trainers to effectively teach the chatter theory, 

and beginners to easily create stability lobe diagrams and 

practice optimizing cutting parameters. 

 

 

Conflict of interest 

 
The author(s) does/do not have any type of conflict of interest 

to declare. 

 
Financing 

 
This work was supported by DGAPA-UNAM PAPIIT IN-119120. 

 
 

 

References 

 

Altintas, Y., & Budak, E. (1995). Analytical prediction of stability 

lobes in milling. Ann. CIRP, 44(1), 357-362. 

https://doi.org/10.1115/1.2833064 
 

Altintas, Y., Stepan, G., Budak, E., Schmitz, T., & Kilic, Z. M. 

(2020). Chatter stability of machining operations. Journal of 

Manufacturing Science and Engineering, 142(11), 110801. 

https://doi.org/10.1115/1.4047391 
 

Altintas, Y., & Weck, M. (2004). Chatter stability of metal cutting 

and grinding. CIRP annals, 53(2), 619-642. 

https://doi.org/10.1016/S0007-8506(07)60032-8 

 

 

 

 

 

 

 

 

 

Arnold, R. (1946). Cutting Tools Research: Report of 

Subcommittee on Carbide Tools: The Mechanism of Tool 

Vibration in the Cutting of Steel. Proceedings of the Institution 

of Mechanical Engineers, 154(1), 261-284. 

https://doi.org/10.1243/PIME_PROC_1946_154_037_02 

 

Azka, M., Yamada, K., Al Huda, M., Mani, K., Tanaka, R., & Sekiya, K. 

(2020). Hilbert-Huang Transform Analysis of Machining Stability in 

Ball-Nose End-Milling of Curved Surface. International Journal of 

Automation Technology, 14(3), 500-511. 

https://doi.org/10.20965/ijat.2020.p0500 

 

Azka, M., Yamada, K., Al Huda, M., Tanaka, R., & Sekiya, K. (2020). 

Influence of Tool Posture and Position on Stability in Milling with 

Parallel Kinematic Machine Tool. International Journal of 

Precision Engineering and Manufacturing, 21(12), 2359-2373. 

https://doi.org/10.1007/s12541-020-00416-7  

 

Chen, Y., & Dong, F. (2013). Robot machining: recent development 

and future research issues. The International Journal of Advanced 

Manufacturing Technology, 66(9-12), 1489-1497. 

https://doi.org/10.1007/s00170-012-4433-4  

 

Celikag, H., Ozturk, E., & Sims, N. D. (2021). Can mode coupling 

chatter happen in milling?. International Journal of Machine 

Tools and Manufacture, 165, 103738. 

https://doi.org/10.1016/j.ijmachtools.2021.103738 

 

Defant, F., & Albertelli, P. (2021). A novel harmonic solution for 

chatter stability of time periodic systems. Journal of Sound and 

Vibration, 490, 115719. 

https://doi.org/10.1016/j.jsv.2020.115719 

 
Dong, C., Liu, H., Xiao, J., & Huang, T. (2021). Dynamic modeling 

and design of a 5-DOF hybrid robot for machining. Mechanism 

and Machine Theory, 165, 104438. 

https://doi.org/10.1016/j.mechmachtheory.2021.104438 

 

Gienke, O., Pan, Z., Yuan, L., Lepper, T., & Van Duin, S. (2019). 

Mode coupling chatter prediction and avoidance in robotic 

machining process. The International Journal of Advanced 

Manufacturing Technology, 104(5), 2103-2116. 

https://doi.org/10.1007/s00170-019-04053-x 

 

 

 

 

 

 

 

https://doi.org/10.1115/1.2833064
https://doi.org/10.1115/1.4047391
https://doi.org/10.1016/S0007-8506(07)60032-8
https://doi.org/10.1243/PIME_PROC_1946_154_037_02
https://doi.org/10.20965/ijat.2020.p0500
https://doi.org/10.1007/s12541-020-00416-7
https://doi.org/10.1007/s00170-012-4433-4
https://doi.org/10.1016/j.ijmachtools.2021.103738
https://doi.org/10.1016/j.jsv.2020.115719
https://doi.org/10.1016/j.mechmachtheory.2021.104438
https://doi.org/10.1007/s00170-019-04053-x


 
 

 

R. Yáñez-Valdez  et al. / Journal of Applied Research and Technology 1-16 

 

Vol. 20, No. 1, February 2022    15 

 

Gosselin, C. M., Kong, X., Foucault, S., & Bonev, I. A. (2004). A 

fully decoupled 3-dof translational parallel mechanism, pp. 

595-610. 

 

Gosselin, C. M., & Kong, X. (2004). Cartesian Parallel 

Manipulators, US Patent No. 6,729,202 B2. 

 

Guo, M., Ye, Y., Jiang, X., & Wu, C. (2020). Comprehensive effect 

of multi-parameters on vibration in high-speed precision 

milling. The International Journal of Advanced Manufacturing 

Technology, 108, 2187-2195. 

https://doi.org/10.1007/s00170-020-05441-4  

 

Hong, D., Kim, S., Choi, W. C., & Song, J. B. (2003). Analysis of 

machining stability for a parallel machine tool. Mechanics 

based design of structures and machines, 31(4), 509-528. 

https://doi.org/10.1081/SME-120023169 

 

Isakov, E. (2004). Engineering formulas for metalcutting: 

presented in customary US and metric units of measure. 

Industrial Press Inc.. 

 

Ji, W., & Wang, L. (2019). Industrial robotic machining: a review. 

The International Journal of Advanced Manufacturing 

Technology, 103(1), 1239-1255. 

https://doi.org/10.1007/s00170-019-03403-z  

 

Kim, H. S., & Tsai L. W. (2003). Design optimization of a 

Cartesian parallel manipulator. Journal of Mechanical Design, 

125(1), 43-51. 

https://doi.org/10.1115/1.1543977 

 

Kim, S. H., Nam, E., Ha, T. I., Hwang, S. H., Lee, J. H., Park, S. H., 

& Min, B. K. (2019). Robotic machining: A review of recent 

progress. International Journal of Precision Engineering and 

Manufacturing, 20(9), 1629-1642. 

https://doi.org/10.1007/s12541-019-00187-w 

 

Lai, W. H. (2000). Modeling of cutting forces in end milling 

operations. Journal of Applied Science and Engineering, 3(1), 15-22. 

https://doi.org/10.6180/jase.2000.3.1.02 

 

Mejri, S., Gagnol, V., Le, T. P., Sabourin, L., Ray, P., & Paultre, P. 

(2016). Dynamic characterization of machining robot and 

stability analysis. The International Journal of Advanced 

Manufacturing Technology, 82(1-4), 351-359. 

https://doi.org/10.1007/s00170-015-7336-3 

 

 

 

Merritt, H. E. (1965). Theory of self-excited machine-tool 

chatter - Contribution to machine-tool chatter research. ASME 

Journal. of Engineering for Industry, 87(4), 447-454. 

https://doi.org/10.1115/1.3670861 

 

Mousavi, S., Gagnol, V., Bouzgarrou, B. C., & Ray, P. (2017). 

Dynamic modeling and stability prediction in robotic 

machining. The International Journal of Advanced 

Manufacturing Technology, 88(9-12), 3053-3065. 

https://doi.org/10.1007/s00170-016-8938-0 

 

Munoa, J., Beudaert, X., Dombovari, Z., Altintas, Y., Budak, E., 

Brecher, C., & Stepan, G. (2016). Chatter suppression 

techniques in metal cutting. CIRP Annals, 65(2), 785-808. 

https://doi.org/10.1016/j.cirp.2016.06.004  

 

Najafi, A., Movahhedy, M. R., Zohoor, H., & Alasty, A. (2016). 

Dynamic stability of a Hexaglide machine tool for milling 

processes. The International Journal of Advanced 

Manufacturing Technology, 86(5), 1753-1762. 

https://doi.org/10.1007/s00170-015-8331-4  

 

Nguyen, V., Johnson, J., & Melkote, S. (2020). Active vibration 

suppression in robotic milling using optimal control. 

International Journal of Machine Tools and Manufacture, 152, 

103541. 

https://doi.org/10.1016/j.ijmachtools.2020.103541  

 

Paliwal, V., & Babu, N. R. (2020). Prediction of Stability Lobe 

Diagrams in High-Speed Milling by Operational Modal 

Analysis. Procedia Manufacturing 48,283-293. 

https://doi.org/10.1016/j.promfg.2020.05.049 

 

Pan, Z., Zhang, H., Zhu, Z., & Wang, J. (2006). Chatter analysis 

of robotic machining process. Journal of materials processing 

technology, 173(3), 301-309. 

https://doi.org/10.1016/j.jmatprotec.2005.11.033 

 

Pedrammehr, S., Mahboubkhah, M., & Khani, N. (2013). A study 

on vibration of Stewart platform-based machine tool table. 

The International Journal of Advanced Manufacturing 

Technology, 65(5-8), 991-1007. 

https://doi.org/10.1007/s00170-012-4234-9 

 

Quintana, G., & Ciurana, J. (2011). Chatter in machining 

processes: A review, International Journal of Machine Tools and 

Manufacture, 51(5) 2011, pp. 363-376. 

https://doi.org/10.1016/j.ijmachtools.2011.01.001 

 

 

 

https://espace2.etsmtl.ca/id/eprint/9907/
https://espace2.etsmtl.ca/id/eprint/9907/
https://espace2.etsmtl.ca/id/eprint/9907/
https://patents.google.com/patent/US6729202B2/en
https://patents.google.com/patent/US6729202B2/en
https://doi.org/10.1007/s00170-020-05441-4
https://doi.org/10.1081/SME-120023169
https://books.google.com.mx/books?hl=es&lr=&id=1X2IkQ56Z0EC&oi=fnd&pg=PR9&dq=Isakov,+E.+(2004).+Engineering+formulas+for+metal+cutting:+Industrial+Press.&ots=jyrFOtE7NY&sig=7DDN_tOSqS67tCJO1vnaMA2BDeA&redir_esc=y#v=onepage&q=Isakov%2C%20E.%20(2004).%20Engineering%20formulas%20for%20metal%20cutting%3A%20Industrial%20Press.&f=false
https://books.google.com.mx/books?hl=es&lr=&id=1X2IkQ56Z0EC&oi=fnd&pg=PR9&dq=Isakov,+E.+(2004).+Engineering+formulas+for+metal+cutting:+Industrial+Press.&ots=jyrFOtE7NY&sig=7DDN_tOSqS67tCJO1vnaMA2BDeA&redir_esc=y#v=onepage&q=Isakov%2C%20E.%20(2004).%20Engineering%20formulas%20for%20metal%20cutting%3A%20Industrial%20Press.&f=false
https://books.google.com.mx/books?hl=es&lr=&id=1X2IkQ56Z0EC&oi=fnd&pg=PR9&dq=Isakov,+E.+(2004).+Engineering+formulas+for+metal+cutting:+Industrial+Press.&ots=jyrFOtE7NY&sig=7DDN_tOSqS67tCJO1vnaMA2BDeA&redir_esc=y#v=onepage&q=Isakov%2C%20E.%20(2004).%20Engineering%20formulas%20for%20metal%20cutting%3A%20Industrial%20Press.&f=false
https://doi.org/10.1007/s00170-019-03403-z
https://doi.org/10.1115/1.1543977
https://doi.org/10.1007/s12541-019-00187-w
https://doi.org/10.6180/jase.2000.3.1.02
https://doi.org/10.1007/s00170-015-7336-3
https://doi.org/10.1115/1.3670861
https://doi.org/10.1007/s00170-016-8938-0
https://doi.org/10.1016/j.cirp.2016.06.004
https://doi.org/10.1007/s00170-015-8331-4
https://doi.org/10.1016/j.ijmachtools.2020.103541
https://doi.org/10.1016/j.promfg.2020.05.049
https://doi.org/10.1016/j.jmatprotec.2005.11.033
https://doi.org/10.1007/s00170-012-4234-9
https://doi.org/10.1016/j.ijmachtools.2011.01.001


 
 

 

R. Yáñez-Valdez  et al. / Journal of Applied Research and Technology 1-16 

 

Vol. 20, No. 1, February 2022    16 

 

Rehsteiner, F., Neugebauer, R., Spiewak, S., & Wieland, F. 

(1999). Putting parallel kinematics machines (PKM) to 

productive work. CIRP Annals, 48(1), 345-350. 

https://doi.org/10.1016/S0007-8506(07)63199-0  

 

Shi, M., Qin, X., Li, H., Shang, S., Jin, Y., & Huang, T. (2020). 

Cutting force and chatter stability analysis for PKM-based 

helical milling operation. The International Journal of 

Advanced Manufacturing Technology, 111(11), 3207-3224. 

https://doi.org/10.1007/s00170-020-06252-3  

 

Smith, S., & Tlusty, J. (1990). Update on high-speed milling 

dynamics. Journal of Engineering for Industry, 112(2), 142-149. 

https://doi.org/10.1115/1.2899557  

 

Staffetti, E., Bruyninckx, H., & De Schutter, J. (2002). On the 

invariance of manipulability indices. In Advances in Robot 

Kinematics (pp. 57-66). Springer, Dordrecht. 

https://doi.org/10.1007/978-94-017-0657-5_7 

 

Stone, B. (2014). Chatter and Machine Tools. Springer. 

 

Tlusty, J. (1985). Machine Dynamics. Handbook of High Speed 

Machining Technology.  (pp. 48-153). Chapman and Hall 

Advances Industrial Technology. Springer, Boston, MA. 

https://doi.org/10.1007/978-1-4684-6421-4_3  

 

Tlusty, J. (1986). Dynamics of high-speed milling. ASME Journal 

of Engineering for Industry, 108(2), 59-67. 

https://doi.org/10.1115/1.3187052 

 

Tlusty, J. (1963). The Stability of Machine Tools against Self 

Excited Vibrations in Machining. International research in 

production engineering, ASME, 465-474. 

 

Tobias, S. A., & Fishwick, W. (1958). Theory of regenerative 

machine tool chatter. The engineer, 205(7), 199-203. 

 

Tunc, L. T., & Shaw, J. (2016). Investigation of the effects of 

Stewart platform-type industrial robot on stability of robotic 

milling. The International Journal of Advanced Manufacturing 

Technology, 87(1), 189-199. 

https://doi.org/10.1007/s00170-016-8420-z  

 

Urbikain, G., Olvera, D., López de Lacalle, L. N., Beranoagirre, 

A., & Elías-Zuñiga, A. (2019). Prediction methods and 

experimental techniques for chatter avoidance in turning 

systems: A review. Applied Sciences, 9(21), 4718. 

https://doi.org/10.3390/app9214718  

 

 

Wan, M., Dong, Z. Y., Yang, Y., & Zhang, W. H. (2021). Stability 

analysis of milling process by combining the gyroscopic effect 

with the symmetry and runout of the cutter. Mechanical 

Systems and Signal Processing, 161, 107977. 

https://doi.org/10.1016/j.ymssp.2021.107977  

 

Yuan, L., Pan, Z., Ding, D., Sun, S., & Li, W. (2018). A review on 

chatter in robotic machining process regarding both 

regenerative and mode coupling mechanism. IEEE/ASME 

Transactions on mechatronics, 23(5), 2240-2251. 

https://doi.org/10.1109/TMECH.2018.2864652  

 

Yue, C., Gao, H., Liu, X., Liang, S.Y., Wang, L. A review of chatter 

vibration research in milling. Chinese Journal of Aeronautics, 

32(2), 215-242. 

https://doi.org/10.1016/j.cja.2018.11.007  

 

Yue, J. (2006). Creating a Stability Lobe Diagram. Proceedings 

of the 2006 IJME– INTERTECH Conference, Session IT, 301-050. 

 

Zanganeh, K., & Angeles, J. (1997). Kinematic Isotropy and the 

Optimum Design of Parallel Manipulators. International 

Journal of Robotics Research, 16(2), 185-197. 

https://doi.org/10.1177/027836499701600205 

 

Zhang, D., (2009). Parallel robotic machine tools. Springer. 

 

Zhu, L., & Liu, C. (2020). Recent progress of chatter prediction, 

detection and suppression in milling. Mechanical Systems and 

Signal Processing, 143, 106840. 

https://doi.org/10.1016/j.ymssp.2020.106840  

 

Zhu, Z., Tang, X., Chen, C., Peng, F., Yan, R., Zhou, L., ... & Wu, J. 

(2021). High precision and efficiency robotic milling of 

complex parts: challenges, approaches and trends. Chinese 

Journal of Aeronautics. 

https://doi.org/10.1016/j.cja.2020.12.030 

 

https://doi.org/10.1016/S0007-8506(07)63199-0
https://doi.org/10.1007/s00170-020-06252-3
https://doi.org/10.1115/1.2899557
https://doi.org/10.1007/978-94-017-0657-5_7
https://link.springer.com/book/10.1007/978-3-319-05236-6
https://doi.org/10.1007/978-1-4684-6421-4_3
https://doi.org/10.1115/1.3187052
https://ci.nii.ac.jp/naid/10003574189/
https://ci.nii.ac.jp/naid/10003574189/
https://ci.nii.ac.jp/naid/10003574189/
http://www.vibraction.fr/images/stories/Documents/1erePresentationLobesTobias.pdf
http://www.vibraction.fr/images/stories/Documents/1erePresentationLobesTobias.pdf
https://doi.org/10.1007/s00170-016-8420-z
https://doi.org/10.3390/app9214718
https://doi.org/10.1016/j.ymssp.2021.107977
https://doi.org/10.1109/TMECH.2018.2864652
https://doi.org/10.1016/j.cja.2018.11.007
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.625.1144&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.625.1144&rep=rep1&type=pdf
https://doi.org/10.1177/027836499701600205
https://link.springer.com/book/10.1007/978-1-4419-1117-9
https://doi.org/10.1016/j.ymssp.2020.106840
https://doi.org/10.1016/j.cja.2020.12.030

