

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 20 (2022) 173-187

Original

An efficient and highly scalable listless SPIHT image

compression framework

Ali K. Al-Janabia* Hassan K. Al-Musawia Yahya J. Harbib

aUniversity of Kufa, Faculty of Engineering,

Department of Electronics and Communication Engineering, Najaf, Iraq
bUniversity of Kufa, Faculty of Engineering, Department of Electrical Engineering, Najaf, Iraq

Received 10 19 2020; accepted 07 19 2021

Available 04 30 2022

Keywords: DWT, Quality Scalability, Rate Scalability, Resolution Scalability,
Scalable Image Compression, SPIHT

Abstract: The SPIHT is a powerful image compression algorithm. It has reasonable complexity and
produces a quality (or rate) scalable bit-stream. Unfortunately, SPIHT fails to explore the multi-
resolution nature of the wavelet transform as it doesn't support resolution scalability. Moreover, it
requires a huge computer memory with complex memory management because it utilizes lists with a
memory of about 2.5 the image size. This paper proposes three related algorithms. The first algorithm
modifies SPIHT to reduce its complexity and improve its efficiency, especially at low bit rates. The
second algorithm is the main contribution of the paper. It provides a simultaneous solution to the
memory and scalability problems of SPIHT. Memory is reduced by utilizing state marker bits of an
average size of 2.5 bits per pixel instead of the lists. Resolution scalability is maintained by coding the
resolution levels in incremental order. Consequently, the resulting bit-stream can be easily and
efficiently decompressed at numerous qualities and resolutions. This feature is very valuable for
modern users that have diverse access bandwidths and display capabilities. The third algorithm has
slightly lower complexity and memory than the second algorithm but has slightly lower performance.
Another important attribute of our algorithms is that they have a very little increment in complexity in

comparison to the original SPIHT algorithm. In contrast, the existing solutions have much more
complexity and memory resources.

∗Corresponding author.
E-mail address: alik.aljanabi@uokufa.edu.iq (Ali K. Al-Janabi).

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

http://dx.doi.org/10.1016/j.jart.2017.02.005
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.icat.unam.mx/
mailto:alik.aljanabi@uokufa.edu.iq
https://www.unam.mx/

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 174

1. Introduction

Transmitting compressed images over heterogeneous

networks such as the Internet requires that the compression

algorithm be quality and resolution scalable. A quality

scalable image compression system creates a bit-stream in

which the data is arranged in such a way that the bits that have

the higher quality improvement are placed before the other
bits. As such, the image can be decompressed at any bit rate

while the (full-size) image quality is the best at this rate. In this

way, a low bandwidth user can reconstruct a low-quality

image while a user that has high bandwidth may reconstruct

the image at high quality. On the other hand, a resolution

scalable compression creates a bit-stream which consists of

several subsets. The first subset contains the data that belong
to the lowest resolution (size) image. The next subset (and all

the next subsets) contains the necessary data that is required

to reconstruct the image at a larger resolution. Therefore, if

only the first subset is received, then the image can be

reconstructed at the lowest size. If larger image size is desired,

the decoder utilizes this subset and the next received subsets.
Resolution scalability is useful for users that have diverse

display resolutions, such as smartphones, tablets, laptops,

desktop computers, and TV. Resolution scalability is also

useful for image browsing. For image browsing, the user first

receives a fingernail image (a small and rough approximation

of the original image) that is ample for deciding if the image

must be received fully or not. Just in case of needing the total size
image, the user downloads the rest needed information. It is

advantageous to combine both types of scalabilities to create a

highly or full scalable bit-stream which is both resolution and

quality scalable (Al-Janabi, 2019; Rüefenacht et al., 2019).

Scalability imposes an important restriction on the

encoder. Specifically, it must operate without any earlier

information about the quality and the size at which the image

will be recovered by the users. Thus, the coder has to

compress the image at full resolution and quality. After that,

the compressed bit-stream is stored on a server. Users with
various image quality and display resolution requirements

send requests to the server, which delivers the appropriate

scaled bit-stream to each one of them (Cappellari et al., 2011).

It is well known that the 2-dimensional discrete wavelet

transform (2D-DWT) is an indispensable tool for the scalable

compression of images. Its local spatiality feature simplifies

quality scalability while its multi-resolution nature easily
provides resolution scalability. Briefly, the forward 2D-DWT

starts by decomposing the original image into four subbands

referred to as LL1, HL1, LH1, and HH1. Next, the LL1 subband

is also decomposed into another four subbands referred to as

LL2, HL2, LH2, and HH2. The LLx subband may be

decomposed M times resulting in 3M+1 subbands. At any

decomposition stage, the LLm subband, m = 1, 2 … M,
represents a good approximation copy of the original

image at reduced resolution with a size equal to 1/22𝑚 the

original image size.

The inverse 2D-DWT starts by combining the LLM subband

with the HLM, LHM, and HHM subbands to reconstruct the

LLM−1 subband. The inverse process can be done up to M
times to obtain a replica of the original image. Figure 1

shows the effect of the 2D-DWT on the test image "Camera

Man" for two decomposition levels (M = 2). The first

decomposition level splits the image into LL1, HL1, LH1,

and HH1 subbands and the second level splits the LL1 subband

into LL2, HL2, LH2, and HH2 subbands. As seen, the LL1 and the

Figure 1. The effect of two levels of 2D-DWT on the "Camera Man".

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 175

LL2subbands are good approximated copies of the original

image with sizes equal to 1/22 = 1/4 and to 1/24 = 1/16 the

original image size respectively (Van Fleet, 2019; Vetterli, 2001).

The wavelet subbands are arranged into M+1 resolution

levels labeled R0, R1 … RM. The lowermost resolution level,

R0, consists of the LLM subband only. Each one of the next
levels Rm, 1 ≤ m ≤ M, consists of the three subbands

HLM−m+1, LHM−m+1, and HHM−m+1 that are necessary to

reconstruct the LLM−m subband during the inverse 2D-DWT

process. Refer to Figure 1, the wavelet image has three

resolution levels (R0, R1, and R2) that are represented by the

yellow colour located at the down-right corner boundary of

the corresponding resolution level. At the decoder, an image
at the lowest resolution (1/16 the image size) can be obtained

directly from the LL2 subband. The image may be recovered

at higher resolution by combining the LL2 subband with the

three subbands of R1 (HL2, LH2, and HH2), and performing

one stage of inverse 2D-DWT to obtain LL1 (1/4 the image

size). Finally, the image may be recovered at the biggest

resolution (the entire image size) by combining the LL1
subband with the 3 subbands of R2 (HL1, LH1, and HH1),

and carry out another stage of inverse 2D-DWT to get a

replica of the original image. Therefore, a resolution

scalable bit-stream can be easily achieved if the resolution

levels are encoded successively and are identifiable within

the compressed bit-stream (Taubman et al., 2002).
The set partitioning in hierarchical trees (SPIHT) (Said &

Pearlman, 1996) is a powerful wavelet-based image compression

algorithm. Its main pros are it has reasonable complexity, good

PSNR (peak signal to noise ratio) vs. the bit rate performance, and

it creates a quality scalable bit-stream. At its invention time, the

last feature was very interesting as it adds freedom to the user to

select the desired quality of the received image very easily.
However, this feature is not sufficient nowadays for users that

have devices with diverse display resolution capabilities such

as laptops smartphones, tablet PCs, etc. As such, adding

resolution scalability to SPIHT to generate a highly (rate and

resolution) scalable bit-stream is very valuable (Cappellari et

al., 2011; Wu et al., 2013). The second important weakness of

SPIHT is its massive memory consumption, and complex
memory management, which are caused by the use of three

linked lists to save the image pixels’ coordinates. These lists

consume memory about 2.5 times the DWT image (Chew et al.,

2009; Singh & Butola, 2015) which represents a true constraint

for low memory devices such as wireless sensors (Deepthi et

al., 2018; ZainEldin et al., 2015) or for compressing volumetric
medical images (Kamargaonkar & Sharma, 2016; Panjavamam

& Bhuvaneswari, 2017). In addition, in the case of compressing

multi-components images such as RGB colour images in

parallel, the algorithm would need a memory of about 3x2.5 =

7.5 times the DWT image which represents a very serious

obstacle. Finally, from the scalability point of view, using the

linked lists prohibits resolution scalability due to the

recurrent process of removing/adding pixels from/to lists,

which makes the stored pixels in these lists not ordered

according to the resolution levels (Cappellari et al., 2011;

Taubman et al., 2002).

The SPIHT starts by applying the octave 2D-DWT to the
image for M decomposition levels (normally M = 5). Next, every

DWT coefficient cij is quantized to ⌊𝑐𝑖𝑗⌋, where ⌊x⌋ is the closest

integer  x. Then, every ⌊𝑐𝑖𝑗⌋ is represented using K bits

(typically 16 bits), where the first bit is the sign bit (e.g., 1 for

negative and 0 for positive coefficient), and the remaining K −

1 bits are the magnitude bits. SPIHT creates a quality scalable

bit-stream using a power of two threshold coding combined

with bit-plane coding by which the DWT coefficients are coded

on a per-bit basis starting from the first non-zero MSB (most

significant bit) to the LSB (least significant bit). The first non-

zero MSB is determined if the threshold TH is selected to be:

TH = 2⌊log2|cmax|⌋ (1)

where cmax is the magnitude of the pixel that has the

maximum value in the DWT image, and |x| is the absolute value

of x. The next bit(s) is encoded by decremented TH to TH/2 until

TH equals 1. TH is sent to the decoder to identify the first non-

zero MSB. At each bit-plane coding pass, a DWT coefficient

equals to or greater than TH is deemed significant (SG);
otherwise, it is deemed insignificant (ISG). Similarly, a set

consisting of several coefficients is deemed SG if it contains one

or more SG coefficients.

A closer look at Figure 1 reveals that there exists a shadow

for the DWT image in all subbands. This means that if a

coefficient located at a given position in the LLM subband is
ISG, then the coefficients located at the other subbands that

have the same position (with respect to their subbands), are

also expected to be ISG. SPIHT exploits this feature to collect

as many ISG coefficients as possible and coding them by one

symbol. This is attained by combining these ISG coefficients

together to build trees referred to as spatial orientation trees

(SOTs). The primary roots of these SOTs are the pixels of the
LLM subband excluding the top-left pixel in every set of (2×2)

pixels. Every one of the three roots in each (2×2) set is

considered a parent for four offspring located at HLM, LHM,

and HHM respectively according to its orientation. That is,

the top-right pixel is linked to HLM, the down-left pixel is

linked to LHM, and the down-right pixel is linked to HHM.

Then every pixel in subbands HLm, LHm, and HHm, M ≥ m ≥
2, is considered a root (parent) to four offspring located at

HLm−1, LHm−1, and Hm−1 respectively. Notice that the pixels

in the HL1, LH1, and HH1 subbands have no offspring as they

are the leaves of the trees. Figure 2 describes the SOTs of the

first set of size (2×2) pixels in the subband LL2 for an image

decomposed to two 2D-DWT levels, where each numbered

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 176

colour represents a root of an entire SOT that extends across

several resolution levels, and the unnumbered colour

represent the leaves of these SOTs.

Figure 2. The spatial orientation trees for a
2D-DWT image with two decomposition levels.

SPIHT utilizes three linked lists referred to as the list of

insignificant pixels (LIP), the list of insignificant sets (LIS), and

the list of significant pixels (LSP). The LIP and LSP keep the

(i, j) coordinates of the ISG, and SG pixels respectively while
the LIS keeps the (i, j) coordinates of the roots of the SOTs.

SPIHT makes use of two type of roots. A root of type A

represents the parent of a whole SOT, while a root of type B

represents the parent of a partial SOT, which is a whole SOT

excluding its four direct offspring (children). The LSP is

initialized empty, the LIP is initialized by the (i, j) coordinates

of the pixels in the LLM subband, and the LIS is initialized by
the (i, j) coordinates of the primary parent roots of SOTs,

which are the pixels in the LLM subband excluding the top-left

pixel in every (2×2) set.

The first coding pass consists of the sorting sub-pass while

the next coding passes consist of the sorting and the

refinement sub-passes. Over the sorting sub-pass, every pixel

cij in LIP is examined for the current threshold TH. If cij is ISG, a

0 is sent to the output bit-stream. If cij is SG, a 1 and its sign bit

are sent to the bit-stream, and the pixel’s coordinates are

transferred to LSP for refinement in the next passes. Next, each

root rij in LIS is examined. if rij is of type A, its entire SOT is

constructed and examined. If the SOT is still ISG, a 0 is sent to

the bit-stream. Conversely, if the SOT is SG, then a 1 is sent to

the bit-stream, and the four direct offspring of rij are examined.

If an offspring is ISG, a 0 is sent to the bit-stream and its (i, j)
coordinates are added to LIP to be tested in the next coding

passes. If the offspring is SG, a 1, and its sign bit are sent to the

bit-stream, and its (i, j) coordinates are added to LSP for

refinement during the next passes. Finally, if rij is of type A and

has grandchildren (i.e., it lies in LLM to HH2 subbands), then rij

is removed from current position and added to the end of LIS

as a type B root to be examined later on at the same pass.

Alternatively, if rij is of type B, so a partial SOT that excludes its

direct four offspring is constructed and examined again. If this

partial SOT is SG, then a 1 is sent to the bit-stream, rij is

removed from LIS, and each one of its four offspring is added
to the end of LIS as a type A root to be examined later on at the

same pass. If the partial SOT is ISG, then a 0 is sent to the bit-

stream and rij is kept in LIS to be examined again in the

following coding pass.

All pixels in LSP are refined during the refinement sub-pass,

with the exception of those added during the current pass. A

pixel cij is refined by sending its nth MSB to the bit-stream. After

finishing the sorting and refinement sub-passes, the threshold
TH is halved to begin a new coding pass. This process is

repeated till the threshold is equal to 1, which means that all

the pixels are encoded.

Several works interested in increasing the PSNR vs. the bit

rate performance of SPIHT are presented cf. (Çeklı & Akman,

2017; Cekli & Akman, 2019; Lee & Hung, 2018; Li & Liu, 2017; Sri

& Sahu, 2019). The modified SPIHT (MSPIHT) algorithm
presented by Rema et al. (2015) is one of the most efficient

algorithms found in the literature. The MSPIHT algorithm used

modified SOTs that ensure that the algorithm codes the more

significant information in the initial bit-planes. It enhanced the

PSNR at very low bit rates (less than 0.5 bpp) but gave

approximately the same PSNR for bit rates greater than 0.5
bpp. Furthermore, MSPIHT has the same limitations as SPIHT

regarding memory consumption and management. Al-Janabi

(2013) proposed an efficient, low complexity, and low memory

algorithm termed the Single List SPIHT (SLS). It reduced the

memory consumption of SPIHT to about 80% by using one list

of size equal to 1/4 the image size and two-state marker bits

per pixel. At the same time, it preserved the PSNR and the low
complexity features of SPIHT.

Danyali and Mertins (2004) focused on solving the

scalability problem of SPIHT in their highly scalable-SPIHT

(HS-SPIHT) algorithm. The HS-SPIHT algorithm added

resolution scalability to SPIHT by utilizing resolution-

dependent sorting passes with the related resolution-

dependent linked lists. That is, for every resolution level Rm ,
m = 0, 1…M, a set of LIP, LSP, and LIS lists are employed.

Therefore, there are LIPm, LSPm, and LISm. In each coding

pass, the coder starts encoding from resolution level 0 and

proceeds to the utmost level M. The algorithm first does the

sorting sub-pass for the coefficients within the LIPm, and then

it processes the roots in the LISm in the same way as done in
SPIHT. In the refinement sub-pass, each pixel in LSPm is

refined by sending its nth MSB to the bit-stream. After finishing

the sorting and refinement sub-passes for resolution Rm, the

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 177

process is repeated for the lists related to the subsequent

resolution levels. Unfortunately, the HS-SPIHT algorithm has

also the same weakness of SPIHT regarding memory

consumption. Furthermore, it must deal with 3M linked lists

instead of 3. This needs extra efforts for memory management

and consequently increases the complexity of the algorithm as
compared to the SPIHT algorithm.

Alam and Khan (2012) introduced the Listless HS-SPIHT

(LHS-SPIHT) algorithm. It utilized the linear indexing technique

to convert the DWT image from a 2D array to a 1D array of the

same size to simplify the tracking of set partitioning. The

functionalities of the lists LIPm, LSPm, and LISm of HS-SPIHT

are performed using fixed-size state marker bits. That is, rather
than adding the ISG pixels to LIPm, the SG pixels to LSPm, and

the roots to LISm, the corresponding state marker bit is

updated accordingly. For example, updating the marker bit of

a pixel cij that lies in Rm to 1 is equivalent to adding its

coordinates to LIPm. Consequently, rather than of examining

the pixels in every LIPm only, the algorithm must examine the

state marker bit of every pixel within the DWT image and codes
the pixels that have a marker bit equals to 1 only. The same

thing occurs for the SG pixels in every LSPm and the roots in

every LISm. This means that LHS-SPIHT must examine all the

image pixels twice, and must examine the roots in subbands

LLM to HH2 once in each coding pass. As a result, the

algorithm's complexity rises when compared to HS-SPIHT, and

consequently the complexity rises even more when compared to
SPIHT. The average memory of the state marker is 4 bits per pixel.

Since each pixel in the DWT image is represented by 16 bits, so

the marker bits need additional memory equal to 1/4 the size of

the DWT image. More importantly, using the linear indexing

technique necessitates either saving the 2D-DWT image into the

main memory and then writing it into a 1D array or both 2D-DWT
images and the 1D array must be available in memory at the

same time. Unfortunately, the former solution is time-

consuming while the latter one demands additional memory

equals to the DWT image (Drozdek, 2012). So, the actual

memory of LHS-SPIHT is equal to 1+1/4 = 1.25 the image size.

2. The proposed algorithms

This section first presents a modified version of the SPIHT
algorithm termed the simplified SPIHT (SSPIHT) as it employs

one type of roots instead of two. Then, the proposed Highly

Scalable Listless SPIHT (HSLS) algorithm that represents the

current work's main contribution is introduced. The proposed

work reduces the memory of the SLS algorithm presented in

(Al-Janabi, 2013) further by replacing the list with state marker

bits that consume on average 0.5 bit per pixel. More
importantly, it upgrades the SLS algorithm to creates a highly

scalable bit-stream that can be decompressed at numerous

bit rates and resolutions by processing the resolution levels in

each coding pass incrementally. Finally, the Interleaved HSLS

(IHSLS) which is a simplified version of HSLS is put forward.

2.1. The SSPIHT algorithm

Recall that in SPIHT, there are two types of roots. A root of type

A is coded by constructing its complete SOT, and if this SOT is
SG, and the root has grandchildren, then the root type is

changed to type B root and added to LIS again. A type B root

is coded by constructing its partial SOT (which excludes the

four direct offspring of the root). And if this SOT is SG, then the

root is taken out from LIS and its four direct offspring are

added to LIS as type A roots. This means that for every root,

the SOT must be constructed twice in each coding pass; one
when the root is of type A, and one when it is transformed to

type B. The proposed SSPIHT doesn’t need to use two types of

roots. It is based on the observation that if a complete SOT of

a given root is SG, then its partial SOT has a high probability of

being SG too (Wenjun et al., 2002). Thus, the condition of

adding its four direct offspring to LIS as roots of type A has a
high chance of being satisfied. In other words, there is no need

to do the condition test.

In SSPIHT, the coding of the LIP and LSP is done exactly as

in SPIHT. However, the LIS is processed differently as follows:

for every root in LIS, its whole SOT is constructed and examined

for significance. If the SOT is ISG, a 0 is sent to the bit-stream as

before. If the SOT is SG, then a 1 is sent to the bit-stream, and
each one of the root’s four direct offspring is coded as done in

SPIHT. Finally (and more importantly), if this SG root has

grandchildren (i.e., it lies in LLM to HH2 subbands), then the

root is taken out from LIS and each one of its four direct

offspring is added as a root to the end of LIS to be examined

later during the present pass. This modification avoids the

extra processing time for constructing the partial SOT for every
root of type B and eliminates the need of using the type bit. In

addition, SSPIHT has superior PSNR performance than the

MSPIHT algorithm presented by Rema et al. (2015) which is

optimized to improve the PSNR at low compression bit rates as

will be shown experimentally in the next section.

2.2. The HSLS algorithm

The proposed HSLS algorithm benefits from the multi-
resolution characteristics of the 2D-DWT to generate a highly

scalable bit-stream that can be decompressed at more than

one rate (quality) and more than one resolution (size). Like the

LHS-SPIHT algorithm (Alam & Khan, 2012), the proposed HSLS

algorithm also makes use of state marker bits instead of the

linked lists used by SPIHT. However, the HSLS has the following

advantages over LHS-SPIHT:

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 178

• It doesn’t use the linear indexing technique to avoid the

complexity or the memory increment of this technique as

clarified previously.

• HSLS utilizes one marker bit termed  of size 2 bits for every

pixel in the DWT image, and two markers termed  and  of

size 1 bit each for every root in the subbands LLM to HH2. Since

the total size of these subbands is equal to 1/4 the size of the
image, so every root marker needs on average 1/4 bit. So, the

total memory consumed by our HSLS algorithm is 2+1/4+1/4 =

2.5 bits per pixel only. In contrast, LHS-SPIHT used an average

of 4 bits per pixel (Alam & Khan, 2012).

•Like SSPIHT, it employs one type of roots.

• It eliminates the need to examine all the image pixels twice

per pass. The main idea behind this is based on the fact that
the pixels stored in the LIP represent the ISG offspring, and the

pixels stored in the LSP represent the SG offspring of the roots

of the SOTs that are found SG. So, these ISG and SG pixels can

be easily deduced from the parent SG roots. In this way, the LIP

and LSP can be dispensed by only computing the offspring that

belong to the roots of the SG SOTs in each coding pass. Since

these roots are located in subbands LLM to HH2 which have a
size equal to 1/4 the DWT image size, and since only the SG

SOTs are processed, then at most only 1/4 the image pixels

need to be processed instead of testing all the image pixels two

times in each pass as done in LHS- SPIHT (Alam & Khan, 2012).

Evidently, this will reduce the algorithm's computational time.

The purpose of the state marker bits , , and  is to

indicate the significance status of the corresponding pixel
and root as follows:

• δij = 0: the pixel cij is ISG.

• δij = 1: cij has just become SG in the current coding pass.

• δij = 2: cij is found SG in one of the previous coding

passes.

• αij = 0: the root rij has an ISG SOT.

• αij = 1: rij has a SG SOT.

• βij = 0: rij is not considered for testing in the current

coding pass or it is tested in a previous coding pass.

• 𝛽𝑖𝑗 = 1: 𝑟𝑖𝑗 is considered for testing in the current

coding passes.

At initialization, HSLS computes the threshold TH using Eq.

1. Then, it sets the marker bit  of every pixel in the DWT image
to 0 to indicate that all the pixels are still ISG, sets the marker

bit  for every root to 0 to indicate that all the roots are still

ISG, and finally sets the marker bit  of every root in the LLM

subband to 1, and all other roots to 0. Setting the marker bit

βij of the root rij to 1 is equivalent to adding the (i, j)

coordinates of rij to LIS in SPIHT.

The first bit-plane coding pass consists of the sorting sub-

pass only while the other passes consist of the sorting and
refinement sub-passes. To preserve resolution scalability in

each coding pass, the algorithm scans the DWT image from

the lowest resolution level R0, which contains the LLM

subband only, to the utmost resolution level RM, which

contains the HL1, LH1, and HH1 subbands. That is, in each

coding pass, the algorithm performs the sorting sub-pass for

all resolutions incrementally, and then performs the

refinement sub-pass for all resolutions incrementally too.

The sorting sub-pass starts by coding each pixel cij in

resolution R0 by the code_pixel(cij) procedure described

next. Then, it will proceed to the next resolutions (R1 − RM).

For every resolution Rm, 1 ≤ m ≤ M, all the parent roots are

examined. It is worth noting that the parent roots of Rm lie in

Rm−1 (i.e., the parent roots of R1 lie in R0 and so on). So, in

fact, the parent roots are located in (R0 − RM−1). So, for every

resolution, Rm, 0 ≤ m ≤ M − 1, each root rij that is found SG

in a previous coding pass (i.e., with αij = 1) is processed by

computing its direct four offspring Ok, k = 1, 2, 3, 4. Then,
each offspring Ok is coded as a pixel by the code_pixel(Ok).

Notice that this step is left out in the first coding pass as all the

roots are still ISG. Finally, for every resolution, Rm, 0 ≤ m ≤

M − 1, each root rij that is considered for testing in the current

coding pass (i.e., with βij = 1), its SOT is constructed and

tested for significance. If rij has still an ISG SOT, a 0 is

transmitted to the bit-stream, and rij will be examined again

in the next pass. If rij has an SG SOT, a 1 is sent to the bit-

stream, αij is updated to 1 (i.e., rij is marked as a SG root), and

βij is updated back to 0 (this is equivalent to removing the (i, j)

coordinates of rij from LIS). Then, each one of the rij′s direct

four offspring Ok, k = 1, 2, 3, 4 is coded as a pixel by the

code_pixel(Ok). Finally, the marker bit of each one of its direct

four offspring 
Ok

is updated to 1 in order to be considered for

testing as roots at the next resolution in the current pass.

However, the last step is not performed for the offspring that

lie at the utmost resolution level RM because they are the

leaves of the trees.

The refinement sub-pass firstly sends every pixel cij in R0

that is found SG in the previous passes (i.e., with δij = 2) to

the refine_pixel(cij) procedure, described shortly, for

refining. Next, for every resolution level Rm, 1 ≤ 𝑚 ≤ M,

each one of its SG roots rij (i.e., with αij = 1) that lie in Rm−1,

its direct four offspring Ok, k = 1, 2, 3, 4 is coded by the

refine_pixel(Ok) procedure to refine its magnitude. Lastly,

the threshold TH is updated to TH/2 to proceed to the next

coding pass until the threshold is equal to 1 indicating that

all the pixels are encoded.

The code_pixel(cij) procedure works as follows: If cij is yet

marked ISG (i.e., δij = 0), cij is tested for significance. If cij 

TH, (i.e., cij has just become SG), a 1 and the sign bit are

transmitted to the bit-stream, δij is set to 1 (this is equivalent

to adding the (i, j) coordinates of cij to LSP in SPIHT), and

finally, cij is updated to cij − TH if it is positive or to cij + TH if

it is negative. Conversely, if |cij| < TH (i.e., cij is yet ISG), a 0 is

transmitted to the bit-stream. If δij = 1 (i.e., cij is found SG at

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 179

the previous pass, δij is updated to 2 to distinguish cij from

those pixels that will become SG at the current coding pass.

In the refine_pixel(cij) procedure, if cij  TH), a 1 is

transmitted to the bit-stream, and cij is updated to cij − TH if

cij > 0 or to cij + TH if cij < 0. Otherwise, a 0 is sent to the bit-

stream.

The pseudocodes of the encoder and decoder of the

proposed HSLS are shown in Figure 3a and 3b respectively.

The following remarks clarify the operation of the algorithm.
•As mentioned previously, the scalable encoder has to

encode the image at the full bit rate (i.e., until TH = 1). On the

other hand, the decoder may stop when the target bit rate is

reached.

•As mentioned before, for a highly scalable bit-stream, each

resolution level within each coding pass must be recognizable
in the bit-stream. This is easily attained since these levels are

encoded incrementally in each coding pass, by adding a

marker at the beginning of each resolution level, that

designates the length of corresponding the level.

•The decoder algorithm executes the same four steps of the

encoder. The difference is that the decoder works inversely.

That is, when it receives 0/1, this indicates that the
corresponding pixel or SOT is ISG/SG respectively. Then, the

decoder follows the same route as the encoder. Notice that if a

pixel cij is SG, the decoder recognizes that the magnitude of cij

is in the range [TH − 2TH), so cij is reconstructed at the

midpoint which is equal to ±1.5TH based on its sign bit. Then

every received refinement bit increases the precision of the

pixel by ±TH/2 according to the received bit and the sign of the

pixel. For example, assume that at the encoder the initial

threshold TH = 16 and cij = +19. cij is SG as +19  16. So, at

pass#1, the encoder sends 1 and the sign bit 0, and it updates

cij to 19−16 = 3. At pass#2, the encoder updates TH to TH/2 = 8,

and sends 0 as 3 < 8. At pass#3, it updates TH to 4, and sends 0

since 3 < 4. Finally, at pass#4, it updates TH to 2 and sends 1

since 3  2. The decoder first receives TH = 16. At pass#1, the

received bits are 1 and 0, so it reconstructs cij to +1.5TH =

+1.516 = +24. At pass#2, TH is updated to 8 and the received

bit = 0, so cij is updated to +24−4 = +20. At pass#3, TH = 4 and

the received bit = 0, then cij is set to +20−2 = +18. Finally, at

pass#4, TH = 2 and the received bit = 1, then cij is updated to

+18 +1 = +19 which is equal to the original value.

•The decoder can reconstruct an image at resolution Rm,

0 ≤ 𝑚 ≤ M by receiving the data that corresponds to R0 to Rm

and bypassing the data of the other resolutions in each coding
pass. Then it performs m stages of inverse 2D-DWT only to

recover the image with size equal to 1/22𝑚 the size of the

original image.

2.3. The IHSLS algorithm

The IHSLS algorithm has only one coding pass per bit-plane

instead of two. The new coding pass is termed the merging

pass. It merges the sorting sub-pass with the refinement sub-

pass. However, the code_pixel(cij) is modified to code the

pixels that are still ISG and to refine the pixels that became SG

in the preceding coding passes. The merged mcode_pixel(cij)

starts by examining the pixel’s status bit δij. If δij = 0 (i.e., cij is

yet untested), then cij is examined for significance and coded

exactly as done in the code_pixel(cij). On the other hand, if

δij = 1 (i.e., cij is found SG at a previous pass), then cij is refined

as given in the refine_pixel(cij). Notice that in the adopted

coding method, the pixel may be either SG or ISG. Therefore,

one marker bit for  is sufficient: δij = 0 if cij is ISG, and δij = 1

if cij is SG. The pseudocodes of the merged mcode_pixel(cij)

and the merged mdecode_pixel(cij) procedures are shown in

Figure 4. The same notes of the decoding procedure explained

previously apply to mdecode_pixel(cij).

Compared to the HSLS algorithm, the IHSLS algorithm runs

slightly faster because it performs one coding pass per bit-

plane instead of two. In addition, it has a slightly lower memory

requirement as it uses one bit for  instead of two. So, the total

memory of IHSLS is 1.5 bits per pixel instead of the 2.5 bits per

pixel that are required by HSLS. However, the cost of these

benefits is a slight decrement in PSNR performance as

compared to that of HSLS due to the coding pass merging

3. Results and analysis

The proposed algorithms are implemented using Borland C++

v. 5.02 under Intel processor Core i3 PC with 1.8 GHz CPU, and

2 GB RAM. The popular grayscale test images "Lena," "Barbara,"

"Goldhill," and "Mandrill" of size (512512) pixels are used in the

simulation. As with other algorithms, the image is transformed

by the octave 2D-DWT with 5 decomposition levels using the

CDF 9/7 wavelet filter (Vetterli, 2001). The PSNR of the algorithm

vs. the bit rate, as well as its computational time vs. the bit rate,
are used to represent the results. The bit rate is the average

number of bits per pixel (bpp) of the compressed image. The

PSNR measures how similar the original and recovered images

are. It is defined as (Al-Janabi, 2015):

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔2
𝑝𝑚𝑎𝑥

2

𝑀𝑆𝐸
 𝑑𝑒𝑐𝑖𝑏𝑒𝑙𝑠(𝑑𝐵) (2)

where pmax is the maximum pixel value in the original image

(pmax = 28 = 255) for grayscale images), and MSE is the

mean-squared error between the original image Io and the

recovered image Ir, given by:

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 180

 Step 1: Initialization

• TH = 2⌊log2|cmax|⌋;
• send(TH) to bitstream;
• ∀ cij ∈ DWT Image, set δij = 0;

• ∀ rij ∈ R0 to RM−1, set αij = 0;

• ∀ rij ∈ LLM, set βij = 1;

 Step 2: The sorting sub-pass

• ∀ cij ∈ LLM, do: code_pixel(cij);

• ∀ rij ∈ R0 to RM−1 & αij = 1, do:

▪ ∀ Ok ∈ rij, k = 1 to 4, do:

✓ code_pixel(Ok);
• ∀ rij ∈ R0 to RM−1 & βij = 1, do:

▪ If (SOTrij
) is SG do:

✓ send(1) to bitstream;
✓ βij = 0;

✓ ∀ Ok ∈ rij, k = 1 to 4, do:

o code_pixel(Ok);
o βOk

= 1;

▪ Else, send(0) to bitstream;
 Step 3: The refinement sub-pass

• ∀ cij ∈ LLM & δij = 2 do:

▪ refine_pixel(cij);

• ∀ rij ∈ R0 to RM−1 & αij = 1, do:

▪ ∀ Ok ∈ rij, k = 1 to 4, & δk = 2, do

✓ refine_pixel(Ok);

 Step 4: Threshold update

• TH = TH/2;
• If(TH > 1), goto step 2;
• Else, end Encoding;

 code_pixel(cij){

• If(δij = 0) do:

▪ If(|cij| ≥ TH) do:

✓ send(1) to bitstream;
✓ send(sign bit) to bitstream;
✓ δij = 1;

✓ If(cij > 0), cij = cij − TH;

✓ Elseif(cij < 0), cij = cij + TH;

▪ Else, send(0) to bitstream;
• ElseIf(δij = 1), δij = 2;

refine_pixel(cij){

▪ if(|cij| ≥ TH) do:

✓ send(1) to bitstream;

✓ If(cij > 0), cij = cij − TH;

✓ Elseif(cij < 0), cij = cij + TH

▪ Else, send(0) to bitstream; }

(a) The Encoder

 Step 1: Initialization

• receive(TH) from bitstream;
• ∀ cij ∈ DWT Image, set δij = 0;

• ∀ rij ∈ R0 to RM−1, set αij = 0;

• ∀ rij ∈ LLM, set βij = 1;

 Step 2: The sorting sub-pass

• ∀ cij ∈ LLM, do: decode_pixel(cij);

• ∀ rij ∈ R0 to RM−1 & αij = 1, do:

▪ ∀ Ok ∈ rij, k = 1 to 4, do:

✓ decode_pixel(Ok);
• ∀ rij ∈ R0 to RM−1 & βij = 1, do:

▪ If(received bit = 1), do:
✓ βij = 0;

✓ ∀ Ok ∈ rij, k = 1 to 4, do:

o decode_pixel(Ok);
o βOk

= 1;

 Step 3: The refinement sub-pass

• ∀ cij ∈ LLM & δij = 2 do:

▪ derefine_pixel(cij);

• ∀ rij ∈ R0 to RM−1 & αij = 1, do:

▪ ∀ Ok ∈ rij, k = 1 to 4, & δk = 2, do

✓ derefine_pixel(Ok);
 Step 4: Threshold update

• TH = TH/2;
• If(No. of received bits < Target No. of bits),

goto step 2;
• Else, end Decoding;

 decode_pixel(cij){

• If(δij = 0) do:

▪ If(received bit = 1) do:
✓ δij = 1;

✓ receive sign bit;
✓ If(sign bit = 0), cij = 1.5TH;

✓ Elseif(sign bit = 1), cij = −1.5TH;

• ElseIf(δij = 1), δij = 2;

 derefine_pixel(cij){

▪ If(received bit = 1) do:

✓ If(cij > 0), cij = cij + 0.5TH;

✓ Elseif(cij < 0), cij = cij − 0.5TH

▪ ElseIf(received bit = 0) do:

✓ If(cij > 0), cij = cij − 0.5TH;

✓ Elseif(cij < 0), cij = cij + 0.5TH; }

b) The Decoder

Figure 3. The pseudocodes of the proposed HSLS Algorithm.

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 181

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [𝐼0(𝑖, 𝑗) − 𝐼𝑟(𝑖, 𝑗)]2𝑁

𝑗=1
𝑀
𝑖=1 (3)

where MN is the image size (the number of image pixels).

Obviously, for any bit rate, a higher PSNR value is preferred.

3.1. Performance of the proposed SSPIHT algorithm

Table 1 depicts the PSNR vs. bit rate for the proposed SSPIHT,

the original SPIHT, and the MSPIHT algorithm (Rema et al.,

2015) which is optimized to improve the PSNR at low bit rates.
The PSNR of our SSPIHT algorithm is boldfaced where it is

higher than that of MSPIHT. As it is clearly shown, the PSNR of

SSPIHT is higher for nearly all images at all bit rates. This means

that our SSPIHT performs better than SPIHT and MSPIHT. In

addition, as will be seen in the next section, the proposed

SSPIHT runs faster than the original SPIHT, and therefore it runs
also faster than MSPIHT since the latter two algorithms have

nearly the same complexity (Rema et al., 2015). Figure 5 shows

the original “Lena” image and the decoded ones at several bit

rates using SSPIHT

3.2. Performance results of the highly scalable

algorithms with full resolution images

Tables 2 and 3 give a comparison of the PSNR vs. the bit rate of
the proposed HSLS and IHSLS algorithms with the highly

scalable algorithms HS-SPIHT (Danyali & Mertins, 2004) and

LHS-SPIHT (Alam & Khan, 2012) at full resolution (size) image.

Firstly, it should be noted that the PSNR of HS-SPIHT is higher

than that of LHS-SPIHT and the proposed algorithms. This is

normal due to removing the lists from LHS-SPIHT and from our

algorithms. In other words, the slight PSNR decrement is the
price of the huge reduction in computer memory resources.

Secondly, the comparison will be between the LHS-SPIHT and
the proposed HSLS and IHSLS algorithms since they don’t use

lists. The PSNR of our HSLS and IHSLS algorithms is boldfaced

where it is higher than that of LHS-SPIHT. As it can be seen, for

the proposed HSLS, the PSNR is mostly higher for nearly all

images at all bit rates. This means that the proposed HSLS is on

par with the other algorithms in terms of performance. The
advantages of the proposed algorithm are its lower memory

(2.5 bits per pixel while the LHS-SPIHT needs 4 bits per pixel) as

depicted previously, and its lower computational time as

demonstrated within the next section. Finally, the PSNR of the

IHSLS is slightly lower than that of the HSLS. This result is

expected as a price for its speed enhancement due to using of

one pass per bit-plane instead of two, and as a cost for its
memory reduction (1.5 bits per pixel instead of 2.5 bits per

pixel). However, it’s also competitive with the other algorithms.

3.3. Computational time calculation

Table 4 shows the encoding and decoding times of the

algorithms measured in milliseconds (msec) vs. bit rate for the

"Lena" image at full resolution.
The following observations can be deduced:

•For any algorithm, its decoding time is shorter than its

encoding time. This is normal for set partitioning algorithms as

the decoder does not need to scan and process the pixels and

sets to see if they are SG or not.

•The proposed SSPIHT runs faster than the original SPIHT
for all bit rates. This is due to eliminating the necessity to

construct the SOTs twice in each coding pass.

• The LHS-SPIHT, which creates a highly scalable bit-stream,

runs about two times slower than the SPIHT since it needs to

scan and examine all the image pixels two times per coding pass.

 mcode_pixel(cij){

• If(δij = 0) do:

▪ If(|cij| ≥ TH) do:

✓ send(1) to bitstream;
✓ send(sign bit) to bitstream;
✓ δij = 1;

✓ If(cij > 0), cij = cij − TH;

✓ Elseif(cij < 0), cij = cij + TH;

▪ Else, send(0) to bitstream;
• ElseIf(δij = 1) do:

▪ If(|cij| ≥ TH) do:

✓ send(1) to bitstream;

✓ If(cij > 0), cij = cij − TH;

✓ Elseif(cij < 0), cij = cij + TH

▪ Else, send(0) to bitstream; }

 𝑚𝑑𝑒𝑐𝑜𝑑𝑒_𝑝𝑖𝑥𝑒𝑙(𝑐𝑖𝑗){

• 𝐼𝑓(𝛿𝑖𝑗 = 0) 𝑑𝑜:

▪ 𝐼𝑓(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑖𝑡 = 1) 𝑑𝑜:
✓ 𝛿𝑖𝑗 = 1;

✓ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡;
✓ 𝐼𝑓(𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 = 0), 𝑐𝑖𝑗 = 1.5𝑇𝐻;

✓ 𝐸𝑙𝑠𝑒𝑖𝑓(𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 = 1), 𝑐𝑖𝑗 = −1.5𝑇𝐻;

• 𝐸𝑙𝑠𝑒𝐼𝑓(𝛿𝑖𝑗 = 1) 𝑑𝑜:

▪ 𝐼𝑓(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑖𝑡 = 1) 𝑑𝑜:

✓ 𝐼𝑓(𝑐𝑖𝑗 > 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 0.5𝑇𝐻;

✓ 𝐸𝑙𝑠𝑒𝑖𝑓(𝑐𝑖𝑗 < 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 − 0.5𝑇𝐻

▪ 𝐸𝑙𝑠𝑒𝐼𝑓(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑖𝑡 = 0) 𝑑𝑜:

✓ 𝐼𝑓(𝑐𝑖𝑗 > 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 − 0.5𝑇𝐻;

✓ 𝐸𝑙𝑠𝑒𝑖𝑓(𝑐𝑖𝑗 < 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 0.5𝑇𝐻; }

Figure 4. The pseudocodes of the merged mcode_pixel(cij)and mdecode_pixel(cij).

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 182

Table 1. PSNR vs. bit rate for the proposed SSPIHT, SPIHT, and MSPIHT algorithms.

Bit rate

(bpp)

PSNR (dB)

Lena 512512 Goldhill 512512 Barbara 512512

SPIHT MSPIHT
Proposed

SSPIHT
SPIHT MSPIHT

Proposed

SSPIHT
SPIHT MSPIHT

Proposed

SSPIHT

0.01 11.88 15.31 21.02 11.32 16.32 21.87 11.56 15.29 19.89
0.03 22.31 23.69 23.44 21.99 23.07 23.65 20.34 21.15 21.58

0.05 25.03 25.70 26.49 24.17 24.66 25.60 21.92 22.18 22.88
0.1 28.44 28.68 28.88 26.30 26.51 27.13 23.39 23.55 24.24

0.2 31.74 31.88 31.94 28.40 28.50 29.16 25.64 25.83 26.34
0.5 36.46 36.52 36.27 31.47 31.52 32.30 30.38 30.46 31.11

Figure 5. Original “Lena” image and decoded at several bit rates

using the proposed SSPIHT algorithm.

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 183

•The proposed HSLS, which also creates a highly scalable

bit-stream, has very little increment in the encoding and

decoding times as compared to SSPIHT. This is because that

the HSLS needs only to separate and identify the resolution
levels.

•Additionally, the HSLS, and SPIHT algorithms have

approximately the same processing time. This means that our

HSLS added resolution scalability, and reduced the memory

requirements of SPIHT without paying any noticeable cost. In

contrast, the HS-SPIHT increased the memory requirements,
and increased the memory management, while the LHS-

SPIHT increased the complexity further against SPIHT.

•As expected, the Proposed IHSLS runs faster than HSLS

due to pass merging

3.4. Performance results of the highly scalable

algorithms at reduced resolution

A highly scalable decoder may reconstruct the image at a

resolution less than that of the original image. Eqs. 2 and 3 can't

be used to compute the PSNR in this case because the original

and recovered images aren't the same size. Therefore, to be

able to give numerical results at reduced resolution, the same
manner used in (Danyali & Mertins, 2004) which is also used by

Alam and Khan, (2012) will be employed. It utilizes the fact that

an image with resolution s, 0 ≤ s ≤ M, is the subband LLM−s

within the DWT image. So, the original LLM−s and the

recovered LLM−s subbands are compared in place of the

original and recovered images. For this case, pmax would

become the maximum pixel value in the subband LLM−s. It can

Table 2. PSNR vs. bit rate for Lena and Barbara images.

Bit rate
(bpp)

PSNR (dB)

Lena 512512 Barbara 512512

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

0.0625 27.52 26.85 27.35 27.28 22.97 22.59 23.37 23.30

0.125 30.31 29.93 30.04 29.86 24.12 23.65 24.26 24.30
0.25 33.33 33.19 33.00 32.83 26.68 26.75 27.31 27.01

0.5 36.57 36.49 36.24 36.08 30.53 30.48 31.05 30.83
1 39.93 39.58 39.58 39.37 35.28 35.19 36.23 35.77

Table 3. PSNR vs. bit rate for Goldhill and Mandrill images.

Bit rate

(bpp)

PSNR (dB)

Goldhill 512512 Mandrill 512512

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

0.0625 26.27 26.26 26.15 26.11 20.19 20.38 20.26 20.28

0.125 28.02 27.50 27.80 27.70 21.45 21.25 21.27 21.26
0.25 30.19 29.39 29.73 29.80 22.86 22.66 22.58 22.60

0.5 32.40 32.10 32.05 32.13 24.19 24.60 24.68 24.64
1 35.67 35.54 35.40 35.34 28.50 28.30 28.30 28.00

Table 4. The encoding and decoding times vs. bit rate for Lena image.

Bit rate

(bpp)

Encoding Time (msec) Decoding Time (msec)

SPIHT SSPIHT LHS-

SPIHT

HSLS IHSLS SPIHT SSPIHT LHS-

SPIHT

HSLS IHSLS

0.125 15 12 24 16 14 5 5 11 7 5

0.25 20 16 28 22 18 10 10 17 12 10
0.5 26 23 33 26 24 20 20 28 23 21

1 31 28 38 31 28 25 25 33 27 26
2 63 60 52 64 60 32 32 45 35 33

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 184

be shown that for a grayscale image (with 8 bpp), pmax is equal

to (255 × 2M−s) (Danyali & Mertins, 2004). For instance, if an

image with (512  512) pixels is decomposed with M = 5 wavelet

levels, and the image is recovered at resolution s = 4, then

LLM−s = LL5−4 = LL1 represents the recovered image which

has (256  256) pixels (1/4 the original image size), and pmax =

255 × 25−4 = 510.
Tables 5 and 6 depict the PSNR vs. bit rate for the images at

s = 4 (1/4 resolution), while Tables 7 and 8 depict the PSNR vs.

bit rate for the images at s = 3 (1/16 resolution). The bit rates are

computed using to the number of pixels in the full-size image.

The PSNR of our HSLS and IHSLS algorithms is boldfaced

where it is higher than that of LHS-SPIHT. It is worth to note that

in Tables 7 and 8, the PSNR of our algorithms in the last row
represents the PSNR achieved at full bit rate compression (i.e.,

the maximum achievable PSNR). For instance, for the “Lena”

image, the proposed HSLS achieves PSNR = 64.77 dB @0.45

bpp. Evidently, at this full bit rate (0.45 bpp), the PSNR will be

 smaller than that of the other algorithms which calculated the

PSNR @0.5 bpp. However, any PSNR higher than 50 dB is

considered perfect in terms of image quality (Gu et al., 2013). As

it can be seen, for “Barbara” and “Mandrill” images (which have

more details than “Lena” and “Goldhill” images), the proposed

HSLS performs better than the LHS-SPIHT and the HS-SPIHT
for all bit rates. For “Lena” and “Goldhill” images, the PSNR of

HSLS, LHS-SPIHT, and HS-SPIHT are very comparable. In

addition, the proposed IHSLS has also a slightly lower PSNR

than that of HSLS due to the adopted simplifications. On the

other hand, it is superior to LHS-SPIHT and HS-SPIHT for

“Barbara” and “Mandrill” images at all bit rates (except for

“Mandrill” @0.5 bpp for s = 4, and @0.125 bpp for s = 3). Finally,
for “Lena” and “Goldhill” images, the IHSLS is also very

comparable to the LHS-SPIHT, and HS-SPIHT algorithms. This

suggests that our algorithms are very successful for users that

need to recover low-resolution images, such as that

smartphones, tablets, etc.

Table 5. The PSNR vs. Bit rate for Lena and Barbara images @1/4 resolution (s = 4).

Bit rate

(bpp)

PSNR (dB)

Lena Barbara

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

0.0625 28.78 27.98 28.45 28.40 25.94 25.48 26.84 26.73
0.125 32.34 31.84 32.14 31.90 28.41 27.93 29.24 29.20

0.25 37.44 37.21 37.01 36.94 32.64 32.42 33.66 33.65
0.5 43.82 43.52 43.35 43.29 39.19 38.97 39.23 39.19

1 53.25 53.17 53.05 52.92 50.12 50.02 50.19 50.17

Table 6. The PSNR vs. Bit rate for Goldhill and Mandrill images @1/4 resolution (s = 4).

Bit rate

(bpp)

PSNR (dB)

Goldhill Mandrill

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

HS-

SPIHT

LHS-

SPIHT

Proposed

HSLS

Proposed

IHSLS

0.0625 27.79 27.36 27.61 27.59 21.47 21.28 22.74 22.83

0.125 30.81 29.78 30.21 30.03 23.65 23.45 24.73 24.42
0.25 33.86 32.97 32.79 32.87 28.79 28.59 28.87 28.75

0.5 38.81 38.51 38.62 38.59 31.41 31.21 31.58 30.95
1 49.97 49.73 49.77 49.76 39.42 39.23 39.52 39.48

Table 7. The PSNR vs. Bit rate for Lena and Barbara images @1/16 resolution (s = 3).

Bit rate
(bpp)

PSNR (dB)

Lena Barbara

HS-
SPIHT

LHS-
SPIHT

Proposed
HSLS

Proposed
IHSLS

HS-
SPIHT

LHS-
SPIHT

Proposed
HSLS

Proposed
IHSLS

0.0625 32.38 31.86 32.08 32.05 30.83 29.89 31.93 31.93

0.125 40.03 39.53 40.34 40.28 36.55 35.83 36.03 35.75
0.25 50.73 50.30 50.89 50.63 47.34 46.12 46.52 46.28

0.5 70.52 70.51

64.77

@0.45
bpp

64.75

@0.45
bpp

71.16 70.89 63.75

@0.46
bpp

63.70

@0.46
bpp

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 185

4. Conclusions

In this paper, we presented a framework of three related

scalable image compression algorithms. As demonstrated

within the last section, the SSPIHT algorithm has lower

complexity and improved performance than that of the

original SPIHT. Additionally, at low bit rates, it provided higher
PSNR than that of the MSPIHT algorithm, which is optimized

for that purpose. The HSLS algorithm solved the dual

problems of SPIHT: the scalability and the massive memory

resources without paying any noticeable cost concerning its

performance and complexity. In contrast, the HS-SPIHT

increased the complexity and the memory while the LHS-

SPIHT widely increased the complexity as compared to SPIHT.
Moreover, our HSLS algorithm performed better than these

algorithms when the image is recovered at reduced

resolutions. Finally, the IHSLS algorithm is faster and

consumes less memory than that of HSLS. As shown, the only

price for these additional advantages is the very slight

reduction in PSNR.

Conflict of interest

The authors do not have any type of conflict of interest to

declare.

Financing

The authors did not receive any sponsorship to carry out the

research reported in the present manuscript.

References

Alam, M., & Khan, E. (2012). Listless Highly scalable set

parititioning in hierarchical trees coding for transmission of

image over heterogenous networks. International Journal of

Computer Networking, Wireless Mobile Commun.

Al-Janabi, A. K. (2013). Low memory set-partitioning in

hierarchical trees image compression algorithm. International

Journal of Video & Image Processing and Network Security

IJVIPNS-IJENS, 13(2), 12-18.

Al-Janabi, J., & Kadhim, A. (2015). Ultrafast and Efficient

Scalable Image Compression Algorithm. Journal of ICT
Research & Applications, 9(3), 214-235.

https://doi.org/10.5614/itbj.ict.res.appl.2015.9.3.2

Al-Janabi, A. K. (2019). Efficient and simple scalable image compression

algorithms. Ain Shams Engineering Journal, 10(3), 463-470.

https://doi.org/10.1016/j.asej.2019.01.008

Cappellari, L., Milani, S., Cruz-Reyes, C., & Calvagno, G. (2011).
Resolution scalable image coding with reversible cellular

automata. IEEE Transactions on Image Processing, 20(5), 1461-1468.

https://doi.org/10.1109/TIP.2010.2090531

Çeklı, S., & Akman, A. (2017). An efficient SPIHT algorithm and system

architecture for image compression. In 2017 25th Signal Processing

and Communications Applications Conference (SIU) (pp. 1-4). IEEE.

https://doi.org/10.1109/SIU.2017.7960338

Table 8. The PSNR vs. Bit rate for Goldhill and Mandrill images @1/16 resolution (s = 3).

Bit rate
(bpp)

PSNR (dB)

Goldhill Mandrill

HS-
SPIHT

LHS-
SPIHT

Proposed
HSLS

Proposed
IHSLS

HS-
SPIHT

LHS-
SPIHT

Proposed
HSLS

Proposed
IHSLS

0.0625 31.48 30.86 31.33 31.28 25.40 25.21 26.00 26.13

0.125 37.13 36.12 36.87 36.82 31.49 31.31 30.42 30.62
0.25 47.96 46.87 47.05 46.95 40.98 40.82 40.87 40.87

0.5

70.91 70.71 64.80

@0.48
bpp

64.80

@0.48
bpp

60.05 59.97 64.77

@0.52
bpp

64.77

@0.52
bpp

http://www.tjprc.org/view_paper.php?id=729
http://www.tjprc.org/view_paper.php?id=729
http://www.tjprc.org/view_paper.php?id=729
http://www.tjprc.org/view_paper.php?id=729
https://d1wqtxts1xzle7.cloudfront.net/32057065/Low_Memory_SPIHT__Algorithm-libre.pdf?1391503053=&response-content-disposition=inline%3B+filename%3DLow_Memory_Set_Partitioning_in_Hierarchi.pdf&Expires=1649132592&Signature=eY6PUX0~LVxFvKBQw-j~Gy52bJ~E33jW1tc4KFyjMyP~O5C8FSW0W343VGPYMmvMhICdR~ecFoEJNX368nx-YJO0io1SMHnHwETCpVpvrqMGZnY7Vq-qbOQOIUbZp4HyzMSWEwdE~HzA92ixES~3CrHRFADAU3C8ZFxCoqA9myzDELG-yqoclkLGj1V~QZTVkRZ9iHQI7t7Rf-cb4iCUMsQeufykTVAr9~uhjikahyjErb9mUV7WpveR0fr1-6hlauMPqgqCC5-VwRYMSJ5FA5F82s9wqQu-bkGq5Dgq6PvFxEHD3T4CsxzdQuraJX7I8pSZie5woI28x952lSh-rQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/32057065/Low_Memory_SPIHT__Algorithm-libre.pdf?1391503053=&response-content-disposition=inline%3B+filename%3DLow_Memory_Set_Partitioning_in_Hierarchi.pdf&Expires=1649132592&Signature=eY6PUX0~LVxFvKBQw-j~Gy52bJ~E33jW1tc4KFyjMyP~O5C8FSW0W343VGPYMmvMhICdR~ecFoEJNX368nx-YJO0io1SMHnHwETCpVpvrqMGZnY7Vq-qbOQOIUbZp4HyzMSWEwdE~HzA92ixES~3CrHRFADAU3C8ZFxCoqA9myzDELG-yqoclkLGj1V~QZTVkRZ9iHQI7t7Rf-cb4iCUMsQeufykTVAr9~uhjikahyjErb9mUV7WpveR0fr1-6hlauMPqgqCC5-VwRYMSJ5FA5F82s9wqQu-bkGq5Dgq6PvFxEHD3T4CsxzdQuraJX7I8pSZie5woI28x952lSh-rQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/32057065/Low_Memory_SPIHT__Algorithm-libre.pdf?1391503053=&response-content-disposition=inline%3B+filename%3DLow_Memory_Set_Partitioning_in_Hierarchi.pdf&Expires=1649132592&Signature=eY6PUX0~LVxFvKBQw-j~Gy52bJ~E33jW1tc4KFyjMyP~O5C8FSW0W343VGPYMmvMhICdR~ecFoEJNX368nx-YJO0io1SMHnHwETCpVpvrqMGZnY7Vq-qbOQOIUbZp4HyzMSWEwdE~HzA92ixES~3CrHRFADAU3C8ZFxCoqA9myzDELG-yqoclkLGj1V~QZTVkRZ9iHQI7t7Rf-cb4iCUMsQeufykTVAr9~uhjikahyjErb9mUV7WpveR0fr1-6hlauMPqgqCC5-VwRYMSJ5FA5F82s9wqQu-bkGq5Dgq6PvFxEHD3T4CsxzdQuraJX7I8pSZie5woI28x952lSh-rQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/32057065/Low_Memory_SPIHT__Algorithm-libre.pdf?1391503053=&response-content-disposition=inline%3B+filename%3DLow_Memory_Set_Partitioning_in_Hierarchi.pdf&Expires=1649132592&Signature=eY6PUX0~LVxFvKBQw-j~Gy52bJ~E33jW1tc4KFyjMyP~O5C8FSW0W343VGPYMmvMhICdR~ecFoEJNX368nx-YJO0io1SMHnHwETCpVpvrqMGZnY7Vq-qbOQOIUbZp4HyzMSWEwdE~HzA92ixES~3CrHRFADAU3C8ZFxCoqA9myzDELG-yqoclkLGj1V~QZTVkRZ9iHQI7t7Rf-cb4iCUMsQeufykTVAr9~uhjikahyjErb9mUV7WpveR0fr1-6hlauMPqgqCC5-VwRYMSJ5FA5F82s9wqQu-bkGq5Dgq6PvFxEHD3T4CsxzdQuraJX7I8pSZie5woI28x952lSh-rQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.5614/itbj.ict.res.appl.2015.9.3.2
https://doi.org/10.1016/j.asej.2019.01.008
https://doi.org/10.1109/TIP.2010.2090531
https://doi.org/10.1109/SIU.2017.7960338

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 186

Çekli, S., & Akman, A. (2019). Enhanced SPIHT algorithm with

pipelined datapath architecture design. Electrica, 19(1), 29-36.

https://doi.org/10.26650/electrica.2018.15101

Chew, L. W., Ang, L. M., & Seng, K. P. (2009). Reduced memory

spiht coding using wavelet transform with post-processing.
In 2009 International Conference on Intelligent Human-Machine

Systems and Cybernetics (Vol. 1, pp. 371-374). IEEE.

https://doi.org/10.1109/IHMSC.2009.101

Danyali, H., & Mertins, A. (2004). Flexible, highly scalable, object-

based wavelet image compression algorithm for network

applications. IEE Proceedings-Vision, Image and Signal
Processing, 151(6), 498-510.

https://doi.org/10.1049/ip-vis:20040734

Deepthi, S. A., Rao, E. S., & Prasad, M. G. (2018). Image

transmission and compression techniques using SPIHT and

EZW in WSN. In 2018 2nd International Conference on Inventive

Systems and Control (ICISC) (pp. 1146-1149). IEEE.
http://dx.doi.org/10.1109/ICISC.2018.8398984

Drozdek, A. (2012). Data Structures and algorithms in C++.

Cengage Learning.

Gu, K., Zhai, G., Yang, X., Zhang, W., & Liu, M. (2013). Subjective
and objective quality assessment for images with contrast

change. In 2013 IEEE International Conference on Image

Processing (pp. 383-387). IEEE.

https://doi.org/10.1109/ICIP.2013.6738079

Kamargaonkar, C., & Sharma, M. (2016). Hybrid medical image

compression method using SPIHT algorithm and Haar wavelet
transform. In 2016 International Conference on Electrical,

Electronics, and Optimization Techniques (ICEEOT) (pp. 897-

900). IEEE.

http://dx.doi.org/10.1109/ICEEOT.2016.7754817

Lee, R. C., & Hung, K. C. (2018). New modified SPIHT algorithm

for data compression system. Journal of Medical and Biological
Engineering, 39, 18-26.

https://doi.org/10.1007/s40846-018-0384-z

Li, M. S., & Liu, Y. (2017). Image Compression Based on an Improved

SPIHT Algorithm. In 2017 International Conference on Computer

Systems, Electronics and Control (ICCSEC) (pp. 932-935). IEEE.
https://doi.org/10.1109/ICCSEC.2017.8446929

Panjavamam, B., & Bhuvaneswari, P. T. V. (2017). Performance

analysis of SPIHT algorithm for biomedical image transmission.

In 2017 Fourth International Conference on Signal Processing,

Communication and Networking (ICSCN) (pp. 1-5). IEEE.

https://doi.org/10.1109/ICSCN.2017.8085695

Rema, N. R., Oommen, B. A., & Mythili, P. (2015). Image

compression using SPIHT with modified spatial orientation

trees. Procedia Computer Science, 46, 1732-1738.

https://doi.org/10.1016/j.procs.2015.02.121

Rüefenacht, D., Naman, A. T., Mathew, R., & Taubman, D. (2019).

Base-anchored model for highly scalable and accessible
compression of multiview imagery. IEEE Transactions on Image

Processing, 28(7), 3205-3218.

https://doi.org/10.1109/TIP.2019.2894968

Said, A., & Pearlman, W. A. (1996). A new, fast, and efficient

image codec based on set partitioning in hierarchical

trees. IEEE Transactions on circuits and systems for video
technology, 6(3), 243-250.

https://doi.org/10.1109/76.499834

Singh, Y., & Butola, B. S. (2015). Shadow SPIHT with Discarded

Lists. In 2015 1st International Conference on Next Generation

Computing Technologies (NGCT) (pp. 941-943). IEEE.
https://doi.org/10.1109/NGCT.2015.7375259

Sri, A., & Sahu, S. S. (2019). Improved fractal-SPIHT hybrid

image compression algorithm. In 2019 10th International

Conference on Computing, Communication and Networking

Technologies (ICCCNT) (pp. 1-4). IEEE.

https://doi.org/10.1109/ICCCNT45670.2019.8944769

Taubman, D., Ordentlich, E., Weinberger, M., & Seroussi, G.

(2002). Embedded block coding in JPEG 2000. Signal

Processing: Image Communication, 17(1), 49-72.

https://doi.org/10.1016/S0923-5965(01)00028-5

Van Fleet, P. J. (2019). Discrete wavelet transformations: An
elementary approach with applications. pp.183-229, John

Wiley & Sons.

https://doi.org/10.1002/9781119555414

Vetterli, M. (2001). Wavelets, approximation, and compression.

IEEE Signal Processing Magazine, 18(5), 59-73.
https://doi.org/10.1109%2f79.952805

https://doi.org/10.26650/electrica.2018.15101
https://doi.org/10.1109/IHMSC.2009.101
https://doi/
https://doi.org/10.1049/ip-vis:20040734
http://dx.doi.org/10.1109/ICISC.2018.8398984
https://books.google.com.mx/books?hl=es&lr=&id=PRgLAAAAQBAJ&oi=fnd&pg=PR5&dq=Data+structure+and+Algorithms+in+C%2B%2B&ots=z-ImHUk_uM&sig=a9Jq4SfCKKzjr9cb8LZEcw8HFQM#v=onepage&q=Data%20structure%20and%20Algorithms%20in%20C%2B%2B&f=false
https://books.google.com.mx/books?hl=es&lr=&id=PRgLAAAAQBAJ&oi=fnd&pg=PR5&dq=Data+structure+and+Algorithms+in+C%2B%2B&ots=z-ImHUk_uM&sig=a9Jq4SfCKKzjr9cb8LZEcw8HFQM#v=onepage&q=Data%20structure%20and%20Algorithms%20in%20C%2B%2B&f=false
https://doi.org/10.1109/ICIP.2013.6738079
http://dx.doi.org/10.1109/ICEEOT.2016.7754817
https://doi.org/10.1007/s40846-018-0384-z
https://doi.org/10.1109/ICCSEC.2017.8446929
https://doi.org/10.1109/ICSCN.2017.8085695
https://doi.org/10.1016/j.procs.2015.02.121
https://doi.org/10.1109/TIP.2019.2894968
https://doi.org/10.1109/76.499834
https://doi.org/10.1109/NGCT.2015.7375259
https://doi.org/10.1109/ICCCNT45670.2019.8944769
https://doi.org/10.1016/S0923-5965(01)00028-5
https://doi.org/10.1002/9781119555414
https://doi.org/10.1109%2f79.952805

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187

Vol. 20, No. 2, April 2022 187

Wenjun, J., Zhongwei, J., & Weile, Z. (2002). An embedded still

image code algorithm with rate-distortion optimization. In IEEE

2002 International Conference on Communications, Circuits and

Systems and West Sino Expositions (Vol. 1, pp. 1-4). IEEE.

https://doi.org/10.1109/ICCCAS.2002.1180558

Wu, D., Zhang, H., Li, X., & Wang, J. (2013). Multiview Video

Coding Based on Wavelet Pyramids. In 2013 International

Conference on Computational and Information Sciences (pp.

225-228). IEEE.

https://doi.org/10.1109/ICCIS.2013.67

ZainEldin, H., Elhosseini, M. A., & Ali, H. A. (2016). A modified
listless strip based SPIHT for wireless multimedia sensor

networks. Computers & Electrical Engineering, 56, 519-532.

https://doi.org/10.1016/j.compeleceng.2015.10.001

https://doi.org/10.1109/ICCCAS.2002.1180558
https://doi.org/10.1109/ICCIS.2013.67
https://doi.org/10.1016/j.compeleceng.2015.10.001

