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Abstract: The basic premise of vibration-based structural damage detection is that when there are 
alterations in the physical characteristics of a structure, there will also be changes in its vibration 
parameters like Eigenfrequencies and mode shapes. Artificial neural network (ANN) has become one 
of the most powerful approaches, since it has the ability of pattern recognition, and nonlinear 
modeling. In addition, it employs computational intelligence techniques to tackle damage detection 
as a complex problem. In this present paper, an artificial intelligence model using ANN was developed 
for fault diagnosis in beam-like structures using vibration data. In this research, I-beam like structures 
with triple-point damages were considered to obtain the modal parameters of the structures using 
both experimental tests and finite element analysis. For damage identification, five different ANNs 
representing mode 1 to mode 5 were constructed, and subsequently, an approach called ensemble 
neural network was presented to integrate the results into a singular network. It was ascertained that 
the ensemble neural network was able to identify damage better than the individual artificial neural 
networks. 
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1. Introduction 
 

Damage in a structure may lead to a decrease in stiffness and 

stability that can adversely influence the functionality of 

structural systems during their lifetime. The damage may be 

due to usual weakening of material properties, overloads, 

different environmental and human-induced factors, or some 

unexpected reasons such as earthquakes, thermal effects, and 
vehicle impact. Accordingly, damage detection can prevent 

the occurrence of unpredictable failures, reduce the cost of 

maintenance, and increase the life safety and functionality of 

structures (Ravanfar et al., 2015 & 2016a). Common recent 

non-destructive tests (NDTs) for detecting damage are based 

on visual assessments, X-ray, ultrasonic, acoustic emission 

and radiography (Hakim et al., 2020; Wu et al., 2020). 
However, these approaches are inadequate to assess the 

status of structural components when the defect is deep in 

and is not observable.  

Vibration-based damage detection methods are popular in 

the area of structural fault diagnosis because they are able to 

detect damage in large and complicated structures (Chik et al., 
2021; Jayasundara et al., 2020; Ravanfar et al., 2016b). These 

methods are based on the fact that any decrement in the 

rigidity of a structure, causes an alteration in its vibrational 

parameters like natural frequencies, damping ratio, and mode 

shapes (Hakim & Razak, 2011; Padil et al., 2020). Artificial 

neural networks (ANNs), which parallel the remarkable 

capability of biological nervous systems to learn in situations 
with uncertainty and inaccuracy are very useful for solving 

inverse problems and have strong capabilities to detect 

damage using vibration data. Therefore, they have been 

applied for structural health monitoring in the last decade. 

(Pagani et al., 2021; Tran-Ngoc et al., 2019).  

Several comprehensive reviews on vibration-based 

structural health monitoring methods have been conducted 
and the damage identification algorithms and both their 

merits as well as drawbacks were discussed (Avci et al., 2021; 

Hakim & Razak, 2014a). An Experimental study on the damage 

detection and localization of a steel truss bridge using the 

combination of ANN and wavelet transform was presented by 

Mousavi et al. (2021). Extracted modal parameters from 
acceleration signals were applied to evaluate the validity of 

the said approach. The experimental results showed the 

capability of the method to identify the severity and location 

of damage. 

Detection of delamination as a type of structural damage 

was subsequently investigated by Maurya et al. (2022). In their 

study, ANN was applied to determine the delamination 
damage in carbon fiber reinforced polymer (CFRP) composite 

beam. A modal analysis was performed to obtain the first three 

natural frequencies and the results showed that the existence 

of delamination affected the modal parameters. The 

researchers also determined that, ANN could predict the 

location and length of delamination in the CFRP composite 

beam. Next, Chang et al (2018) employed the dynamic 

parameters of a steel-frame building to identify the magnitude 

and location of damage using ANN. Different reductions in 

stiffness were applied, and subsequently, modal 
parameters consisted of frame were obtained. Results 

demonstrated that ANN was able to detect the damaged 

members with a high level of accuracy.  

Moving on, Tan et al. (2017) developed a technique to 

detect damage in a steel beam using the combination of ANNs 

and modal strain energy and found that the method used was 

able to accurately identify defect in beam structures. In 
another study, Aydin and Kisi (2015) applied modal 

parameters as the input datasets of ANNs to detect damage in 

beam structures. The authors, used the first four natural 

frequencies of the structure as the input parameters of ANN. 

The results showed that ANN was able to identify cracks in the 

beam structures with a high level of accuracy.  

In recent years, the interest of applying ANNs using modal 
parameters to structural health monitoring has increased and 

several attempts have been made to assess damage in civil 

structures using ANNs trained with vibration data (Chang & 

Kim, 2016; Hakim et al., 2015; Hakim et al., 2021; Lee et al., 

2021; Nguyen et al., 2019). Regardless of the presently 

available research efforts, there are still remaining needs to 
diagnose defect in structural systems using an ensemble 

neural network when multiple point of damage case is applied 

and to assess both its location and severity. As such, the major 

concentration of this present study was to investigate the 

potential of an ensemble neural network as an artificial 

intelligence method, which is trained with modal 

parameters, for structural damage detection. Vibration 
parameters of the structures were considered to identify 

the magnitude and position of triple-point damage cases in 

two beam-like structures. 

 

2. Artificial neural networks (ANNs) 

 

ANNs are progressive machine learning method influenced by 

the human brain, which are capable of nonlinear modeling, 
pattern recognition and classification. They can develop their 

own algorithm and provide significant answers using given the 

input and output data very quickly and with a high level of 

accuracy when applied to solve real problems (Fan et al., 2020; 

Hakim & Razak, 2014b). ANNs are constructed with a number 

of neurons that are interconnected. The structure of an ANN 

consists of an input layer, output layer, and at least one hidden 
layer (Liang et al., 2016; Wang et al., 2015). The layers are linked 

by transfer functions. The architecture of a neural network is 

demonstrated in Figure 1, which illustrates the signals from 

the input layer passing through the hidden layer and arriving 
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at the output layer. Backpropagation algorithm is the most 

appropriate algorithm and is commonly applied in civil 

engineering applications (Noorzaei et al., 2007; 2008). The 

least mean square error (MSE) is the performance index of the 

backpropagation algorithm. In this algorithm, after serving the 

input datasets to the ANN, the output will be compared with 
the target datasets to minimize the MSE. The training of the 

network will stop, when the error is minimized. 

One of the main advantages of ANNs is their capability to 

generalize, which presents them with the ability to handle 

unseen data, and as such, the performance of ANNs is mostly 

dependent on their generalization capability. Ensemble 

neural network is one of the promising methods to develop 
the generalization ability of a network. Neural network 

ensembles were formally suggested and established by 

Hansen and Salamon (1990). They proved that they can 

perfect the generalization power of ANNs by training a 

specific number of individual ANNs and merging their 

outputs (Huang et al., 2020). 

 

 
 

Figure 1. Artificial neural network architecture 

(Bre et al., 2018). 
 
In ensemble neural networks, many single networks are 

used to train and then synthesize the outputs of each single 

network. Ensemble neural network exhibits improved 

performance when compared against a single network in 

most cases. The model of an ensemble neural network is 

exhibited in Figure 2. In ensemble neural networks, vibration 

characteristics can be applied as inputs and when the 
networks are properly trained, damage identification is fast 

and mathematical models are not required. 

 

3. Experimental modal analysis 

 

Experimental modal analysis is one of the significant methods 

in structural fault diagnosis. It represents the process of 

obtaining the modal characteristics of a structure such as 
natural frequency, damping ratio, and modal shape by 

exciting the structure artificially (Karaağaçlı & Özgüven, 2021; 

Mohammad et al., 2011; Saito & Kuno, 2020). In this present 

research, two steel I-beam shapes with a length of 3.2 m 

and depth of 150 mm were considered. The width of flange 

was 75 mm and thickness of both the web and flange were 

5 mm and 7 mm, respectively. The beam-like structures 
were excited using a shaker and responses were measured 

by accelerometers. A photo of the test specimen is as 

shown in Figure 3.  

 

 
 

Figure 2. Concept of neural network ensemble 

(Alam et al., 2020). 
 

 
 

Figure 3. Test specimen (I-beam). 
 

Figure 4 illustrates that the test grid had 48 points in three 

sets between the beam supports. The accelerometers were 

attached to the structure using a magnet base and had a 

sensitivity range of 100 mV/g. The time history signals from the 
accelerometers were amplified and converted by a signal 

analyzer into digital form. Fast Fourier Transform (FFT) was 

also used to convert the time domain signals into frequency 

spectra domain. Signals were assumed to be periodic during 

the process of FFT, while in reality, there are some undesirable 
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distortions leakage. A technique called windowing was used to 

overcome the problem of leaking. This technique of windowing is 

the process of the weighting of the time domain data to decrease 

the effect of leakage. There are several different window functions 

to reduce unwanted distortion. In this research, the Hanning 

window was used to improve the application of FFT. 
In this study, two identical beams were tested in its intact 

and under various damaged scenarios to obtain the modal 

parameters, consisted of the first five natural frequencies and 

mode shapes. The results of the intact beams are presented in 

Table 1. As shown in Table 1, the frequency differences were 

more substantial in the higher modes than in the lower modes 

that were simply acquired.  

 
Table 1. Natural frequencies of intact structures. 

 
Frequency F1 F2 F3 F4 F5 

Beam 

B1 55.16 202.48 441.16 712.09 964.8 

B2 55.04 201.94 440.18 711.84 968.8 

 
In the experimental modal analysis, diverse damage 

scenarios consisted of three locations  of damage in each 

beam were created. For each location of damage, 25 levels of 

severities with depths of 3 to 75 mm with an interval of 3 mm 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

were gradually induced. The width of damage was 5 mm. 

Modal testing for each case was done, individually. The 

locations of damages for beam B1 were at 3L/15, 5L/15, 

and 7L/15 of the span length, while for beam B2, the 

locations were at 4L/15, 6L/15, and L/2 of the span length. 

Damage was induced using a saw cut at the above-
mentioned locations of the structures. The first five 

natural frequencies of the undamaged and damaged 

states for beams B1 and B2 are illustrated in Figures 5 and 

6, respectively. 

As shown in Figures 5 and 6, when damage occurs, the 

dynamics of the structure were modified and natural 

frequencies of all modes reduced. It could be seen that there 
was a large reduction in the natural frequencies after inducing 

75 mm damage in three different locations of the beams. The 

maximum reductions in the natural frequency in beam B1 

were 35.03%, 31.44%, 32.76%, 25.57% and 19.09% for mode 1 

to mode 5, respectively. Meanwhile, the reductions in beam B2 

were 39.48%, 24.97%, 31.36%, 21.28%, and 16.95% for mode 1 

to mode 5, respectively. This indicated that the natural 
frequencies of mode 1 were the most affected when damage 

was induced in the three different locations of the beam. In 

addition, from the results of the first five mode shapes, a big 

variation in the magnitude of modes for all first five mode 

shapes was observed. 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

Figure 4. Accelerometer position (I-beam). 
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4. Finite element simulation 
 

In the first step, a finite element analysis of the undamaged 

structures was performed. In the second step, similar damage 

scenarios with triple damage points, were modeled to attain 
the modal parameters. The modal parameters were achieved 

by implementing a linear modal analysis using the ABAQUS 

software (ABAQUS, 2014). The mode shapes of the 

undamaged structure with their values of natural frequencies 

are shown in Figure 7.  It was observed that, the mode shapes 

of the undamaged structure were smoothed functions, which 

confirmed the absence of defects. 
 

 
In this study, the simulation of damage was performed by 

rectangular openings of the span length as shown in Figure 8.  

The variations of the mode shapes after inducing 75 mm 

damage are shown in Figures 9 and 10 for beams B1 and B2, 

respectively. From Figures 9 and 10, it was apparent that there was 

a large reduction in the natural frequencies and very significant 

variations of mode shapes in both beams B1 and B2 were seen after 
they were subjected to the 75 mm damage in three locations of the 

structures. The mode shapes graphs showed very considerable 

affectability of mode shapes to the local damage. The figures also 

demonstrated a significant decrease in the stiffness of the 

structures, and consequently, large differences in the mode shapes.  

 

 
 

Figure 5. The first five natural frequencies for beam B1. 

 

 
 

Figure 6. The first five natural frequencies for beam B2. 
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Figure 7. Mode shapes of undamaged I-beam. 

 

 

 
 

Figure 8. Location of triple damages. 

 

 

 
 

Figure 9. Variations of mode shapes after 75 mm damage (beam B1). 
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5. Damage detection using ANN 

 

The development of an ensemble neural network for the 

damage detection of triple-point damage is presented in this 

section. The inputs to the neural network were the first five 

flexural modes and all corresponding mode shape values at 

the points on the centerline of the beams. Initially, five 

single networks, representing mode 1 to mode 5, were 
considered. Secondly, an ensemble neural network was 

implemented to merge the results of the individual 

networks into a single network. Three various locations of 

damage for each beam with 25 levels of cut slot for each 

location were considered. The damage locations at 3L/15, 

4L/15, 5L/15, 6L/15, 7L/15, and L/2 of the span length were 

corresponded to a damage index for location which was the 
ratio of the damage location from the support to the length 

of the beam (ld/L), as shown in Table 2.  

 

Table 2. Damage index for different locations. 

 
Location of damage 

(ld) 
Damage index for 

location (ld/L) 

3L/15 0.200 

4L/15 0.267 

5L/15 0.333 
6L/15 0.400 

7L/15 0.467 
L/2 0.500 

 

In this study, the damage index for severity was considered 
as the ratio of the damage depth to the height of the beam 

(dd/h). The damage indices for the different severities of the 

beam are given in Table 3.  

 

 

Table 3. Damage index for different severities. 
 

cut 
slot 

(mm) 

damage index 
for severity 

(dd/h) 

cut slot 
(mm) 

damage index 
for severity 

(dd/h) 

3 0.02 42 0.28 
6 0.04 45 0.30 

9 0.06 48 0.32 
12 0.08 51 0.34 

15 0.10 54 0.36 

18 0.12 57 0.38 
21 0.14 60 0.40 

24 0.16 63 0.42 
27 0.18 66 0.44 

30 0.20 69 0.46 
33 0.22 72 0.48 

36 0.24 75 0.50 

39 0.26 - - 

 

The input layer of the neural network had 15 neurons, 

representing the first natural frequency and 14 input neurons 

corresponding to the mode shape values of mode 1 at the 

points on the center of the structure. The output of the neural 

network had four neurons, namely the damage index for the 

severity (dd/h) and damage indices for the three different 
locations (ld1/L, ld2/L, ld3/L).  

The inputs and outputs of the ANN for modeling in the case 

of triple damage was an array, as follows: 

 

{f1, 1,2,  1,3, ,..,, 1,14,  1,15, dd/h, ld1/L, ld2/L , ld3/L} 

 

In the above array, f  and   denoted the frequency and 

mode shape values, respectively. The number “1” represented 

the first mode shape. Also, the numbers 2 to 15 indicated the 

mode shape values at the points of 2 to 15. Initially, the best 

possible network for the training datasets from mode 1 was 

selected, and subsequently, this network was applied to the 
datasets from modes 2 to 5. Finally, all results from the 

individual networks were combined into a single network 

using the ensemble approach. For the preparation of the 

training datasets, 104 patterns, where each pattern was 

consisted of 15 input neurons and four output neurons, were 

used. The training process was continued to produce 
satisfactory outputs compared to the target values. Finally, a 

network with the architecture of 15-7-5-4, after approximately 

55000 iterations, reached a minimum MSE. The architecture 

for this network is illustrated in Figure 11. It was observable that, 

the architecture was consisted of 15 neurons in the input layer 

that corresponded to the first natural frequency and fourteen 

mode shape values, two hidden layers with seven and five 
neurons, and four neurons in the output layer that corresponded 

to the severity and three locations of damage in the structure. The 

damage severities and three locations of damage were identified 

and compared with the actual values, as illustrated in Figure 12. 

The statistics of the selected network are summarized in 

Table 4. Looking at Figure 12 and Table 4, it was ascertained 

that the relationship between the inputs and outputs for the 
network of mode 1 in all damage severities was established 

with low AE of 0.98%, 1.14%, and 1.24% for training, testing, 

and validation data, respectively. Also, a very clear correlation 

value between the damage severity and recognition accuracy 

was obtained. In addition, Figure 12 also shows a high 

accuracy of damage severity. 

From the outcomes of damage localization, it was observed 
that a good performance was obtained with validation and 

testing AE values of (4-4.7%) and (4.65-5.78%), respectively. The 

performance graph of damage localization for mode 1 is shown 

in Figure 13. The architecture of 15-7-5-4, which reached to an AE 

of 0.025 (2.5%) and 0.045 (4.5%) for the training and validation 

datasets, respectively, after approximately 55000 iterations, gave 
precise results for damage location. 
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Figure 10. Variations of mode shapes after 75 mm damage (beam B2). 

 

 

 

 

 
 

Figure 11. ANN Architecture for mode 1 (triple damages). 
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(a) damage severity. 

 

 
(b) first location of damage. 

 

 
(c) second location of damage. 
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(d)   third location of damage. 

 

Figure 12. Damage identification through the ANN for mode 1 (triple damages). 

 

 
Table 4. Performance of the neural network architecture for mode 1. 

 
Datasets Correlation AE 

Severity L1 L2 L3 Severity L1 L2 L3 

All 0.9914 0.9642 0.9620 0.9621 0.01048 0.04536 0.05139 0.05188 

TRN 0.9927 0.9706 0.9701 0.9698 0.00986 0.02439 0.02582 0.02597 

VLD 0.9889 0.9515 0.9522 0.9504 0.01246 0.04012 0.04480 0.04611 

TST 0.9876 0.9487 0.9465 0.9447 0.01138 0.01651 0.05693 0.05784 

 

 

 
 

Figure 13. Performance graph of damage localization for mode 1. 

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

1 4 7
1

0
1

3
1

6
1

9
2

2
2

5
2

8
3

1
3

4
3

7
4

0
4

3
4

6
4

9
5

2
5

5
5

8
6

1
6

4
6

7
7

0
7

3
7

6
7

9
8

2
8

5
8

8
9

1
9

4
9

7
10

0
10

3

T
h
ir

d
 l

o
ca

ti
o

n

Pattern number

Target Predicted by ANN

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 4667 9377 14241 19467 31209 38596 44868 51355 57840 65279

A
E

Iteration

AE for Training AE for Validation



 
 

 

S. J. S. Hakim et al. / Journal of Applied Research and Technology 221-236 

 

Vol. 20, No. 2, April 2022    231 

 

The same architecture (denoted as 15-7-5-4) was applied 

for modes 2 to 5 to identify the severity and locations of 

damages using the data obtained from the extracted 

vibrational modes. The input-output vectors for the networks 

of mode 2 to mode 5 are as follows: 

 

Mode 2 : {f2, 2,2,  2,3, ...,  2,15, dd/h, ld1/L, ld2/L, ld3/L} 

Mode 3 : {f3, 3,2,  3,3, ...,  3,15, dd/h, ld1/L, ld2/L, ld3/L} 

Mode 4 : {f4, 4,2,  4,3, ..., 4,15, dd/h, ld1/L, ld2/L, ld3/L} 

Mode 5 : {f5, 5,2,  5,3, ..., 5,15, dd/h, ld1/L, ld2/L, ld3/L} 

 

Firstly, the datasets were applied separately into the five 

networks. Then, an ensemble network merged the outputs of 

the individual networks and brought out the output results. 

The architecture of the ensemble network had 20 neurons in 

the input layer and four neurons in the output layer, as shown 

in Figure 14. In Figure 14, “S” denoted the damage severity, 
which was dd/h. On the contrary, “L” denoted the location of 

damage, which was ld/L. In addition, L1, L2, and L3 represented 

the first, second, and third location of damage, respectively. 

From the training of the ensemble network, the best possible 

network was constructed with two hidden layers (ten and six 

neurons in the first and second hidden layers, respectively). 
The minimum MSE was found to be 0.000657 and maximum 

value of the correlation was obtained.  

 

 
 

Figure 14. Architecture of the ensemble network 

 for triple locations of damage. 

 

The results of damage severity and three different 

locations using the ensemble neural network are depicted 

in Figure 15. It was demonstrated that the ensemble 

network was very successful in recognizing the severity 

of damage cases. According to the results, there was a 

good agreement between the modal characteristics of 
the structures and location of damage. The damage 

localization outcomes showed that the ensemble 

network provided a very good identification for the 

locations of damage. 

The performance graph of both damage severity and 

locations are depicted in Figures 16 and 17, respectively. 

Based on the figures, the ensemble network had a 
maximum AE of 0.75%, 1.02, and 0.98% for the training, 

testing, and validation datasets, respectively, for damage 

severity. The results were very close with the actual data, 

and thus demonstrated the feasibility of using the 

ensemble network to detect damage in the I-beam 

structures.   

A comparison between the individual ANNs and ensemble 
neural network is summarized in Table 5. Based on Table 5, 

the outcomes of severity in the ensemble network were better 

than the individual networks of modes 1, 4, and 5. The 

ensemble network also identified the severity of all modes 

with a correlation of 0.9918, which was slightly smaller than 

the single networks of modes 2 and 3, which was negligible. 
The outcomes of the single networks in the triple damage 

cases demonstrated a few inappropriate results for damage 

localization in the light damage cases, while the severity 

identifications were accurate for all damage cases. It could 

be explained that, it was difficult to show any alteration in 

the modal curvature resulting from the experimental 

outcomes (for light damage). On the other hand, the 
ensemble network demonstrated precise results, even for 

the light damage cases. The results of the ensemble 

network for damage localization were also much better 

than all the individual networks. Furthermore, the MSE of 

the ensemble network was also better.  

Moving on, it was obvious that the individual networks of 

modes 2 and 3 could identify the severity and locations of 
damage with high accuracy when compared with the results 

of the other modes. Despite that, the ensemble network was 

able to recognize the position of damage for all modes with 

higher accuracy than the individual modes. In addition, the 

correlation of all datasets for damage location in the 

ensemble network reached 0.9785. Finally, results also 
demonstrated that using the ensemble neural network, the 

damages were recognized with the highest accuracy level, as 

compared to the individual networks.  
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(a) Damage severity. 

 

 
(b) First location of damage. 

 

 
(c) Second location of damage. 
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(d)   Second location of damage. 

 

Figure 15. Damage detection of I-beam structure through the ensemble network. 

 

 

 
 

Figure 16. Performance of damage severity through the ensemble network. 

 

 

 
 

Figure 17. Performance of damage locations through the ensemble network. 
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6. Conclusions  
 

In this present research, an ensemble neural network as an 

artificial intelligence method was developed to detect triple 

locations of damage in I-beam like structures using the 

vibration-based damage identification method. In the first 
step, the experimental modal analysis was implemented and 

modal data from two I-beam structures were measured. 

The results demonstrated that the natural frequencies of 

the structures decreased with the increasing size of damage 

and the mode shapes revealed a significant divergence 

near the damage locations. Simulations of the structures 

were performed to achieve the vibration data and verify 
both the validity and effectiveness of the experimental 

modal analysis results.  

The finite element analysis outcomes showed that the 

numerical simulations for the structures were similar to the 

test structures and very good correlations were attained. 

For the detection of the severity and location of damages 

with triple locations, five single ANNs, representing mode 1 
to mode 5, were considered. After that, an approach called 

ensemble network was introduced to merge the outcomes 

of the single networks. The results of damage identification 

in the I-beam structures with triple damage cases in the 

individual networks demonstrated larger error, while the 

effectiveness and performance of the ensemble network 
showed good accuracy, even for the light damage cases. 

From the results, it was observed that the ensemble 

network identified most of the triple damage cases in the I-

beams with a high level of precision, which reiterated its 

effectiveness and high accuracy. Accordingly, this method 

could serve as a reliable technique for the identifications of 

damage in structures. 
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