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Abstract: The SPIHT is a powerful image compression algorithm. It has reasonable complexity and 
produces a quality (or rate) scalable bit-stream. Unfortunately, SPIHT fails to explore the multi-
resolution nature of the wavelet transform as it doesn't support resolution scalability. Moreover, it 
requires a huge computer memory with complex memory management because it utilizes lists with a 
memory of about 2.5 the image size. This paper proposes three related algorithms. The first algorithm 
modifies SPIHT to reduce its complexity and improve its efficiency, especially at low bit rates. The 
second algorithm is the main contribution of the paper. It provides a simultaneous solution to the 
memory and scalability problems of SPIHT. Memory is reduced by utilizing state marker bits of an 
average size of 2.5 bits per pixel instead of the lists. Resolution scalability is maintained by coding the 
resolution levels in incremental order. Consequently, the resulting bit-stream can be easily and 
efficiently decompressed at numerous qualities and resolutions. This feature is very valuable for 
modern users that have diverse access bandwidths and display capabilities. The third algorithm has 
slightly lower complexity and memory than the second algorithm but has slightly lower performance. 
Another important attribute of our algorithms is that they have a very little increment in complexity in 

comparison to the original SPIHT algorithm. In contrast, the existing solutions have much more 
complexity and memory resources. 
 

∗Corresponding author. 
E-mail address: alik.aljanabi@uokufa.edu.iq (Ali K. Al-Janabi). 

Peer Review under the responsibility of Universidad Nacional Autónoma de México. 

 

http://dx.doi.org/10.1016/j.jart.2017.02.005 
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

https://www.icat.unam.mx/
mailto:alik.aljanabi@uokufa.edu.iq
https://www.unam.mx/


 
 

 

Ali K. Al-Janabi et al. / Journal of Applied Research and Technology 173-187 

 

Vol. 20, No. 2, April 2022    174 

 

1. Introduction 
 

Transmitting compressed images over heterogeneous 

networks such as the Internet requires that the compression 

algorithm be quality and resolution scalable. A quality 

scalable image compression system creates a bit-stream in 

which the data is arranged in such a way that the bits that have 

the higher quality improvement are placed before the other 
bits. As such, the image can be decompressed at any bit rate 

while the (full-size) image quality is the best at this rate. In this 

way, a low bandwidth user can reconstruct a low-quality 

image while a user that has high bandwidth may reconstruct 

the image at high quality. On the other hand, a resolution 

scalable compression creates a bit-stream which consists of 

several subsets. The first subset contains the data that belong 
to the lowest resolution (size) image. The next subset (and all 

the next subsets) contains the necessary data that is required 

to reconstruct the image at a larger resolution. Therefore, if 

only the first subset is received, then the image can be 

reconstructed at the lowest size. If larger image size is desired, 

the decoder utilizes this subset and the next received subsets. 
Resolution scalability is useful for users that have diverse 

display resolutions, such as smartphones, tablets, laptops, 

desktop computers, and TV. Resolution scalability is also 

useful for image browsing. For image browsing, the user first 

receives a fingernail image (a small and rough approximation 

of the original image) that is ample for deciding if the image 

must be received fully or not. Just in case of needing the total size 
image, the user downloads the rest needed information. It is 

advantageous to combine both types of scalabilities to create a 

highly or full scalable bit-stream which is both resolution and 

quality scalable (Al-Janabi, 2019; Rüefenacht et al., 2019). 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

Scalability imposes an important restriction on the 

encoder. Specifically, it must operate without any earlier 

information about the quality and the size at which the image 

will be recovered by the users. Thus, the coder has to 

compress the image at full resolution and quality. After that, 

the compressed bit-stream is stored on a server. Users with 
various image quality and display resolution requirements 

send requests to the server, which delivers the appropriate 

scaled bit-stream to each one of them (Cappellari et al., 2011). 

It is well known that the 2-dimensional discrete wavelet 

transform (2D-DWT) is an indispensable tool for the scalable 

compression of images. Its local spatiality feature simplifies 

quality scalability while its multi-resolution nature easily 
provides resolution scalability. Briefly, the forward 2D-DWT 

starts by decomposing the original image into four subbands 

referred to as LL1, HL1, LH1, and HH1. Next, the LL1 subband 

is also decomposed into another four subbands referred to as 

LL2, HL2, LH2, and HH2. The LLx subband may be 

decomposed M times resulting in 3M+1 subbands. At any 

decomposition stage, the LLm subband, m = 1, 2 … M, 
represents a good approximation copy of the original 

image at reduced resolution with a size equal to 1/22𝑚 the 

original image size. 

The inverse 2D-DWT starts by combining the LLM subband 

with the HLM, LHM, and HHM subbands to reconstruct the 

LLM−1 subband. The inverse process can be done up to M 
times to obtain a replica of the original image. Figure 1 

shows the effect of the 2D-DWT on the test image "Camera 

Man" for two decomposition levels (M = 2). The first 

decomposition level splits the image into LL1, HL1, LH1, 

and HH1 subbands and the second level splits the LL1 subband 

into LL2, HL2, LH2, and HH2 subbands. As seen, the LL1 and the  

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

Figure 1. The effect of two levels of 2D-DWT on the "Camera Man". 
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LL2subbands are good approximated copies of the original 

image with sizes equal to 1/22 = 1/4 and to 1/24 = 1/16 the 

original image size respectively (Van Fleet, 2019; Vetterli, 2001). 

The wavelet subbands are arranged into M+1 resolution 

levels labeled R0, R1 … RM. The lowermost resolution level, 

R0, consists of the LLM subband only. Each one of the next 
levels Rm,   1 ≤ m ≤ M, consists of the three subbands 

HLM−m+1, LHM−m+1, and HHM−m+1 that are necessary to 

reconstruct the LLM−m subband during the inverse 2D-DWT 

process. Refer to Figure 1, the wavelet image has three 

resolution levels (R0, R1, and R2) that are represented by the 

yellow colour located at the down-right corner boundary of 

the corresponding resolution level. At the decoder, an image 
at the lowest resolution (1/16 the image size) can be obtained 

directly from the LL2 subband. The image may be recovered 

at higher resolution by combining the LL2 subband with the 

three subbands of R1 (HL2, LH2, and HH2), and performing 

one stage of inverse 2D-DWT to obtain LL1 (1/4 the image 

size). Finally, the image may be recovered at the biggest 

resolution (the entire image size) by combining the LL1 
subband with the 3 subbands of R2 (HL1, LH1, and HH1), 

and carry out another stage of inverse 2D-DWT to get a 

replica of the original image. Therefore, a resolution 

scalable bit-stream can be easily achieved if the resolution 

levels are encoded successively and are identifiable within 

the compressed bit-stream (Taubman et al., 2002). 
The set partitioning in hierarchical trees (SPIHT) (Said & 

Pearlman, 1996) is a powerful wavelet-based image compression 

algorithm. Its main pros are it has reasonable complexity, good 

PSNR (peak signal to noise ratio) vs. the bit rate performance, and 

it creates a quality scalable bit-stream. At its invention time, the 

last feature was very interesting as it adds freedom to the user to 

select the desired quality of the received image very easily. 
However, this feature is not sufficient nowadays for users that 

have devices with diverse display resolution capabilities such 

as laptops smartphones, tablet PCs, etc. As such, adding 

resolution scalability to SPIHT to generate a highly (rate and 

resolution) scalable bit-stream is very valuable (Cappellari et 

al., 2011; Wu et al., 2013). The second important weakness of 

SPIHT is its massive memory consumption, and complex 
memory management, which are caused by the use of three 

linked lists to save the image pixels’ coordinates. These lists 

consume memory about 2.5 times the DWT image (Chew et al., 

2009; Singh & Butola, 2015) which represents a true constraint 

for low memory devices such as wireless sensors  (Deepthi et 

al., 2018; ZainEldin et al., 2015) or for compressing volumetric 
medical images (Kamargaonkar & Sharma, 2016; Panjavamam 

& Bhuvaneswari, 2017). In addition, in the case of compressing 

multi-components images such as RGB colour images in 

parallel, the algorithm would need a memory of about 3x2.5 = 

7.5 times the DWT image which represents a very serious 

obstacle. Finally, from the scalability point of view, using the 

linked lists prohibits resolution scalability due to the 

recurrent process of removing/adding pixels from/to lists, 

which makes the stored pixels in these lists not ordered 

according to the resolution levels (Cappellari et al., 2011; 

Taubman et al., 2002). 

The SPIHT starts by applying the octave 2D-DWT to the 
image for M decomposition levels (normally M = 5). Next, every 

DWT coefficient cij is quantized to ⌊𝑐𝑖𝑗⌋, where ⌊x⌋ is the closest 

integer  x. Then, every ⌊𝑐𝑖𝑗⌋ is represented using K bits 

(typically 16 bits), where the first bit is the sign bit (e.g., 1 for 

negative and 0 for positive coefficient), and the remaining K − 

1 bits are the magnitude bits. SPIHT creates a quality scalable 

bit-stream using a power of two threshold coding combined 

with bit-plane coding by which the DWT coefficients are coded 

on a per-bit basis starting from the first non-zero MSB (most 

significant bit) to the LSB (least significant bit). The first non-

zero MSB is determined if the threshold TH is selected to be: 
 

TH = 2⌊log2|cmax|⌋                                                                                        (1) 

 

where cmax is the magnitude of the pixel that has the 

maximum value in the DWT image, and |x| is the absolute value 

of x. The next bit(s) is encoded by decremented TH to TH/2 until 

TH equals 1. TH is sent to the decoder to identify the first non-

zero MSB. At each bit-plane coding pass, a DWT coefficient 

equals to or greater than TH is deemed significant (SG); 
otherwise, it is deemed insignificant (ISG). Similarly, a set 

consisting of several coefficients is deemed SG if it contains one 

or more SG coefficients. 

A closer look at Figure 1 reveals that there exists a shadow 

for the DWT image in all subbands. This means that if a 

coefficient located at a given position in the LLM subband is 
ISG, then the coefficients located at the other subbands that 

have the same position (with respect to their subbands), are 

also expected to be ISG. SPIHT exploits this feature to collect 

as many ISG coefficients as possible and coding them by one 

symbol. This is attained by combining these ISG coefficients 

together to build trees referred to as spatial orientation trees 

(SOTs). The primary roots of these SOTs are the pixels of the 
LLM subband excluding the top-left pixel in every set of (2×2) 

pixels. Every one of the three roots in each (2×2) set is 

considered a parent for four offspring located at HLM, LHM, 

and HHM respectively according to its orientation. That is, 

the top-right pixel is linked to HLM, the down-left pixel is 

linked to LHM, and the down-right pixel is linked to HHM. 

Then every pixel in subbands HLm, LHm, and HHm, M ≥ m ≥
2, is considered a root (parent) to four offspring located at 

HLm−1, LHm−1, and Hm−1 respectively. Notice that the pixels 

in the HL1, LH1, and HH1 subbands have no offspring as they 

are the leaves of the trees. Figure 2 describes the SOTs of the 

first set of size (2×2) pixels in the subband LL2 for an image 

decomposed to two 2D-DWT levels, where each numbered 
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colour represents a root of an entire SOT that extends across 

several resolution levels, and the unnumbered colour 

represent the leaves of these SOTs. 

 

 
 

Figure 2. The spatial orientation trees for a 
2D-DWT image with two decomposition levels. 

 

SPIHT utilizes three linked lists referred to as the list of 

insignificant pixels (LIP), the list of insignificant sets (LIS), and 

the list of significant pixels (LSP). The LIP and LSP keep the 

(i, j) coordinates of the ISG, and SG pixels respectively while 
the LIS keeps the (i, j) coordinates of the roots of the SOTs. 

SPIHT makes use of two type of roots. A root of type A 

represents the parent of a whole SOT, while a root of type B 

represents the parent of a partial SOT, which is a whole SOT 

excluding its four direct offspring (children). The LSP is 

initialized empty, the LIP is initialized by the (i, j) coordinates 

of the pixels in the LLM subband, and the LIS is initialized by 
the (i, j) coordinates of the primary parent roots of SOTs, 

which are the pixels in the LLM subband excluding the top-left 

pixel in every (2×2) set. 

The first coding pass consists of the sorting sub-pass while 

the next coding passes consist of the sorting and the 

refinement sub-passes. Over the sorting sub-pass, every pixel 

cij in LIP is examined for the current threshold TH. If cij is ISG, a 

0 is sent to the output bit-stream. If cij is SG, a 1 and its sign bit 

are sent to the bit-stream, and the pixel’s coordinates are 

transferred to LSP for refinement in the next passes. Next, each 

root rij in LIS is examined. if rij is of type A, its entire SOT is 

constructed and examined. If the SOT is still ISG, a 0 is sent to 

the bit-stream. Conversely, if the SOT is SG, then a 1 is sent to 

the bit-stream, and the four direct offspring of rij are examined. 

If an offspring is ISG, a 0 is sent to the bit-stream and its (i, j) 
coordinates are added to LIP to be tested in the next coding 

passes. If the offspring is SG, a 1, and its sign bit are sent to the 

bit-stream, and its (i, j) coordinates are added to LSP for 

refinement during the next passes. Finally, if rij is of type A and 

has grandchildren (i.e., it lies in LLM to HH2 subbands), then rij 

is removed from current position and added to the end of LIS 

as a type B root to be examined later on at the same pass. 

Alternatively, if rij is of type B, so a partial SOT that excludes its 

direct four offspring is constructed and examined again. If this 

partial SOT is SG, then a 1 is sent to the bit-stream, rij is 

removed from LIS, and each one of its four offspring is added 
to the end of LIS as a type A root to be examined later on at the 

same pass. If the partial SOT is ISG, then a 0 is sent to the bit-

stream and rij is kept in LIS to be examined again in the 

following coding pass. 

All pixels in LSP are refined during the refinement sub-pass, 

with the exception of those added during the current pass. A 

pixel cij is refined by sending its nth MSB to the bit-stream. After 

finishing the sorting and refinement sub-passes, the threshold 
TH is halved to begin a new coding pass. This process is 

repeated till the threshold is equal to 1, which means that all 

the pixels are encoded. 

Several works interested in increasing the PSNR vs. the bit 

rate performance of SPIHT are presented cf. (Çeklı & Akman, 

2017; Cekli & Akman, 2019; Lee & Hung, 2018; Li & Liu, 2017; Sri 

& Sahu, 2019). The modified SPIHT (MSPIHT) algorithm 
presented by Rema et al. (2015) is one of the most efficient 

algorithms found in the literature. The MSPIHT algorithm used 

modified SOTs that ensure that the algorithm codes the more 

significant information in the initial bit-planes. It enhanced the 

PSNR at very low bit rates (less than 0.5 bpp) but gave 

approximately the same PSNR for bit rates greater than 0.5 
bpp. Furthermore, MSPIHT has the same limitations as SPIHT 

regarding memory consumption and management. Al-Janabi 

(2013) proposed an efficient, low complexity, and low memory 

algorithm termed the Single List SPIHT (SLS). It reduced the 

memory consumption of SPIHT to about 80% by using one list 

of size equal to 1/4 the image size and two-state marker bits 

per pixel. At the same time, it preserved the PSNR and the low 
complexity features of SPIHT. 

Danyali and Mertins (2004) focused on solving the 

scalability problem of SPIHT in their highly scalable-SPIHT 

(HS-SPIHT) algorithm. The HS-SPIHT algorithm added 

resolution scalability to SPIHT by utilizing resolution-

dependent sorting passes with the related resolution-

dependent linked lists. That is, for every resolution level Rm , 
m = 0, 1…M, a set of LIP, LSP, and LIS lists are employed. 

Therefore, there are LIPm, LSPm, and LISm. In each coding 

pass, the coder starts encoding from resolution level 0 and 

proceeds to the utmost level M. The algorithm first does the 

sorting sub-pass for the coefficients within the LIPm, and then 

it processes the roots in the LISm in the same way as done in 
SPIHT. In the refinement sub-pass, each pixel in LSPm is 

refined by sending its nth MSB to the bit-stream. After finishing 

the sorting and refinement sub-passes for resolution Rm, the 
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process is repeated for the lists related to the subsequent 

resolution levels. Unfortunately, the HS-SPIHT algorithm has 

also the same weakness of SPIHT regarding memory 

consumption. Furthermore, it must deal with 3M linked lists 

instead of 3. This needs extra efforts for memory management 

and consequently increases the complexity of the algorithm as 
compared to the SPIHT algorithm. 

Alam and Khan (2012) introduced the Listless HS-SPIHT 

(LHS-SPIHT) algorithm. It utilized the linear indexing technique 

to convert the DWT image from a 2D array to a 1D array of the 

same size to simplify the tracking of set partitioning. The 

functionalities of the lists LIPm, LSPm, and LISm of HS-SPIHT 

are performed using fixed-size state marker bits. That is, rather 
than adding the ISG pixels to LIPm, the SG pixels to LSPm, and 

the roots to LISm, the corresponding state marker bit is 

updated accordingly. For example, updating the marker bit of 

a pixel cij that lies in Rm to 1 is equivalent to adding its 

coordinates to LIPm. Consequently, rather than of examining 

the pixels in every LIPm only, the algorithm must examine the 

state marker bit of every pixel within the DWT image and codes 
the pixels that have a marker bit equals to 1 only. The same 

thing occurs for the SG pixels in every LSPm and the roots in 

every LISm. This means that LHS-SPIHT must examine all the 

image pixels twice, and must examine the roots in subbands 

LLM to HH2 once in each coding pass. As a result, the 

algorithm's complexity rises when compared to HS-SPIHT, and 

consequently the complexity rises even more when compared to 
SPIHT. The average memory of the state marker is 4 bits per pixel. 

Since each pixel in the DWT image is represented by 16 bits, so 

the marker bits need additional memory equal to 1/4 the size of 

the DWT image. More importantly, using the linear indexing 

technique necessitates either saving the 2D-DWT image into the 

main memory and then writing it into a 1D array or both 2D-DWT 
images and the 1D array must be available in memory at the 

same time. Unfortunately, the former solution is time-

consuming while the latter one demands additional memory 

equals to the DWT image (Drozdek, 2012). So, the actual 

memory of LHS-SPIHT is equal to 1+1/4 = 1.25 the image size. 

 

2. The proposed algorithms 

 

This section first presents a modified version of the SPIHT 
algorithm termed the simplified SPIHT (SSPIHT) as it employs 

one type of roots instead of two. Then, the proposed Highly 

Scalable Listless SPIHT (HSLS) algorithm that represents the 

current work's main contribution is introduced. The proposed 

work reduces the memory of the SLS algorithm presented in 

(Al-Janabi, 2013) further by replacing the list with state marker 

bits that consume on average 0.5 bit per pixel. More 
importantly, it upgrades the SLS algorithm to creates a highly  

 

 

scalable bit-stream that can be decompressed at numerous  

bit rates and resolutions by processing the resolution levels in 

each coding pass incrementally. Finally, the Interleaved HSLS 

(IHSLS) which is a simplified version of HSLS is put forward. 

 

2.1. The SSPIHT algorithm 

Recall that in SPIHT, there are two types of roots. A root of type 

A is coded by constructing its complete SOT, and if this SOT is 
SG, and the root has grandchildren, then the root type is 

changed to type B root and added to LIS again. A type B root 

is coded by constructing its partial SOT (which excludes the 

four direct offspring of the root). And if this SOT is SG, then the 

root is taken out from LIS and its four direct offspring are 

added to LIS as type A roots. This means that for every root, 

the SOT must be constructed twice in each coding pass; one 
when the root is of type A, and one when it is transformed to 

type B. The proposed SSPIHT doesn’t need to use two types of 

roots. It is based on the observation that if a complete SOT of 

a given root is SG, then its partial SOT has a high probability of 

being SG too (Wenjun et al., 2002). Thus, the condition of 

adding its four direct offspring to LIS as roots of type A has a 
high chance of being satisfied. In other words, there is no need 

to do the condition test. 

In SSPIHT, the coding of the LIP and LSP is done exactly as 

in SPIHT. However, the LIS is processed differently as follows: 

for every root in LIS, its whole SOT is constructed and examined 

for significance. If the SOT is ISG, a 0 is sent to the bit-stream as 

before. If the SOT is SG, then a 1 is sent to the bit-stream, and 
each one of the root’s four direct offspring is coded as done in 

SPIHT. Finally (and more importantly), if this SG root has 

grandchildren (i.e., it lies in LLM to HH2 subbands), then the 

root is taken out from LIS and each one of its four direct 

offspring is added as a root to the end of LIS to be examined 

later during the present pass. This modification avoids the 

extra processing time for constructing the partial SOT for every 
root of type B and eliminates the need of using the type bit. In 

addition, SSPIHT has superior PSNR performance than the 

MSPIHT algorithm presented by Rema et al. (2015) which is 

optimized to improve the PSNR at low compression bit rates as 

will be shown experimentally in the next section. 

 

2.2. The HSLS algorithm 

The proposed HSLS algorithm benefits from the multi-
resolution characteristics of the 2D-DWT to generate a highly 

scalable bit-stream that can be decompressed at more than 

one rate (quality) and more than one resolution (size). Like the 

LHS-SPIHT algorithm (Alam & Khan, 2012), the proposed HSLS 

algorithm also makes use of state marker bits instead of the 

linked lists used by SPIHT. However, the HSLS has the following 

advantages over LHS-SPIHT: 
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• It doesn’t use the linear indexing technique to avoid the 

complexity or the memory increment of this technique as 

clarified previously. 

• HSLS utilizes one marker bit termed  of size 2 bits for every 

pixel in the DWT image, and two markers termed  and  of 

size 1 bit each for every root in the subbands LLM to HH2. Since 

the total size of these subbands is equal to 1/4 the size of the 
image, so every root marker needs on average 1/4 bit. So, the 

total memory consumed by our HSLS algorithm is 2+1/4+1/4 = 

2.5 bits per pixel only. In contrast, LHS-SPIHT used an average 

of 4 bits per pixel (Alam & Khan, 2012). 

•Like SSPIHT, it employs one type of roots. 

• It eliminates the need to examine all the image pixels twice 

per pass. The main idea behind this is based on the fact that 
the pixels stored in the LIP represent the ISG offspring, and the 

pixels stored in the LSP represent the SG offspring of the roots 

of the SOTs that are found SG. So, these ISG and SG pixels can 

be easily deduced from the parent SG roots. In this way, the LIP 

and LSP can be dispensed by only computing the offspring that 

belong to the roots of the SG SOTs in each coding pass. Since 

these roots are located in subbands LLM to HH2 which have a 
size equal to 1/4 the DWT image size, and since only the SG 

SOTs are processed, then at most only 1/4 the image pixels 

need to be processed instead of testing all the image pixels two 

times in each pass as done in LHS- SPIHT (Alam & Khan, 2012).  

Evidently, this will reduce the algorithm's computational time. 

The purpose of the state marker bits , , and  is to 

indicate the significance status of the corresponding pixel 
and root as follows:  

• δij = 0: the pixel cij is ISG. 

• δij = 1: cij has just become SG in the current coding pass. 

• δij = 2: cij is found SG in one of the previous coding 

passes. 

• αij = 0: the root rij has an ISG SOT. 

• αij = 1: rij has a SG SOT. 

• βij = 0: rij is not considered for testing in the current 

coding pass or it is tested in a previous coding pass. 

• 𝛽𝑖𝑗 = 1: 𝑟𝑖𝑗 is considered for testing in the current 

coding passes. 

At initialization, HSLS computes the threshold TH using Eq. 

1. Then, it sets the marker bit  of every pixel in the DWT image 
to 0 to indicate that all the pixels are still ISG, sets the marker 

bit  for every root to 0 to indicate that all the roots are still 

ISG, and finally sets the marker bit  of every root in the LLM 

subband to 1, and all other roots to 0. Setting the marker bit 

βij of the root rij to 1 is equivalent to adding the (i, j) 

coordinates of rij to LIS in SPIHT.  

The first bit-plane coding pass consists of the sorting sub-

pass only while the other passes consist of the sorting and 
refinement sub-passes. To preserve resolution scalability in 

each coding pass, the algorithm scans the DWT image from 

the lowest resolution level R0, which contains the LLM 

subband only, to the utmost resolution level RM, which 

contains the HL1, LH1, and HH1 subbands. That is, in each 

coding pass, the algorithm performs the sorting sub-pass for 

all resolutions incrementally, and then performs the 

refinement sub-pass for all resolutions incrementally too. 

The sorting sub-pass starts by coding each pixel cij in 

resolution R0 by the code_pixel(cij) procedure described 

next. Then, it will proceed to the next resolutions (R1 − RM). 

For every resolution Rm,    1 ≤ m ≤ M, all the parent roots are 

examined. It is worth noting that the parent roots of Rm lie in 

Rm−1 (i.e., the parent roots of R1 lie in R0 and so on). So, in 

fact, the parent roots are located in (R0 − RM−1). So, for every 

resolution, Rm, 0 ≤ m ≤ M − 1, each root rij that is found SG 

in a previous coding pass (i.e., with αij = 1) is processed by 

computing its direct four offspring Ok, k = 1, 2, 3, 4. Then, 
each offspring Ok is coded as a pixel by the code_pixel(Ok). 

Notice that this step is left out in the first coding pass as all the 

roots are still ISG. Finally, for every resolution, Rm, 0 ≤ m ≤

M − 1, each root rij that is considered for testing in the current 

coding pass (i.e., with βij = 1), its SOT is constructed and 

tested for significance. If rij has still an ISG SOT, a 0 is 

transmitted to the bit-stream, and rij will be examined again 

in the next pass. If rij has an SG SOT, a 1 is sent to the bit-

stream, αij is updated to 1 (i.e., rij is marked as a SG root), and 

βij is updated back to 0 (this is equivalent to removing the (i, j) 

coordinates of rij from LIS). Then, each one of the rij′s direct 

four offspring Ok, k = 1, 2, 3, 4 is coded as a pixel by the 

code_pixel(Ok). Finally, the marker bit of each one of its direct 

four offspring 
Ok

is updated to 1 in order to be considered for 

testing as roots at the next resolution in the current pass. 

However, the last step is not performed for the offspring that 

lie at the utmost resolution level RM because they are the 

leaves of the trees. 

The refinement sub-pass firstly sends every pixel cij in R0 

that is found SG in the previous passes (i.e., with δij = 2) to 

the refine_pixel(cij) procedure, described shortly, for 

refining. Next, for every resolution level Rm, 1 ≤ 𝑚 ≤ M, 

each one of its SG roots rij (i.e., with αij = 1) that lie in Rm−1, 

its direct four offspring Ok, k = 1, 2, 3, 4 is coded by the 

refine_pixel(Ok) procedure to refine its magnitude. Lastly, 

the threshold TH is updated to TH/2 to proceed to the next 

coding pass until the threshold is equal to 1 indicating that 

all the pixels are encoded. 

The code_pixel(cij) procedure works as follows: If cij is yet 

marked ISG (i.e., δij = 0), cij is tested for significance. If cij  

TH, (i.e., cij has just become SG), a 1 and the sign bit are 

transmitted to the bit-stream, δij  is set to 1 (this is equivalent 

to adding the (i, j) coordinates of cij to LSP in SPIHT), and 

finally, cij is updated to cij − TH if it is positive or to cij + TH if 

it is negative. Conversely, if |cij| < TH (i.e., cij is yet ISG), a 0 is 

transmitted to the bit-stream. If δij = 1 (i.e., cij is found SG at 
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the previous pass, δij  is updated to 2 to distinguish cij from 

those pixels that will become SG at the current coding pass. 

In the refine_pixel(cij) procedure, if  cij  TH), a 1 is 

transmitted to the bit-stream, and cij is updated to cij − TH if 

cij > 0 or to cij + TH if cij < 0. Otherwise, a 0 is sent to the bit-

stream.  

The pseudocodes of the encoder and decoder of the 

proposed HSLS are shown in Figure 3a and 3b respectively. 

The following remarks clarify the operation of the algorithm. 
•As mentioned previously, the scalable encoder has to 

encode the image at the full bit rate (i.e., until TH = 1). On the 

other hand, the decoder may stop when the target bit rate is 

reached. 

•As mentioned before, for a highly scalable bit-stream, each 

resolution level within each coding pass must be recognizable 
in the bit-stream. This is easily attained since these levels are 

encoded incrementally in each coding pass, by adding a 

marker at the beginning of each resolution level, that 

designates the length of corresponding the level. 

•The decoder algorithm executes the same four steps of the 

encoder. The difference is that the decoder works inversely. 

That is, when it receives 0/1, this indicates that the 
corresponding pixel or SOT is ISG/SG respectively. Then, the 

decoder follows the same route as the encoder. Notice that if a 

pixel cij is SG, the decoder recognizes that the magnitude of cij 

is in the range [TH −  2TH), so cij is reconstructed at the 

midpoint which is equal to ±1.5TH based on its sign bit. Then 

every received refinement bit increases the precision of the 

pixel by ±TH/2 according to the received bit and the sign of the 

pixel. For example, assume that at the encoder the initial 

threshold TH = 16 and cij = +19.  cij is SG as +19  16. So, at 

pass#1, the encoder sends 1 and the sign bit 0, and it updates 

cij to 19−16 = 3. At pass#2, the encoder updates TH to TH/2 = 8, 

and sends 0 as 3 < 8. At pass#3, it updates TH to 4, and sends 0 

since 3 < 4. Finally, at pass#4, it updates TH to 2 and sends 1 

since 3  2. The decoder first receives TH = 16. At pass#1, the 

received bits are 1 and 0, so it reconstructs cij to +1.5TH = 

+1.516 = +24. At pass#2, TH is updated to 8 and the received 

bit = 0, so cij is updated to +24−4 = +20. At pass#3, TH = 4 and 

the received bit = 0, then cij is set to +20−2 = +18. Finally, at 

pass#4, TH = 2 and the received bit = 1, then cij is updated to 

+18 +1 = +19 which is equal to the original value.  

•The decoder can reconstruct an image at resolution Rm, 

0 ≤ 𝑚 ≤ M by receiving the data that corresponds to R0 to Rm 

and bypassing the data of the other resolutions in each coding 
pass. Then it performs m stages of inverse 2D-DWT only to 

recover the image with size equal to 1/22𝑚 the size of the 

original image.  

 

 

 

2.3. The IHSLS algorithm 

The IHSLS algorithm has only one coding pass per bit-plane 

instead of two. The new coding pass is termed the merging 

pass. It merges the sorting sub-pass with the refinement sub-

pass. However, the code_pixel(cij) is modified to code the 

pixels that are still ISG and to refine the pixels that became SG 

in the preceding coding passes. The merged mcode_pixel(cij) 

starts by examining the pixel’s status bit δij. If δij = 0 (i.e., cij is 

yet untested), then cij is examined for significance and coded 

exactly as done in the code_pixel(cij). On the other hand, if 

δij = 1 (i.e., cij is found SG at a previous pass), then cij is refined 

as given in the refine_pixel(cij). Notice that in the adopted 

coding method, the pixel may be either SG or ISG. Therefore, 

one marker bit for  is sufficient: δij = 0 if cij is ISG, and δij = 1 

if cij is SG. The pseudocodes of the merged mcode_pixel(cij) 

and the merged mdecode_pixel(cij) procedures are shown in 

Figure 4. The same notes of the decoding procedure explained 

previously apply to mdecode_pixel(cij). 

Compared to the HSLS algorithm, the IHSLS algorithm runs 

slightly faster because it performs one coding pass per bit-

plane instead of two. In addition, it has a slightly lower memory 

requirement as it uses one bit for  instead of two. So, the total 

memory of IHSLS is 1.5 bits per pixel instead of the 2.5 bits per 

pixel that are required by HSLS. However, the cost of these 

benefits is a slight decrement in PSNR performance as 

compared to that of HSLS due to the coding pass merging 

 

3. Results and analysis 

 

The proposed algorithms are implemented using Borland C++ 

v. 5.02 under Intel processor Core i3 PC with 1.8 GHz CPU, and 

2 GB RAM. The popular grayscale test images "Lena," "Barbara," 

"Goldhill," and "Mandrill" of size (512512) pixels are used in the 

simulation. As with other algorithms, the image is transformed 

by the octave 2D-DWT with 5 decomposition levels using the 

CDF 9/7 wavelet filter (Vetterli, 2001). The PSNR of the algorithm 

vs. the bit rate, as well as its computational time vs. the bit rate, 
are used to represent the results. The bit rate is the average 

number of bits per pixel (bpp) of the compressed image. The 

PSNR measures how similar the original and recovered images 

are. It is defined as (Al-Janabi, 2015): 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔2
𝑝𝑚𝑎𝑥

2

𝑀𝑆𝐸
     𝑑𝑒𝑐𝑖𝑏𝑒𝑙𝑠(𝑑𝐵)                                            (2) 

 

where pmax is the maximum pixel value in the original image 

(pmax = 28 = 255) for grayscale images), and MSE is the 

mean-squared error between the original image Io and the 

recovered image Ir, given by: 
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 Step 1: Initialization 

• TH = 2⌊log2|cmax|⌋;    
• send(TH) to bitstream; 
• ∀ cij ∈ DWT Image, set δij = 0; 

• ∀ rij ∈  R0 to RM−1, set αij = 0; 

• ∀ rij ∈  LLM, set βij = 1; 

  Step 2: The sorting sub-pass 

• ∀ cij ∈  LLM, do: code_pixel(cij); 

• ∀ rij ∈ R0 to RM−1 &  αij = 1, do: 

▪ ∀ Ok ∈  rij, k = 1 to 4, do: 

✓ code_pixel(Ok); 
• ∀ rij ∈ R0 to RM−1 &  βij = 1, do:  

▪ If (SOTrij
) is SG do: 

✓ send(1) to bitstream; 
✓ βij = 0; 

✓ ∀ Ok ∈  rij, k = 1 to 4, do: 

o code_pixel(Ok); 
o βOk

= 1; 

▪ Else, send(0) to bitstream;  
  Step 3: The refinement sub-pass 

• ∀ cij ∈ LLM  &  δij  = 2 do: 

▪ refine_pixel(cij); 

• ∀ rij ∈ R0 to RM−1 & αij = 1, do: 

▪ ∀ Ok ∈  rij, k = 1 to 4, & δk  = 2, do 

✓ refine_pixel(Ok); 
  

 Step 4: Threshold update 

• TH = TH/2; 
• If(TH > 1), goto step 2;  
• Else, end Encoding; 

  code_pixel(cij){  

• If(δij = 0) do:  

▪ If(|cij| ≥ TH) do: 

✓ send(1) to bitstream; 
✓ send(sign bit) to bitstream; 
✓  δij = 1; 

✓ If(cij > 0), cij = cij − TH; 

✓ Elseif(cij < 0), cij = cij + TH; 

▪ Else, send(0) to bitstream;  
• ElseIf(δij = 1),   δij = 2;  

refine_pixel(cij){ 

▪ if(|cij| ≥ TH) do: 

✓ send(1) to bitstream; 

✓ If(cij > 0), cij = cij − TH; 

✓ Elseif(cij < 0), cij = cij + TH 

▪ Else, send(0) to bitstream; } 

 

(a) The Encoder 

 

 Step 1: Initialization 

• receive(TH) from bitstream; 
• ∀ cij ∈ DWT Image, set δij = 0; 

• ∀ rij ∈  R0 to RM−1, set αij = 0; 

• ∀ rij ∈  LLM, set βij = 1; 

   
 Step 2: The sorting sub-pass 

• ∀ cij ∈  LLM, do: decode_pixel(cij); 

• ∀ rij ∈ R0 to RM−1 &  αij = 1, do: 

▪ ∀ Ok ∈  rij, k = 1 to 4, do: 

✓ decode_pixel(Ok); 
• ∀ rij ∈ R0 to RM−1 &  βij = 1, do:  

▪ If(received bit = 1), do:  
✓ βij = 0; 

✓ ∀ Ok ∈  rij, k = 1 to 4, do: 

o decode_pixel(Ok); 
o βOk

= 1; 

  Step 3: The refinement sub-pass 

• ∀ cij ∈ LLM  &  δij  = 2 do: 

▪ derefine_pixel(cij); 

• ∀ rij ∈ R0 to RM−1 &  αij = 1, do: 

▪ ∀ Ok ∈  rij, k = 1 to 4, &  δk  = 2, do  

✓ derefine_pixel(Ok); 
  Step 4: Threshold update 

• TH = TH/2; 
• If(No. of received bits < Target No. of bits),

goto step 2; 
• Else, end Decoding; 

 
  decode_pixel(cij){  

• If(δij = 0) do: 

▪ If(received bit = 1) do: 
✓ δij = 1; 

✓ receive sign bit; 
✓ If(sign bit = 0), cij = 1.5TH; 

✓ Elseif(sign bit = 1), cij = −1.5TH;  

• ElseIf(δij = 1),   δij = 2;  

 derefine_pixel(cij){  

▪ If(received bit = 1) do: 

✓ If(cij > 0), cij = cij + 0.5TH; 

✓ Elseif(cij < 0), cij = cij − 0.5TH 

▪ ElseIf(received bit = 0) do: 

✓ If(cij > 0), cij = cij − 0.5TH;   

✓ Elseif(cij < 0), cij = cij + 0.5TH; } 

 
 

b) The Decoder 

Figure 3. The pseudocodes of the proposed HSLS Algorithm. 
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𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [𝐼0(𝑖, 𝑗) − 𝐼𝑟(𝑖, 𝑗)]2𝑁

𝑗=1
𝑀
𝑖=1                                       (3) 

 

where MN is the image size (the number of image pixels). 

Obviously, for any bit rate, a higher PSNR value is preferred. 

 

3.1. Performance of the proposed SSPIHT algorithm 

Table 1 depicts the PSNR vs. bit rate for the proposed SSPIHT, 

the original SPIHT, and the MSPIHT algorithm (Rema et al., 

2015) which is optimized to improve the PSNR at low bit rates. 
The PSNR of our SSPIHT algorithm is boldfaced where it is 

higher than that of MSPIHT. As it is clearly shown, the PSNR of 

SSPIHT is higher for nearly all images at all bit rates. This means 

that our SSPIHT performs better than SPIHT and MSPIHT. In 

addition, as will be seen in the next section, the proposed 

SSPIHT runs faster than the original SPIHT, and therefore it runs 
also faster than MSPIHT since the latter two algorithms have 

nearly the same complexity (Rema et al., 2015). Figure 5 shows 

the original “Lena” image and the decoded ones at several bit 

rates using SSPIHT 

 
3.2. Performance results of the highly scalable 

algorithms with full resolution images 

Tables 2 and 3 give a comparison of the PSNR vs. the bit rate of 
the proposed HSLS and IHSLS algorithms with the highly 

scalable algorithms HS-SPIHT (Danyali & Mertins, 2004) and 

LHS-SPIHT (Alam & Khan, 2012) at full resolution (size) image. 

Firstly, it should be noted that the PSNR of HS-SPIHT is higher 

than that of LHS-SPIHT and the proposed algorithms. This is 

normal due to removing the lists from LHS-SPIHT and from our 

algorithms. In other words, the slight PSNR decrement is the 
price of the huge reduction in computer memory resources.  

 

 

 

 

 

 

Secondly, the comparison will be between the LHS-SPIHT and 
the proposed HSLS and IHSLS algorithms since they don’t use 

lists. The PSNR of our HSLS and IHSLS algorithms is boldfaced 

where it is higher than that of LHS-SPIHT. As it can be seen, for 

the proposed HSLS, the PSNR is mostly higher for nearly all 

images at all bit rates. This means that the proposed HSLS is on 

par with the other algorithms in terms of performance. The 
advantages of the proposed algorithm are its lower memory 

(2.5 bits per pixel while the LHS-SPIHT needs 4 bits per pixel) as 

depicted previously, and its lower computational time as 

demonstrated within the next section. Finally, the PSNR of the 

IHSLS is slightly lower than that of the HSLS. This result is 

expected as a price for its speed enhancement due to using of 

one pass per bit-plane instead of two, and as a cost for its 
memory reduction (1.5 bits per pixel instead of 2.5 bits per 

pixel). However, it’s also competitive with the other algorithms. 
 

3.3. Computational time calculation 

Table 4 shows the encoding and decoding times of the 

algorithms measured in milliseconds (msec) vs. bit rate for the 

"Lena" image at full resolution. 
The following observations can be deduced:  

•For any algorithm, its decoding time is shorter than its 

encoding time. This is normal for set partitioning algorithms as 

the decoder does not need to scan and process the pixels and 

sets to see if they are SG or not. 

•The proposed SSPIHT runs faster than the original SPIHT 
for all bit rates. This is due to eliminating the necessity to 

construct the SOTs twice in each coding pass.  

• The LHS-SPIHT, which creates a highly scalable bit-stream, 

runs about two times slower than the SPIHT since it needs to 

scan and examine all the image pixels two times per coding pass. 

 

 mcode_pixel(cij){  

•  If(δij = 0) do:  

▪ If(|cij| ≥ TH) do: 

✓ send(1) to bitstream; 
✓ send(sign bit) to bitstream; 
✓  δij = 1; 

✓ If(cij > 0), cij = cij − TH; 

✓ Elseif(cij < 0), cij = cij + TH; 

▪ Else, send(0) to bitstream;  
• ElseIf(δij = 1) do:   

▪ If(|cij| ≥ TH) do: 

✓ send(1) to bitstream; 

✓ If(cij > 0), cij = cij − TH; 

✓ Elseif(cij < 0), cij = cij + TH 

▪ Else, send(0) to bitstream; } 

 

 𝑚𝑑𝑒𝑐𝑜𝑑𝑒_𝑝𝑖𝑥𝑒𝑙(𝑐𝑖𝑗){  

• 𝐼𝑓(𝛿𝑖𝑗 = 0) 𝑑𝑜: 

▪ 𝐼𝑓(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑖𝑡 = 1) 𝑑𝑜: 
✓ 𝛿𝑖𝑗 = 1; 

✓ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡; 
✓ 𝐼𝑓(𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 = 0), 𝑐𝑖𝑗 = 1.5𝑇𝐻; 

✓ 𝐸𝑙𝑠𝑒𝑖𝑓(𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 = 1), 𝑐𝑖𝑗 = −1.5𝑇𝐻;  

• 𝐸𝑙𝑠𝑒𝐼𝑓(𝛿𝑖𝑗 = 1) 𝑑𝑜:   

▪ 𝐼𝑓(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑖𝑡 = 1) 𝑑𝑜: 

✓ 𝐼𝑓(𝑐𝑖𝑗 > 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 0.5𝑇𝐻; 

✓ 𝐸𝑙𝑠𝑒𝑖𝑓(𝑐𝑖𝑗 < 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 − 0.5𝑇𝐻 

▪ 𝐸𝑙𝑠𝑒𝐼𝑓(𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑖𝑡 = 0) 𝑑𝑜: 

✓ 𝐼𝑓(𝑐𝑖𝑗 > 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 − 0.5𝑇𝐻;   

✓ 𝐸𝑙𝑠𝑒𝑖𝑓(𝑐𝑖𝑗 < 0), 𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 0.5𝑇𝐻; } 
 

Figure 4. The pseudocodes of the merged mcode_pixel(cij)and mdecode_pixel(cij). 
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Table 1. PSNR vs. bit rate for the proposed SSPIHT, SPIHT, and MSPIHT algorithms. 
 

Bit rate 

(bpp) 

PSNR (dB) 

Lena 512512 Goldhill 512512 Barbara 512512 

SPIHT MSPIHT 
Proposed  

SSPIHT 
SPIHT MSPIHT 

Proposed  

SSPIHT 
SPIHT MSPIHT 

Proposed  

SSPIHT 

0.01 11.88 15.31 21.02  11.32 16.32 21.87 11.56 15.29 19.89 
0.03 22.31 23.69 23.44 21.99 23.07 23.65 20.34 21.15 21.58 

0.05 25.03 25.70 26.49  24.17 24.66 25.60 21.92 22.18 22.88 
0.1 28.44 28.68 28.88  26.30 26.51 27.13 23.39 23.55 24.24 

0.2 31.74 31.88 31.94 28.40 28.50 29.16 25.64 25.83 26.34 
0.5 36.46 36.52 36.27 31.47 31.52 32.30 30.38 30.46 31.11 

 
 
 

 
 

Figure 5. Original “Lena” image and decoded at several bit rates  

using the proposed SSPIHT algorithm. 
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•The proposed HSLS, which also creates a highly scalable 

bit-stream, has very little increment in the encoding and 

decoding times as compared to SSPIHT. This is because that 

the HSLS needs only to separate and identify the resolution 
levels. 

•Additionally, the HSLS, and SPIHT algorithms have 

approximately the same processing time. This means that our 

HSLS added resolution scalability, and reduced the memory 

requirements of SPIHT without paying any noticeable cost. In 

contrast, the HS-SPIHT increased the memory requirements, 
and increased the memory management, while the LHS-

SPIHT increased the complexity further against SPIHT.   

•As expected, the Proposed IHSLS runs faster than HSLS 

due to pass merging 

 

 

 

3.4. Performance results of the highly scalable 

algorithms at reduced resolution 

A highly scalable decoder may reconstruct the image at a 

resolution less than that of the original image. Eqs. 2 and 3 can't 

be used to compute the PSNR in this case because the original 

and recovered images aren't the same size. Therefore, to be 

able to give numerical results at reduced resolution, the same 
manner used in (Danyali & Mertins, 2004) which is also used by  

Alam and Khan, (2012) will be employed. It utilizes the fact that 

an image with resolution s, 0 ≤ s ≤ M, is the subband LLM−s 

within the DWT image. So, the original LLM−s and the 

recovered LLM−s subbands are compared in place of the 

original and recovered images. For this case, pmax would 

become the maximum pixel value in the subband LLM−s. It can  
 

Table 2. PSNR vs. bit rate for Lena and Barbara images. 
 

Bit rate 
(bpp) 

PSNR (dB) 

Lena 512512 Barbara 512512 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed 

HSLS 

Proposed 

IHSLS 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed 

HSLS 

Proposed 

IHSLS 

0.0625 27.52 26.85 27.35 27.28 22.97 22.59 23.37 23.30 

0.125 30.31 29.93 30.04 29.86 24.12 23.65 24.26 24.30 
0.25 33.33 33.19 33.00 32.83 26.68 26.75 27.31 27.01 

0.5 36.57 36.49 36.24 36.08 30.53 30.48 31.05 30.83 
1 39.93 39.58 39.58 39.37 35.28 35.19 36.23 35.77 

 
 

Table 3. PSNR vs. bit rate for Goldhill and Mandrill images. 
 

Bit rate  

(bpp) 

PSNR (dB) 

Goldhill 512512 Mandrill 512512 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed  

HSLS 

Proposed  

IHSLS 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed  

HSLS 

Proposed  

IHSLS 

0.0625 26.27 26.26 26.15 26.11 20.19 20.38 20.26 20.28 

0.125 28.02 27.50 27.80 27.70 21.45 21.25 21.27 21.26 
0.25 30.19 29.39 29.73 29.80 22.86 22.66 22.58 22.60 

0.5 32.40 32.10 32.05 32.13 24.19 24.60 24.68 24.64 
1 35.67 35.54 35.40 35.34 28.50 28.30 28.30 28.00 

 
 

Table 4. The encoding and decoding times vs. bit rate for Lena image. 
 

Bit rate  

(bpp) 

Encoding Time (msec) Decoding Time (msec) 

SPIHT SSPIHT LHS- 

SPIHT 

HSLS IHSLS SPIHT SSPIHT LHS- 

SPIHT 

HSLS IHSLS 

0.125 15 12 24 16 14 5 5 11 7 5 

0.25 20 16 28 22 18 10 10 17 12 10 
0.5 26 23 33 26 24 20 20 28 23 21 

1 31 28 38 31 28 25 25 33 27 26 
2 63 60 52 64 60 32 32 45 35 33 
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be shown that for a grayscale image (with 8 bpp), pmax is equal 

to (255 × 2M−s) (Danyali & Mertins, 2004). For instance, if an 

image with (512  512) pixels is decomposed with M = 5 wavelet 

levels, and the image is recovered at resolution s = 4, then 

LLM−s = LL5−4 =  LL1 represents the recovered image which 

has (256  256) pixels (1/4 the original image size), and pmax =

255 × 25−4 = 510.  
Tables 5 and 6 depict the PSNR vs. bit rate for the images at 

s = 4 (1/4 resolution), while Tables 7 and 8 depict the PSNR vs. 

bit rate for the images at s = 3 (1/16 resolution). The bit rates are 

computed using to the number of pixels in the full-size image. 

The PSNR of our HSLS and IHSLS algorithms is boldfaced 

where it is higher than that of LHS-SPIHT. It is worth to note that 

in Tables 7 and 8, the PSNR of our algorithms in the last row 
represents the PSNR achieved at full bit rate compression (i.e., 

the maximum achievable PSNR). For instance, for the “Lena” 

image, the proposed HSLS achieves PSNR = 64.77 dB @0.45 

bpp. Evidently, at this full bit rate (0.45 bpp), the PSNR will be 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 smaller than that of the other algorithms which calculated the 

PSNR @0.5 bpp. However, any PSNR higher than 50 dB is 

considered perfect in terms of image quality (Gu et al., 2013). As 

it can be seen, for “Barbara” and “Mandrill” images (which have 

more details than “Lena” and “Goldhill” images), the proposed 

HSLS performs better than the LHS-SPIHT and the HS-SPIHT 
for all bit rates. For “Lena” and “Goldhill” images, the PSNR of 

HSLS, LHS-SPIHT, and HS-SPIHT are very comparable. In 

addition, the proposed IHSLS has also a slightly lower PSNR 

than that of HSLS due to the adopted simplifications. On the 

other hand, it is superior to LHS-SPIHT and HS-SPIHT for 

“Barbara” and “Mandrill” images at all bit rates (except for 

“Mandrill” @0.5 bpp for s = 4, and @0.125 bpp for s = 3). Finally, 
for “Lena” and “Goldhill” images, the IHSLS is also very 

comparable to the LHS-SPIHT, and HS-SPIHT algorithms. This 

suggests that our algorithms are very successful for users that 

need to recover low-resolution images, such as that 

smartphones, tablets, etc. 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

Table 5. The PSNR vs. Bit rate for Lena and Barbara images @1/4 resolution (s = 4). 
 

Bit rate  

(bpp) 

PSNR (dB) 

Lena  Barbara 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed  

HSLS 

Proposed  

IHSLS 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed  

HSLS 

Proposed  

IHSLS 

0.0625 28.78 27.98 28.45 28.40 25.94 25.48 26.84 26.73 
0.125 32.34 31.84 32.14 31.90 28.41 27.93 29.24 29.20 

0.25 37.44 37.21 37.01 36.94 32.64 32.42 33.66 33.65 
0.5 43.82 43.52 43.35 43.29 39.19 38.97 39.23 39.19 

1 53.25 53.17 53.05 52.92 50.12 50.02 50.19 50.17 

 
Table 6. The PSNR vs. Bit rate for Goldhill and Mandrill images @1/4 resolution (s = 4). 

 

Bit rate  

(bpp) 

PSNR (dB) 

Goldhill Mandrill 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed  

HSLS 

Proposed  

IHSLS 

HS- 

SPIHT 

LHS- 

SPIHT 

Proposed  

HSLS 

Proposed  

IHSLS 

0.0625 27.79 27.36 27.61 27.59 21.47 21.28 22.74 22.83 

0.125 30.81 29.78 30.21 30.03 23.65 23.45 24.73 24.42 
0.25 33.86 32.97 32.79 32.87 28.79 28.59 28.87 28.75 

0.5 38.81 38.51 38.62 38.59 31.41 31.21 31.58 30.95 
1 49.97 49.73 49.77 49.76 39.42 39.23 39.52 39.48 

 
Table 7. The PSNR vs. Bit rate for Lena and Barbara images @1/16 resolution (s = 3). 

 

Bit rate  
(bpp) 

PSNR (dB) 

Lena  Barbara 

HS- 
SPIHT 

LHS- 
SPIHT 

Proposed  
HSLS 

Proposed  
IHSLS 

HS- 
SPIHT 

LHS- 
SPIHT 

Proposed  
HSLS 

Proposed  
IHSLS 

0.0625 32.38 31.86 32.08 32.05 30.83 29.89 31.93 31.93 

0.125 40.03 39.53 40.34 40.28 36.55 35.83 36.03 35.75 
0.25 50.73 50.30 50.89 50.63 47.34 46.12 46.52 46.28 

0.5 70.52 70.51 

64.77  

@0.45 
bpp 

64.75  

@0.45 
bpp 

71.16 70.89 63.75  

@0.46 
bpp 

63.70 

@0.46 
bpp 
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4. Conclusions  
 

In this paper, we presented a framework of three related 

scalable image compression algorithms. As demonstrated 

within the last section, the SSPIHT algorithm has lower 

complexity and improved performance than that of the 

original SPIHT. Additionally, at low bit rates, it provided higher 
PSNR than that of the MSPIHT algorithm, which is optimized 

for that purpose. The HSLS algorithm solved the dual 

problems of SPIHT: the scalability and the massive memory 

resources without paying any noticeable cost concerning its 

performance and complexity. In contrast, the HS-SPIHT 

increased the complexity and the memory while the LHS-

SPIHT widely increased the complexity as compared to SPIHT. 
Moreover, our HSLS algorithm performed better than these 

algorithms when the image is recovered at reduced 

resolutions. Finally, the IHSLS algorithm is faster and 

consumes less memory than that of HSLS. As shown, the only 

price for these additional advantages is the very slight 

reduction in PSNR. 
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