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Abstract: The dehydration of farm products provides farmers an opportunity to preserve their 

products longer and simultaneously earn more profit from them. Nevertheless, traditionally, the 

dehydrated products' quality has been determined using invasive methods, for example, through 

manual measurements with a Vernier caliper and a micrometer. However, manual measurements have 

their most significant weakness in monitoring continuous production lines and, that is why an efficient 

methodology is often required for estimating the moisture in dehydrated products. This study aimed 

to explore the feasibility of pulsed thermography for estimating the moisture content of farm products 

in the drying process. In this paper, a methodology to estimate dehydration in real-time was 

developed, and the design and construction of a real-time pulsed thermographic imaging system were 

described. Moreover, to demonstrate the operation principle, Neem (Azadirachta indica) leaves were 

used in a dehydration process. The specimen was submitted to a heat pulse, and an infrared camera 

observed its reaction through time; then, a characteristic curve was generated from the sequence of 

captured images. That curve relates the moisture content with the response to the heat pulse.  The 

results demonstrated the efficiency of the pulsed thermography in differentiating the percentage of 

dehydration in Neem leaves 
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1. Introduction 
 

Food drying is one of the most common processes for promoting 

product stability. The decrease in the amount of water reduces 

microbial activity and minimizes physical and chemical changes 

during storage (Mayor & Sereno, 2004). The dehydration process 

causes changes in food properties, including discoloration, 

changes in texture and nutritional values, as well as physical 

changes in appearance and shape. Quality control in the 

dehydrated products' industry has traditionally been determined 

using invasive methods (Abasi et al., 2018), for example, through 

manual measurements with a Vernier caliper and a micrometer, 

among others. The inspection is based on physical appearance 

and not on internal properties. In addition, these measurements 

have been shown to be inadequate because the product is in 

direct contact with the measuring instrument causing physical 

damage by the instrument (Jha et al., 2010). Moreover, it has been 

documented that manual quality control has its greatest 

weakness in the monitoring of continuous production lines 

(Mayor & Sereno, 2004). Considering this, nondestructive 

methods of quality control have been proposed in the literature, 

some using computer vision systems (CVS) applied to the 

inspection of fruits (Habib et al., 2018), vegetables (Malekabadi et 

al., 2017) and leaves (Tech et al., 2018). Nondestructive testing 

(NDT) provides an alternative to the manual inspection of 

dehydrated products with the integration of an image acquisition 

device and a computer (Ferna et al., 2005).  

Among the different nondestructive evaluation techniques, 

pulsed thermography (PT) is a quick evaluation process that 

uses a high-intensity light source to heat the surface of a 

specimen (Vavilov & Burleigh, 2015). Short pulses are 

commonly used, depending on the thermal properties of the 

object. The evolution of the surface temperature of the sample 

relative to time is monitored by an infrared (IR) camera with a 

computer that quantifies the temperature variations of the 

product (Almond & Pickering, 2012). Changes in the tissue 

caused by dehydration increase heat conduction, 

increasing the rate of cooling compared with non-

dehydrated tissue. The transient temperature field T(𝑧, 𝑡) in 

PT is obtained from Eq. 1 which is the solution of the 

nonhomogeneous one-dimensional (1D) heat conduction 

equation (Carslaw & Jaeger, 1959): 
 
∂2𝑇(𝑧,𝑡)

∂𝑧2 −
1

α

∂𝑇(𝑧,𝑡)

∂𝑡
= −

𝑔(𝑧,𝑡)

𝑘
, 𝑡 > 0                                                     (1) 

 

Where 𝛼 =  𝑘/𝜌𝑐  is the thermal diffusivity (𝑚2/𝑠), 𝑘 is the 

thermal conductivity (𝑊/𝑚𝐾), 𝜌 is the density (𝑘𝑔/𝑚3) and  

 

 

 

 

𝑐 is the specific heat (𝐽/𝑘𝑔𝐾), 𝑔(𝑧, 𝑡) = 𝑄0𝛿(𝑧 − 𝑧)𝛿(𝑡 − 𝑡0) 

is the external heat impulse located at 𝑧0 = 0 and the 

stimulation time 𝑡0 = 0, with 𝑄0 the intensity of the source per 

unit length (𝐽𝑚−1) and 𝛿(𝑧 − 𝑧)𝛿(𝑡 − 𝑡0) Dirac delta in 

space and time, respectively. Local changes in thermal 

properties are considered, and they are related to moisture 

loss and product density change. Changes in moisture 

levels and product density can be identified by measuring 

the distribution of surface temperature in the heating and 

cooling process. Water in intercellular spaces is responsible 

for increasing density, increasing thermal capacity, 

decreasing thermal conductivity and thermal diffusivity. 

Theoretically, by decreasing the moisture content of the 

product, the density of the product decreases, and 

consequently, the diffusivity increases. Local changes in 

thermal properties were considered, and they were related 

to moisture loss and product density change. 

In the agricultural and food industry, PT is particularly 

suitable in the presence of surface air gaps or internal defects 

(Wang et al., 2018). For example, the detection of damaged 

tissues in apples and blueberries (Baranowski et al., 2008, 

2009; Kuzy et al., 2018); the identification of foreign matter 

in cotton (Ginesu et al., 2004; Kuzy & Li, 2017); food quality 

control (Gowen et al., 2010); the measurement of surface 

moisture in citrus fruits (Fito et al., 2004); and in the 

discrimination in the degree of ripeness of tomatoes and 

apples (Offermann et al., 1998), among others. To the best 

of the authors' knowledge, however, no studies were 

found to date that directly relate the estimation of 

dehydration in agricultural products (fruits, vegetables or 

leaves) to the PT technique. 

On the other hand, the rise of a wide range of development 

boards in conjunction with open-source software has 

provided tools to the agricultural sector for the inclusion of 

new technologies. This has been achieved thanks to the use of 

simple board computers like Raspberry Pi and also of open-

source image processing libraries like OpenCV (Open-Source 

Computer Vision). In general, previous developments are 

shifting efforts in precision agriculture towards image-based 

agricultural product monitoring systems (Osroosh et al., 2018). 

This study aimed to explore the feasibility of pulsed 

thermography for estimating the moisture content of 

farm products in the drying process. To achieve the 

objective was developed an algorithm for capturing and 

analysing thermal images which was implemented in an 

automatic, fast, and non-destructive imaging system 

based on pulsed thermography. 
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2. Materials and methods 

 

2.1. Pulsed thermography imaging acquisition system 

For the thermal analysis of the samples, a testing bench of 

pulsed thermography was built, following the scheme 

shown in Figure 1, which is an embedded system 

(Raspberry Pi 3 Model B, Raspberry Pi Foundation) with 

Python 3 installed as a development language. The images 

were acquired by a radiometric thermal module without a 

shutter (FLIR Lepton 2.5, FLIR Systems, Wilsonville, OR, US) 

mounted on a 10 cm long by 10 cm high and 10 cm deep 

three-dimensional printed frame (Figure 2). 

The FLIR Lepton module has a resolution of 80 x 60 pixels, a 

spectral range of 8-14 μ𝑚 and a thermal sensitivity of  

0.050 ∘𝐶. A servomotor with a black paper attached is 

activated when starting the experiment to obtain a 

reference image in the Lepton module. Four 7W (46823/FI-

50T, Voltech, Mexico) crown-like incandescent spotlights 

mounted on the top lid of the frame provide thermal 

stimulation. A piece of glass covered with polyethylene 

foam was chosen as the background for the scene. The 

polyethylene foam is a thermal insulator, which reduces its 

heating because of the reflector and maximizes the 

contrast between the sample and the background. A solid-

state relay module (G3MB, Omron, Kyoto, Japan) was used 

to activate and deactivate the heat source. 

In general terms, the system works as follows: The Lepton 

module is activated, and a black image is acquired as a 

reference image. The image acquisition is then started, and 

the servo motor is activated, exposing the module lens while 

an image of the specimen is captured before stimulation 

(Figure 3 (a)). The relay is then activated, which turns on the 

heat source for 11 𝑠. to know the heating time, tests were done 

at different times and found that the contrast background 

begins to gain heat in 𝑡 >  11 𝑠. It is necessary to ensure 

that the background does not heat up to not introduce 

errors in the measurements. In this practical way, we 

determine that 11 seconds is the maximum warm-up time 

to avoid this phenomenon. Besides, the relay is then 

deactivated, and the thermal stimulation is completed 

(Figure 3 (b)). The process finishes 33 𝑠 after the heat pulse 

ends by activating the servomotor, covering the lens, 

deactivating the Lepton module, and exporting 

approximately 44 𝑠 of video (Figure 3 (c)). 

A software application was developed in Python language to 

automatically operate the system, which consists of the 

following: activation and deactivation of the reflector, activation 

and deactivation of the servomotor, thermal camera operation 

and memory management for storing video. 

 

 

 

2.1.1. Sample preparation 

This study can be done using several dehydrated agricultural 

products such as thin layers of fruits, thin layers of vegetables, 

or leaves. However, Neem (Azadirachta indica) leaves were 

selected because of their availability in the region and their use in 

traditional medicine to treat skin infections. Another use of Neem 

is vector control and its potential disease transmission (El et al., 

2003). Sixty leaves were collected from the facilities of 

Tecnológico Nacional de México / I T Tuxtla Gutiérrez in Tuxtla 

Gutiérrez, Chiapas, in September 2019. The samples were stored 

for two hours in sealed bags at a constant temperature of 3 ∘𝐶 ± 

0.10 ∘𝐶 to stabilize their temperature and humidity. The leaves 

were classified according to a size of approximately 7 𝑐𝑚 ± 0.3 

𝑐𝑚 in length, and the damaged, withered, or defective leaves 

were discarded. The selected samples were of similar sizes and 

had no visible defects, stains, or pests. 

For the study, 48 samples were retained. Samples were 

processed approximately three hours after collection. Two 

treatment groups were created: the first with 44 samples and 

the second with four samples as a control group. The first 

group was dehydrated at 50 ∘𝐶 for 150 𝑚𝑖𝑛; four samples were 

taken randomly from every 15 𝑚𝑖𝑛 and evaluated on the 

testing bench. Finally, the four samples were discarded, and 

the procedure continues. 
 

2.1.2. Moisture content determination of Neem leaves 

To know the moisture of the samples, the leaves were 

evenly distributed in a tray of a commercial dryer (Hamilton 

Beach 32100 Food Dehydrator, Hamilton Beach, US) at 50 ∘𝐶 

of temperature. A digital scale was used with ± 0.01 𝑔 precision 
(Mwithiga & Olwal, 2005) to measure the weight of the samples. 

The samples were dried until the weight readings were constant 

according to the methodology proposed by (A. O. A. C., 1995). 

The readings were taken in three replicates, and the average 

values were used for further analysis. 

Usually, the drying curves are expressed by the moisture 

content (in grams) X against time t. It is obtained directly from the 

weight loss and time during drying. Another way to construct the 

curve is using the moisture ratio (MR) against time t. The MR can 

be calculated with Eq. 2 (Grumezescu & Holban, 2018): 

 

𝑀𝑅 =
𝑋−𝑋𝑒𝑞

𝑋0−𝑋𝑒𝑞
                                                                                                              (2) 

 
where 𝑋0 is the initial moisture content (in grams) and 𝑋𝑒𝑞 is 

the moisture content in balance (in grams). If 𝑋𝑒𝑞 is very small 

compared with 𝑋0, Eq. 2is simplified as Eq.3. 

 

𝑀𝑅 ≈
𝑋

𝑋0
                                                                                                                      (3) 
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2.2. Processing of thermal images 

The processing of the information was carried out in four 

stages: a) image capture (Figure 4(a)), b) extraction of the 

region of interest (Figure 4(b)), c) plotting of the thermal 

kinetics curve and curve feature extraction (Figure 4(c)), and 

d) classification (Figure 4(d)). Each of these steps are 

detailed below. 

 

2.2.1. Imaging capture 

The duration of the obtained videos was 44 𝑠. One second after 

calibrating the module with the black image and starting the 

recording, the servomotor is activated by uncovering the lens 

and activating the heat source. At 12 𝑠, the heat source is 

deactivated, resulting in a total heat pulse duration of 11 𝑠. 

After 43 𝑠 of starting the recording, the servomotor is activated 

again to cover the lens, giving 31 𝑠 of a cooling curve. The 

recording is finished with an additional second of image 

capture to avoid unintentional truncation of information. The 

eight first samples information captured was intertwined: First, 

a video was captured from the control sample (fresh leaves), 

followed by the sample from the dry leaves group. The rest of 

the information capture was taken from the samples of the 

group of dry leaves. One video was obtained per sample, 

producing 48 videos in total where each video was captured at 

20 FPS, yielding approximately 42,000 images to process. 

 

2.2.2. Extraction of the region of interest 

The extraction of the region of interest aims to highlight the 

relevant areas in the scene. The image segmentation favors the 

algorithm's simplicity, the speed of execution, the computing 

charge, and the correct segmentation to avoid modifying the  

 

FLIR module's original information. Finally, the results obtained 

with the aid of segmentation minimize the noise presented in the 

region of interest instead of not segmenting the image. 

The segmentation process was performed using the scikit 

image library for Python. A three-dimensional matrix 𝑇(𝑥, 𝑦, 𝑧) ∈

𝑅𝑚𝑥𝑛𝑥𝑝 was obtained from the sequence of captured images. All 

the pixels of each image were averaged (Eq.4), and the maximum 

temperature value index (Eq.5) was sought: 

 

𝑎̅𝑘 =
1

𝑛⋅𝑚
∑ ∑ 𝑇𝑖,𝑗 ,  𝐹𝑜𝑟 𝑘 = 1,2,3,4, … , 𝑝𝑛

𝑗=1
𝑚
𝑖=1                                  (4) 

 
𝑡𝑚𝑎𝑥 = 𝑖𝑛𝑑𝑒𝑥(𝑚𝑎𝑥{𝑎1̅̅ ̅, 𝑎2̅̅ ̅, 𝑎3̅̅ ̅, … , 𝑎𝑝̅̅ ̅})                                             (5) 

 
The image that matches the peak temperature 

𝑃(𝑥, 𝑦, 𝑡𝑚𝑎𝑥) was segmented by thresholding, given the 

transformation function (Eq.6) where the transition level given 

by the parameter 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  10 In the inspection of 48 

samples, we found that, on average, the contour of the leaves 

had a mean value of 10 on a grayscale, which allowed us to 

delimit the edges for the binarization and information 

extraction process. This value must be calibrated for each 

different product. 

 

𝑞(𝑥, 𝑦) = {
0        𝑡𝑜   𝑝(𝑥, 𝑦, 𝑡𝑚𝑎𝑥) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

255  𝑡𝑜    𝑝(𝑥, 𝑦, 𝑡𝑚𝑎𝑥) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                             (6) 

 
The number of white pixels (WP) was counted to know the 

total of pixels in the region of interest with Eq. 7. 

 
𝑊𝑃 = ∑ ∑ 𝑞𝑖,𝑗

𝑛
𝑗=1

𝑚
𝑖=1                                                                                     (7) 

 
 

Figure 1. General configuration of experiments in active thermography: 

(a) heat source, (b) specimen, (c) infrared camera, and 

 (d) embedded system for displaying, recording and processing data. 
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Figure 2. Testing bench design overview: (a) testing bench side 

 views and isometric views and (b) part assembly. 
 

The segmented image (𝑞(𝑥, 𝑦)) was multiplied by each frame 

in the video to extract only the pixels of the leaves according to 

Eq.8. All the pixels of the object are averaged together with Eq.9, 

which produces an average value for each frame. In addition, the 

temperature variation (Eq.10) was plotted with respect to time. 

The set of values that were obtained from Eq. 10were stored in 

CSV formatted files for analysis. 

 

𝑄(𝑥, 𝑦, 𝑧) = 𝑇(𝑥, 𝑦, 𝑡) ⋅ 𝑞(𝑥, 𝑦)                                                                   (8) 

 

𝑏̅𝑘 =
1

𝑊𝑃
∑ ∑ 𝑄𝑖,𝑗 , 𝐹𝑜𝑟 𝑘 = 1,2,3,4, . . . , 𝑝𝑛

𝑗=1
𝑚
𝑖=1                               (9) 

 

 

𝐵̅ = {𝑏̅1, 𝑏̅2, 𝑏̅3, . . . , 𝑏̅𝑝}                                                                                         (10) 

2.2.3. Thermal curve profile, amplitude, and phase 

extraction 

Pulsed phase thermography (PPT) is an analytical 

technique for analyzing the thermal response from the 

object to the heat pulse. In this technique, the grayscale 

intensity change of each pixel of the object was considered 

as a temporary thermal signal. The series of input signals is 

known as the thermal profile curve. The Fourier discrete-

time transformation (DFT) decomposes the input signal 

given by the thermal profile curve into a sum of sinusoidal 

components, each having a different frequency, amplitude, 

and phase delay. The infinite integral of exponential 

functions expresses the continuous Fourier transform 

(Baranowski et al., 2009) as shows in Eq. 11: 

 

𝐹(𝑣) = ∫ 𝑓(𝑡)e(-j2πvt)∞

−∞
𝑑𝑡                                                                         (11) 

 

where 𝑗2 = −1. When a finite series of signal samples 
(𝑇0, 𝑇1, 𝑇2, … , 𝑇𝑁−1) is analyzed, it can be transformed into a 

fundamental frequency (𝐹0) and harmonic series 
(𝐹1, 𝐹2, 𝐹3, … , 𝐹𝑁−1) (Brown & Puckette, 1993) by using the Eq. 12: 

 

𝐹𝑛 = ∑ 𝑇𝑘e(-j2πnk/N)
𝑁−1
𝑘=0 = Ren + Imn                                                          (12) 

 

where 𝑅𝑒 and 𝐼𝑚 are the real and imaginary components of 

the transform, respectively, 𝑗 is an imaginary unit, 𝑛 is the 

number of harmonic components (𝑛 = 0,1, … , 𝑁), 𝑘 is the 

signal sample's value. The real and imaginary part of the DFT 

can be used to calculate the amplitude with Eq. 13and with Eq. 

14 the phase delay of the thermal profile curve. The phase delay 

that corresponds to the fundamental frequency is of interest 

among researchers as characteristics of the samples' 

discrimination (Brown & Puckette, 1993; Kamarainen et al., 

2002; Kuzy & Li, 2017). 

 

𝐴𝑛 = √𝑅𝑒𝑛
2 + 𝐼𝑚𝑛

2                                                                                      (13) 

 

𝜙𝑛 = 𝑡𝑎𝑛−1 (
𝐼𝑚𝑛

𝑅𝑒𝑛
)                                                                                             (14) 

 
Fourier's analysis of the samples was done using the 

Python NumPy library. The Fourier's analysis input signal 

was thermal profile waves shown in Figure 6. Followed by 

the Fourier decomposition, several complex components 

equal to the number of frames in each video were 

generated. The Hermite function's symmetry properties are 

reflected in the amplitude and phase transformation, 

which are even and odd, respectively, concerning 𝑓 =  0 Hz.  

Therefore, for a sequence of 𝑁 thermograms, there are 𝑁/2 

proper frequencies (10 𝐻𝑧); the other half of the spectrum 

provides redundant information that can be dismissed. The 

fundamental frequency phase is interesting since it is less 
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affected by the typical problems of active thermography such 

as the noise present in the measurements, reflections from the 

environment, variations in emissivity, and non-uniform 

heating, among others (Ibarra-Castanedo et al., 2014). 

 
2.2.4. Feature selection and estimation of MR 

In previous studies, (Kuzy & Li, 2017) determined that the set of 

characteristics in the frequency domain is suitable for 

discriminating between materials. For this study, the phase of 

the fundamental frequency obtained from Eq. 14 was selected 

to estimate leaf moisture during the dehydration process. 

Moreover, when the amplitude and phase information was 

analyzed, it was found that the amplitude does not provide 

enough information to discriminate degrees of dehydration; 

that is why it was considered to take only the phase information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimation was made using a curve adjusted to the 

values given by the phase of the fundamental frequency 

and the moisture percentage given in Figure 5. 
 

3. Results and discussion 
 

3.1. Drying of leaves 

The weight difference of the leaves as a function of time 

throughout the drying process was monitored. Figure 5 shows the 

drying curve for Neem leaves at 50 ∘𝐶. The initial drying speed 

was high because of the product's high moisture content and the 

high temperature inside the dryer. The drying speed decreased 

continuously in proportion to the decrease in the humidity of the 

leaves. Drying time for the constant temperature of 50 ∘𝐶 was 165 

𝑚𝑖𝑛 When compared to previous studies on fruits, vegetables 

and leaves, this curve is in good agreement (Ali et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. General scheme of active thermography where as can be seen (a) thermal images of the specimen prior to the heat pulse, 

 (b) the heat pulse and (c) the surface response of the product to thermal stimulation. 

 
 

 
 

Figure 4. General overview of information processing. 
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     Figure 5 shows the moisture content of the product 

concerning the drying time, at constant temperature and 

constant airflow. The curve fit was made with a second-order 

polynomial regression, giving the equation %𝑀𝑅 =

0.0033𝑡2 − 1.1114𝑡 + 96 with 𝑅2 of 0.97. 

 

3.2. Analysis of the thermal profile curve 

Concerning the curves of Figure 6 during the stage where the 

drying speed decreases, most of the curves of thermal kinetics 

are found. There is a difference from one another, and in the 

phase of high drying speed a wider difference is shown 

between curves of thermal kinetics. 

As can be seen, Figure 6 shows the response of the Neem 

leaves to thermal stimulation. Each dehydration degree's 

thermal profile wave shown in Figure 6 presents a difference 

between the curves at different dehydration levels of the 

product. For example, the peak gray value of the sample MR 

6%, with a mean value of 14.8 ≈ 15 in grayscale, was higher 

than MR 48% that had a maximum average value of 10.07 ≈ 10 

in grayscale. It can be observed that the samples between MR 

48 % and MR 21% reach similar maximum levels; however, the 

heating and cooling zone have different gradients. 

From the set of curves of Figure 6, it is observed that at the 

beginning of the thermal kinetic curves from 𝑡0 = 0 𝑠 to 𝑡1 ≈

1.4 𝑠, there is an abrupt rise in intensity. This directly corresponds 

to the reference image's capture and to the activation of the 

servomotor to discover the lens of the FLIR module. 

Similarly, between the time 𝑡2 ≈ 42 𝑠 and 𝑡3 = 44.05 𝑠, a 

rapid drop is observed in the average gray value within the 

region of interest, and this drop corresponds to the shutter 

closure of the FLIR module. 

 

3.3. Leaves moisture estimation 

The fundamental frequency phase shifts between the thermal 

kinetic curves are evidenced by the time variation between the 

maximum gray values within the region of interest. The 

samples that reach high temperatures the fastest are the most 

dehydrated. The phase change is represented by a variation in 

the time axis of the thermal kinetic curve. 

As was previously mentioned, the phase of the fundamental 

frequency was selected as an estimation parameter, and the 

drying curve (Figure 5) was related to each percentage of 

dehydration corresponding to a value of the phase of the 

fundamental frequency of each test. This relation was plotted, 

and nonlinear regressions were calculated to find the one that 

best fits the data. The equation that best fits the data is the one 

proposed in this study, Eq.15, had a R-square of 0.8937 and 

RMSE of 8.8313, where %𝑀𝑅 is the estimated moisture 

percentage and 𝜙𝑛 is the phase calculated by Eq. 14.The data 

and the fit curve are shown in Figure 7. 

 

%𝑀𝑅 = 149.81𝑒−1.625𝜙𝑛−0.119                                                         (15) 

 

To validate the estimation equation, 36 Neem leaves were 

dried at 50 ∘𝐶, and groups of three leaves were removed every 

15 𝑚𝑖𝑛 and submitted to the estimation system. The precision 

in the estimation given by Eq. 15 was 85.3%. 

With the algorithm implemented in the proposed device, the 

average processing time of the sequence of images 

(approximately 880 images) was 0.8812 𝑠. On the other hand, 

the average time of capturing images was 44 𝑠, giving an overall 

average of the estimation process of approximately 45 𝑠.  

Furthermore, because of the time of capture and image 

processing is very short compared to the time during the 

drying process, the method presented in this work could be 

used in a processing line for dehydrated products. 

The methodology developed in this work could be applied 

to other agricultural products. Thermal curves will be 

obtained that relates the variation of the moisture of the 

product during the drying process and the response in phase 

according to each product. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Neem’s drying curve at 50°C. 
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4. Conclusions  
 

The obtained results demonstrate that pulsed thermography 

is a viable method for estimating dehydration in Neem leaves. 

In addition, the imaging system based on pulsed 

thermography developed in this work proved to be effective in 

estimating levels of dehydration in Neem leaves. The 

estimation equation that was proposed for the dehydration 

estimation produces results with more than 80% precision 

using the set of characteristics related to the fundamental 

frequency phase as well. Because of the simplicity of the 

algorithm, it can run on a Raspberry Pi 3 Model B, with a low-

computing charge for the development board. Finally, the 

proposed methodology can be applied to various dehydrated 

agricultural products such as fruits and vegetables. 
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Figure 6. Thermal profile waves of all study samples. 

 

 

Figure 7. Drying estimation curve. 
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