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Abstract: The technique proposed in this research demonstrates a real time nonlinear data fusion solution 

based on extremely low-cost and grade inertial sensors for land vehicle navigation. Here, the utilized 

nonlinear multi-sensor data fusion (MSDF) is based on the combination between extremely low-cost micro 

electrical mechanical systems (MEMS) inertial, heading, pressure, and speed sensors in addition to satellite-

based navigation system. The integrated navigation system fuses position and velocity states from the 

Global Positioning System (GPS), the velocity measurements from an odometer, heading angle observation 

from a magnetometer and navigation states from an inertial navigation system (INS). The implemented 

system performance is assessed through the post-processing of collected raw measurements and real time 

experimental  work. The system that runs the real-time experiments is established on three connected 

platforms, two of them are based on a 32-bit ARMTM core and the third one is based 16-bit AVR ATMEL 

microcontroller. This microcontroller is connected to an on-board diagnostics (OBD) shield to collect the 

vehicle speed measurements. The raw data obtained from the integrated sensors is saved and post 

processed in MATLAB®. In normal conditions, the estimated position errors are reduced through the usage 

of INS/GPS integration with heading observation angle from a magnetometer. In GPS-denied environments, 

the integrated system uses the observations from INS, magnetometer in addition to the velocity from 

odometer to ensure a continuous and accurate navigation solution. A complementary filter (CF) is 

implemented to estimate and improve the pitch and roll angles calculations. In addition to that, an 

unscented Kalman filter (UKF) is used cascaded with the designed CF to complete the designed sensors 

fusion algorithm. Experimental results show that the designed MSDF can achieve a good level of accuracy 

and a continuous localization solution of a land vehicle in different GPS availability cases and can be 

implemented on the available in the market processors to be run in real time. 
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1. Introduction 
 

Nowadays, navigation systems are involved in many 

applications in different life-fields. This leads researchers to 

investigate the development of navigational techniques to 

reduce the navigation estimation errors and achieve the best 

results with lowest prices. Therefore, the development of 

navigation systems using MEMS inertial sensors is taken into 

account with the navigation system industry. MEMS inertial 

measuring units (IMUs) are characterized by low-cost and light 

weight. Development of MEMS based INS is usually difficult 

due to its high error rate and high deviation of the readings 

over time (EIdesoky, Kamel, Elhabiby, & Elhennawy 2017a; 

Hazry & Zul, 2009; Maklouf, Ghila, Abdulla, & Yousef, 2013). GPS 

receivers provide more accurate and continuous positioning, 

but with a lower measurements rate. Furthermore, satellite 

signals are not always available in different conditions such as 

urban canyons, tunnels, and even indoor situations such as 

parking garages. Although GPS/INS integration has proven to 

be a reliable solution (Aftatah, Lahrech, Abounada, & Soulhi, 

2016; Shin, 2005) still there are problems when GPS signals are 

not available. Generally, to overcome this problem, data 

collected from different additional navigational sensors are 

acquired, fused and processed to increase the navigation 

accuracy and we refer to this kind of fusion by MSDF. Currently, 

the trend is how to overcome the dependence on the GPS by 

increasing the number of sensors used in navigation; therefore 

recently, all sources positioning navigation (ASPN) is a very 

important branch for many researchers in the field of 

navigation to achieve low-cost, robust, accurate and effective 

navigation solutions, whatever the availability of GPS (Penn, 

2012).In addition, the design of integrated system using a good 

estimator is an important as same as the significance of 

increasing the number of navigation sensors to have more 

reliable, accurate and robust navigation system. All the inertial 

sensors, microcontroller boards and processor boards which 

are used in our land vehicle navigation application have been 

chosen based on the cheapest hardware in the market with an 

extremely low-performance to be as a challenge to verify the 

proposed algorithm, a continuous localization solution with a 

very good level of accuracy performance has been achieved 

based on our proposed algorithm. A lot of researchers did 

outstanding efforts toward the objective of this work. To name 

a few, Xu et al. proposed a reliable hybrid positioning 

methodology for ground vehicles based on MEMS sensors and 

approximately costs 4500 ($) (Xu, Li, Li, Song, & Cai, 2016). 

Zhang et al. proposed a 500$ forward velocity model that 

depends on the non-holonomic constraints and has been 

tested by STIM300 IMU from Sensonor (Zhang & Niu, 2018). 

Nevertheless, other researchers have started to pay attention 

to another low-cost and grade inertial sensor such as the work 

proposed by Ahmed and Tahir (2017), via utilizing the 

measurements from L3GD20 IMU by ST Microelectronics 

which approximately cost 10 ($) to evaluate a vehicle attitude 

estimation. The proposed system presented in this work is 

based on the extremely low-cost and grade inertial sensors 

MPU-6050 IMU from InvenSenseTM. The achieved real time land 

vehicle localization solution approximately costs 7 ($) per unit. 

This IMU and its series can be easily found in various electronic 

stores or in e-marketing applications. What's more, it is widely 

used in the field of control systems for robots or small 

unmanned systems due to light weight, low-cost and low-

power consumption. In this work, the additional sensors 

which we used are the odometer and the magnetic compass. 

The.proposed.loosely.coupled.integrated.GPS/INS/odometer/

magnetometer system provides an increasing of the accuracy 

and robustness of the navigation solution and enhanced the 

positioning estimation unlike using a separate GPS or 

standalone INS system. The common solution algorithm for 

GPS/INS integration is the Extended Kalman Filter (EKF). 

However, EKF depends on the basic assumptions linearization 

of the nonlinear system and Gaussian noise distribution (El-

Sheimy & Youssef, 2020), and the INS 1st order linearized error 

model is usually used. Although this assumption has proved to 

have a very good performance, it still associated with low-cost 

MEMS sensors but in the case of weak GPS signals, noisy 

environment or outage signals, the performance is degraded. 

Unlike the EKF, the unscented Kalman filter (UKF) doesn’t 

require a linearized model and directly it can be applied to the 

nonlinear model and it is easier to implement because it 

doesn’t need analytic derivation or Jacobians as the EKF 

(Julier & Uhlmann,  1997; Van der Merwe, Wan, & Julier, 2004), 

The usage of UKF for navigation sensors data fusion is 

discussed in detail in the context of this paper. For further 

improvement of attitude angles, the complementary filter (CF) 

has been used to fuse the estimated angles from both the 

gyroscopes and accelerometers that construct the IMU. CF 

applies a low-pass filter to accelerometer measurements and 

a high pass filter to the integrated gyroscopes measurements 

to improve the attitude estimation. The objective of this work 

is to evaluate and validate the performance of the position 

estimation, by implementing a low-cost integrated navigation 

system based on a selected extremely low-cost and grade 

MPU-6050, that consists of three-axis accelerometers, three-

axis gyroscopes and three-axis digital compass. Three 

microcontroller boards are interfaced together, two platforms 

of 32-bit ARM core microcontroller boards with 512 KB 

memory (one of them is used to perform navigation arithmetic 

calculations of the inertial sensors and the other is used to 

process a low-cost commercial GPS receiver). The third 

platform is a 16-bit AVR ATMEL microcontroller board which 

connected through CAN BUS with OBD shield to acquire the 

ground speed measurements. Signal acquisition, 

mechanization modeling, CF and UKF processes are 
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performed via three boards for real-time calculations. IMU, 

odometer and GPS raw measurements data are also logged 

for further post processing under MATLAB for system tuning 

and offline integration evaluation which helps in the 

enhancement of the system performance.  

In the next sections, the sensors models are presented in 

section (2), section (3) describes the CF and UKF filters 

theories, section (4) presents a loosely coupled 

GPS/INS/Odometer/Magnetometer system implementation 

by utilizing UKF, section (5) shows the evaluation of the 

experimental work and results. Finally, the conclusion is 

presented in section (6). 

 

2. Sensors Modeling 

2.1. INS sensor model 
The INS mechanization equations are used to obtain the 

navigation solutions position, velocity, and attitude (PVA) of 

the vehicle in the East-North-Up (ENU) navigation frame (n-

frame), which is known as local-level frame (LLF). These 

solutions are derived from the angular rates measurements 

acquired from the three gyroscopes and specific forces 

measured from three accelerometers as shown in Figure 1. 

(Aggarwal, El-Sheimy, & Noureldin, 2010). 

The acceleration is measured by the accelerometers in the 

body frame, and then transformed to the navigation frame for  

 

getting useful information. This operation is done using the 

transformation matrix through the attitude angles that are 

obtained from integrating the gyro rates. The projected 

acceleration is purified from Coriolis motion and the external 

effects of gravity by getting pure implication of the body 

motion. The output is integrated to obtain position and 

velocity as described in (Noureldin, Karamat, & Georgy, 2012). 

 

2.2. Odometer sensor model 
The odometer is a self-independent sensor which measures 

the land vehicle travelled distance over time, and it is used for 

continuously estimating the ground vehicle speed without any 

external interference to improve the navigation performance; 

especially during GPS outages. With the assumptions of the 

non-holonomic constraints which is the vehicle does not 

jump-off or slides on the ground, the vehicle velocity in the 

plane perpendicular to the forward direction is almost zero 

(Sukkarieh,1999). These constraints can be considered as a 

zero velocity update (ZUPT) along two axes of the vehicle (up 

and right). 

 
𝑉𝑏𝑧 ≈ 0, 𝑉𝑏𝑥 ≈ 0, and 𝑉𝑏𝑦 ≈ Velocity from odometer, 

 
where 𝑉𝑏𝑧, 𝑉𝑏𝑥, and 
𝑉𝑏𝑦 are the velocity projections in the 𝑏 frame 

(𝑉𝑏) along up, right and forward directions respectively. 
 

 

 
Figure 1. INS model diagram in the local level frame. 
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2.3. Magnetometer sensor model  
Magnetometer measures the earth's magnetic fields in its 

three axes X, Y and Z, so the heading can be determined in the 

horizontal planes, X and Y. The magnetometer measurements 

must be compensated for the effects of nearby ferrous 

materials by calculating the bias and offset in a process called 

hard-iron and soft-iron compensation. Once the 

measurements are corrected, the declination angle is applied 

to adjust magnetic north to true north.  

A simple calibration method can be used to determine the 

offset and scale factor values, by mounting the compass in the 

car and taking a circular path on a horizontal surface, then 

getting the maximum and minimum values of the X and Y 

magnetic readings as follow: 

 

max maxmin min
( ) / ( )                                         (1)

sf
X Y Y X X= − −  

max maxmin min
1 or ( ) / ( )                                      (2)

sf
Y X X Y Y= − −  

max min max(( )/2) *                                  (3)
off sf

X X X X X= − −    

max min max((  )/2)  *                                    (4)
off sf

Y Y Y Y Y= − −    

( ) *                                                   (5)
c m off sf

X X X X= −  

( ) *                                                       (6)
c m off sf

Y Y Y Y= −  

 
where,  𝑋𝑠𝑓, 𝑌𝑠𝑓, 𝑋𝑜𝑓𝑓, 𝑌𝑜𝑓𝑓, 𝑋𝑚, 𝑌𝑚, 𝑋𝑐, 𝑌𝑐 are the scale 

factor, offset, measured and calibrated of the X and Y axes, 

respectively. 
 

 
 

Heading=Heading + declination angle 

 

The used declination angle = (4.0 + (28.0 / 60.0)) /

 (180 /𝜋)  
 

3. Complementary and Unscented Filters 

3.1. Complementary Filter 

For more precise orientation estimation, accelerometers and 

gyroscopes are used together. The gyroscope data is useful in 

a short-time term because the integrated angle from the 

gyroscope drifts over time; while, the accelerometer data is 

useful in the long-time term because the accelerometer has a 

slow response calculation time for calculated tilt angles. The 

complementary filter is designed in such a way that the 

strength of one sensor will be used to overcome the 

weaknesses of the other sensor which makes each 

complementary to the other. The algorithm is given by: 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝑛𝑔𝑙𝑒
= ((𝛼) × (𝑃𝑟 𝑒 𝑣𝑖𝑜𝑢𝑠 𝐴𝑛𝑔𝑙𝑒 + (𝐺𝑦𝑟𝑜 reading × 𝑑𝑡⏟                          

Integration

)) 

                                                                      ⏟              
High-pass filter

 

                     
+ ((1 − 𝛼) × (𝑡𝑖𝑙𝑡 angle by a𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟)⏟                          

Low-pass filter

))                                            

                                                                                                                      (8) 

 
𝛼 = 𝜏/(𝜏 + 𝑑𝑡) 
 

where: 

 
𝛼 is the filter coefficient, 𝜏 is the time constant , 
𝑑𝑡 is the sample period 

 
The tilt angle by accelerometer is calculated by measuring 

the gravity component in the horizontal accelerometers, then 

the estimated pitch and roll angles can be calculated. The CF 

combines the high-pass filter estimations from integrated gyro 

measurements with the current angle value and low-pass filter 

estimations from accelerometers measurements as shown in 

Figure 2. The CF algorithm is applicable in the conditions of 

low-body accelerations or nearly constant vehicle velocity 

which is the case of the designed experiments. For higher 

acceleration conditions such as racing cars or maneuvering 

missiles, this algorithm is no longer valid due to high dynamic 

motions. 

 

 
 

Figure 2. Basic complementary filter. 

 

3.2. Filter coefficient calculation 

The time constant𝜏gives the boundary of trusting the 

gyroscopes and accelerometers, in this work𝑑𝑡 = 0.025 sec 

and𝜏 = 0.225 sec. For𝜏shorter than 0.225 sec, then the 

priority will be the integrated gyroscope readings and the 

noisy horizontal accelerations will be filtered; while if 𝜏 is more 

than 0.225 sec, then  the accelerometer average is given more 

weighting than gyroscope. So, the calculated filter coefficient 

will be𝛼 = 0.9. 

 

 

Heading= arctan(  / )                                               (7)
c c

Y X

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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3.3. Unscented Kalman Filter 
The system state distribution and its relevant noise densities 

with respect to EKF are approximated by the Gaussian random 

variable (GRV), which are propagated analytically through a 

first-order linearization of the nonlinear system. Hence, the 

methodology of EKF can be introducing large linearization 

errors in the true posterior mean and covariance of the GRV 

transformation, which may lead to suboptimal performance. 

The UKF can be overcome the linearization errors problem by 

using a deterministic sampling approach. By using this 

approach, the system state distribution can be approximated 

by a GRV which represented by using a minimal set of carefully 

chosen weighted sample points. These sample points 

completely capture the true mean and covariance of the GRV, 

and then propagate through the true nonlinear system, then 

capturing the posterior mean and covariance accurately to the 
nd

2  order Taylor series expansion for any nonlinearity. 
 

3.4. Unscented Transformation 
The unscented transformation (UT) is a technique for 

determining the statistics of random variable that has a 

nonlinear transformation. Consider propagation a 

random variable  (dimension L) through a nonlinear 

function 𝑦 = 𝑓(𝑥). Assume𝑥 has mean�̄� and covariance 𝑃𝑥. 

To calculate the statistics of𝑦, we form a matrix𝜒of 2𝐿 + 1  

sigma vectors 𝜒𝑖 according to the following 

 
𝜒0 = �̄�, 
 

𝜒𝑖 = �̄� + (√(𝐿 + 𝜆)𝑃𝑥)𝑖 ,       𝑖 = 1, . . . , 𝐿,                                    (9) 
 

𝜒𝑖 = �̄� − (√(𝐿 + 𝜆)𝑃𝑥)𝑖−𝐿,   𝑖 = 𝐿 + 1, . . . ,2𝐿. 

 

Where, 𝜆 = 𝛼2(𝐿 + 𝑘) − 𝐿 is a parameter of scaling. 

𝛼determines the spread of the sigma points around�̄�, and is 

small positive value (e.g., 10
−4 ≤ 𝛼 ≤ 1). The constant𝑘 is a 

secondary scaling parameter, which is usually set to3 − 𝐿, 

and(√(𝐿 + 𝜆)𝑃𝑥)𝑖  is the 
th

i  column of the matrix square root 

(e.g., lower-triangular Cholesky factorization). These sigma 

vectors are propagated through the nonlinear function; 

 

𝑌𝑖 = 𝑓(𝜒𝑖),      𝑖 = 0, . . . ,2𝐿,                                                               (10) 
 

The mean and covariance for y  are approximated using a 

weighted sample mean and covariance of the posterior sigma 

points, 

 

2
( )

0

 ,                                                             (11)
L

m
ii

i

y YW
=

  

 

2
( )

0

 ( )( ) ,                                               (12)
L

TC
iiy i

i

P Y y Y yW
=

 − −  

 

with weights  𝑊𝑖  given by 

( ) ( ) 2

0 0

( ) ( )

 ,  1 ,  

,   1, ..., 2 .                                              (13)

2( )

m C

m C

i i

W W
L L

i LW W
L

 
 

 





= = + − +

+ +

= = =

+

 

 

where   is used to incorporate prior knowledge of the 

distribution of x  (for Gaussian distributions, 
2 =  is 

optimal) (Julier,  Uhlmann, &  Durrant-Whyte, 1995) 

Figure 3 gives an example for a two-dimensional system, 

Figure 3a shows the Monte Carlo sampling true mean and 

covariance propagation, Figure 3b represents the output by 

linearization approach as the EKF and Figure 3c shows the 

performance of the UT for five sigma points. 

 

3.5. Unscented Kalman filter Implementation 

The UKF can be implemented using UT method by expanding 

the state space to include the noise component
 
�̂�𝑘
𝑎 = [�̂�𝑘

𝑇  𝑣𝑘
𝑇  

𝑛𝑘
𝑇]𝑇. The UKF can be summarized as follows (Wan & Van Der 

Merwe, 2000): 

 

Initialization parameters: 

 

�̂�0 = 𝐸[𝑥0],  P𝑥0 = 𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)
𝑇]                                  (14) 

 

�̂�0
𝑎 = 𝐸[𝑥0

𝑎] = [�̂�0
𝑇  0  0]𝑇                                                                    (15) 

 
𝑃0
𝑎 = 𝐸[(𝑥0

𝑎 − �̂�0
𝑎)(𝑥0

𝑎 − �̂�0
𝑎)𝑇] 

    = [

𝑃0 0 0
0 𝑅𝑣 0
0 0 𝑅𝑛

]                                                        (16) 

 

where 
v

R  is the process-noise covariance, 
n

R is the 

measurement-noise covariance For   𝑘 = 1, . . . , ∞ 

 

1.  𝑡 = 𝑘 − 1 
2.  Sigma Points 

 

   𝜒𝑡
𝑎 = [�̂�𝑡

𝑎   �̂�𝑡
𝑎 + 𝛾√𝑃𝑡

𝑎 �̂�𝑡
𝑎 −𝛾√𝑃𝑡

𝑎]                                         (17) 

 

where           𝛾 = √𝐿 + 𝜆 
 

3. The time update equations are: 

Propagation of the sigma points through the system equation 

 

 

x

(11) 

(12) 

(13) 
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𝜒𝑘
𝑡

𝑥 = 𝑓(𝜒𝑡
𝑥, 𝜒𝑡

𝑣, 𝑢𝑡)                                                                               (18) 

�̂�𝑘
− = ∑ 𝑊𝑖

𝑚 𝜒
𝑖,
𝑘

𝑡

𝑥2𝐿
𝑖=0                                                                                (19) 

𝑃𝑥𝑘
− = ∑ 𝑊𝑖

𝑐(𝜒
𝑖,
𝑘

𝑡

𝑥2𝐿
𝑖=0 − �̂�𝑘

−)(𝜒
𝑖,
𝑘

𝑡

𝑥 − �̂�𝑘
−)𝑇 + 𝑅𝑣                            (20) 

 

The augmented sigma points is 

 

𝜒
𝑖,
𝑘

𝑡

= [�̂�𝑘
−      �̂�𝑘

− + 𝛾√𝑃𝑥𝑘
− �̂�𝑘

− −𝛾√𝑃𝑥𝑘
− ]                                     (21) 

 

4. Filtering 
 

𝑌
𝑖,
𝑘

𝑡

= ℎ(𝜒
𝑖,
𝑘

𝑡

)                                                                                        (22) 

�̂�𝑘
− = ∑ 𝑊𝑖

𝑚 Y
𝑖,
𝑘

𝑡

2𝐿
𝑖=0                                                                    (23) 

𝑃�̃�𝑘 = ∑ 𝑊𝑖
𝑐(𝑌

𝑖,
𝑘

𝑡

2𝐿
𝑖=0 − �̃�𝑘

−)(𝑌
𝑖,
𝑘

𝑡

− �̃�𝑘
−)𝑇 + 𝑅𝑛                      (24) 

𝑃𝑥𝑘,𝑦𝑘 = ∑ 𝑊𝑖
𝑐(2𝐿

𝑖=0 𝜒
𝑖,
𝑘

𝑡

− �̂�𝑘
−)(𝑌

𝑖,
𝑘

𝑡

− �̃�𝑘
−)𝑇                               (25) 

     𝐾𝑘 = 𝑃𝑥𝑘,𝑦𝑘 𝑃�̃�𝑘
−1                                                                          (26) 

 �̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑦𝑘 − �̂�𝑘

−)                                                                    (27) 

𝑃𝑥𝑘 = 𝑃𝑥𝑘
−  − 𝐾𝑡 𝑃�̃�𝑘 𝐾𝑘

𝑇                                                                      (28) 
 

Where 𝑦𝑘observation matrix and ℎ The observation model 

Figure 4 describes the UKF steps. At the first step; sigma points 

are generated from initial mean and covariance, then at the  

 

 

second step; the sigma points are propagated through the 

dynamic system, at third step; the mean and covariance of the 

transformed sigma points are captured, then at the fourth 

step; the augmented sigma points from the captured mean 

and covariance are calculated. Finally, the measurement 

update can be done to calculate the Kalman gain, state and 

covariance measurement updated matrices. 

 

 
 

Figure 4. Operation steps of the unscented Kalman filter. 

 

3.6. Observation 

After the observation information collected from the aiding 

inertial sensors, the observation vector can be generated as 

follow. In case of GPS is available then the position and 

velocity observation will be obtained from GPS receiver while, 

the heading observation angle will be obtained from 

magnetometer and the measurement vector will be as follow 

 

 
 

Figure 3.  Example of the UT for mean and covariance propagation:  

(a) actual; (b) first- order linearization (EKF); (c)  UT.  (Wan, Van Der Merwe, & Haykin, 2001). 
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(k)

      (k)= (k)                                                      (29)
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The observation model is 

 

3 3 3 3 3 3

3 33 3 3 3
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          0 0
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x x x

xx x
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 
 
 
 

 

where

     

3 3

0 0 0
0 0 0
0 0 1
       

xM =

 
 
  
 

  

The observation noise covariance matrix is 

 

3 3 3 3 3 3

3 3 3 3 3 3

3 33 3 3 3

(k)                   0 0

            ( )         0 0(k)=                         (31)

                           ( )0 0
          

x x x

x x x

xx x
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kVelR

kRm

 
 
 
 
 
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where   
3 3

0   0    0
0   0    0( )
0   0  (k)
       

x

m

kRm
R

=

 
 
  
 

      

where (k)mR  magnetometer observation noise covariance 

On the other side in case of GPS signals are not available then 

the heading observation angle will be obtained from 

magnetometer while, the velocity observation information will 

be obtained from odometer in the body frame using the 

transformation matrix l
bR  to get the velocity in (n-frame),  

 

( )= 0        0                                              (32)    
T

l
Odo b byV R V  

 

The observation vector will be  

 

(k)
(k)=                                                   (33)
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The observation model is 
 

3 33 3 3 3

3 33 3 3 3

            0 0
(k)=                                        (34)     
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xx x
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 
 
 

 

 

The odometer observation noise covariance matrix for x, y 

and z axes in b-frame is  

 

(k)       0                0

0           (k)           0(k)=                                         (35) 

0               0            (k) 
          

    

bx

by

bz

Odo

R

RR

R

 
 
 
 
 
 

 

 
While the odometer velocity is transformed from the body 

frame to the navigation frame; as well its related observation 

noise covariance matrix has to be transformed, this 

transformation is done by 

'
(k)= (k)                                            (36)( ) ( ))        (

T
llOdo b Odo b

k R kR RR  

The observation noise covariance matrix is 

 

3 3 3 3

3 33 3 3 3

'            (k)          0 0
(k)=                   (37)

                           ( )0 0          

x x

xx x

ROdo
R

kRm

 
 
 
 

 

 

3.7. Loosely coupled GPS/INS integration 

In this integration type, the GPS and INS operate 

independently and each one provides separate navigation 

information but the GPS signal information used to aid the INS 

mechanization to reduce the INS errors which increase rapidly 

with time and this aiding can be done by GPS measurement 

update via the step of integration filtering. Furthermore, the 

navigation solution performance will be improved after the 

estimated error states feeding to the INS mechanization. 

Frequently, this integration is based on Kalman filtering as 

shown in Figure 5, here we have implemented the proposed 

integration technique based on the unscented Kalman filter 

(Hieu & Nguyen, 2012). 

 

 
 

Figure 5. Conventional loosely  

coupled GPS /INS. 
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4. Integrated System Implementation 

 
Regardless the availability of GPS status, the output from INS, 

magnetometer and CF have been used. To improve the 

estimated solution of pitch and roll angles, the CF algorithm 

has been implemented and its output has been fed to UKF. 

Hence, the heading observation angle has been received 

from magnetometer and fed to UKF as well for state 

estimation correction. Then if the GPS solution is available, the 

position and velocity from GPS receiver are fed to the UKF as an 

observation measurement to correct the state estimation which 

is fed back to the INS model. In addition, if the GPS solution is not 

available, then the velocity received from the odometer is fed to 

UKF as an observation measurement for state estimation 

correction. As shown in Figure 6. 
 

4.1. Hardware Description 

The hardware which we have used consists of three platforms. 

The first two platforms are 32-bit ARM core microcontroller 

boards. One of them is a master board which collects the raw 

data and controls it directly from the IMU with type MPU6050 

and from the digital compass with type HMC5883L, receives 

the data from GPS and odometer via the communications with 

the other two boards through the interrupted serial port, 

executes the calculation of the heading angle based on the 

digital compass output, performs the INS modeling, and 

computes all the UKF integration algorithm calculations in 

both cases of GPS signal is available or not available regarding 

the correction of  the navigation states estimation . The 

second board collects the data from the GPS receiver module 

with type SKM53 and sends it through a serial port to the 

master board with an interrupt every 1 second for 

measurement updating. The third platform is 16-bit AVR 

ATMEL microcontroller board with CANBUS OBD shield which 

collects the velocity measurements of the land vehicle and 

sends it via the serial port to the master board with an 

interrupt every 1 second for measurement updating. In our 

experimental work we have found that our proposed MSDF 

technique achieved a real time localization solution by 

enhancing the estimation of all the concerning navigation 

states and improving the accuracy performance based on 

utilizing the low-cost platforms hardware which mentioned 

above in the same section. All raw data collected from all the 

inertial low-cost sensors during the real time phase have been 

used as well in the post-processing phase for processing, 

analysis and verifying the validation of the proposed  

 

 

 

 

 

technique. We used the satellite data which we collected 

during the real-time phase as reference data for comparison 

against the real-time estimated navigation state. Figure 7 

represents an illustration of the hardware configuration which 

have used in this work. 

 

 
 

Figure 6. Integrated system  

implementation diagram. 

 

 
 

Figure 7. Hardware configuration. 
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4.2. Test environment 

A land vehicle-navigation test environment is shown in Figure 8 

which shows that the reference trajectory of the experiment 

relative to GPS data in a red color.  The measurements raw data 

from IMU were collected with a frequency rate 40Hz. Hence, the 

measurements data from GPS receiver and CANBUS were 

collected with a frequency rate 1Hz. Number of visible satellites 

in case of GPS signal is available were about 7~10 visible 

satellites. Average car velocity in land vehicle-navigation test 

environment was 45 km/h. The total navigation time was 304 

seconds. The first period for 50 seconds was a stopping period 

for initial alignment, then after that the car started the travelling 

period for 254 seconds. 

 

 
    

Figure 8. Reference trajectory relative to GPS data. 

 

5. Experimental Work and Results 
 

5.1. Navigation results during GPS 1 sec update rate 

In the beginning, with respect to the real-time solution (RTS), 

we made a conventional INS/GPS integration-based UKF 

without any kind of aiding sensors and without any correction 

for the pitch and roll channels by the CF and we refer to this 

case by (RTS without aiding), then after that we applied the 

complementary filter regard the correction of  pitch and roll 

channels; in addition,  we used the magnetometer as an aid 

sensor for more accurate heading angle and we refer to this 

case by (RTS with attitude aiding). In case of RTS with attitude 

aiding, we found that the performance of the integrated 

system has been improved by make a comparison between  

the quantitative position errors for both cases such as 

standard deviation, mean, maximum error in east and north 

positions and the maximum horizontal error (MHE), these 

quantitative position errors were found decreased due to the 

enhancement which occurred in the attitude channels as 

shown in Table 1 and in Figure 9 which they represent the real 

time solution with and without attitude aiding. As an example, 

we noticed that the MHE is reduced by 45.354 % in case of RTS 

with attitude aiding. Furthermore, we noticed that the RTS of 

the attitude errors in pitch, Roll and Heading directions are 

depicted as shown in Figure 10. Figure 11 clarifies the 

enhancement of the navigation resultant trajectory in 

Latitude/Longitude because of the   reduction in errors after using 

the improved attitudes in case of RTS with attitude aiding. All the 

results shown in figures prove that the proposed technique is 

promising and the estimated trajectory based on RTS with 

attitude aiding follow the reference trajectory without significant 

errors. It is an important to be mentioned here that the accuracy 

of UKF slightly more accurate than the EKF due to the low-

dynamics of the land vehicle (EIdesoky et al., 2017b; LaViola, 

2003). From Table 1 we can notice that the utilized extremely low-

cost and grade of IMU as an inertial sensor is suitable for low-cost 

integrated navigation systems of land vehicle applications which 

tolerate a 2D position with a maximum horizontal error (MHE) of 

about 3.19 meters in case of GPS available. 

 

5.2. Navigation results during 10 sec GPS outage  
In this section, we made a test to validate our proposed 

technique during the GPS denied environment by simulate a 

tunnel crossing or an urban canyon crossing via 10 second 

GPS data outage. In this case we noticed that the accumulated 

INS positioning errors increase rapidly during the outage 

interval. Then we started our proposed technique test based 

on a real time solution with attitudes and odometer aiding and 

we referred to this case by (RTS with attitude and odo aiding) , 

then we compared our proposed case with other two cases 

which are RTS without aiding and RTS with attitude aiding. In 

our proposed case in addition to using the attitude aiding we 

used the odometer sensor to collect the velocity 

measurements of the land vehicle instead of GPS velocity 

during the GPS outage. In case of RTS with attitude and 

odometer aiding we found that the performance of the 

integrated system has been improved as clearly shown in a 

comparison between the quantitative position errors such as 

standard deviation, mean, maximum error in east and north 

positions and the maximum horizontal error (MHE), these 

quantitative position errors were found decreased. As we 

notice from the comparison in Table 2 and as shown in Figure 

12, we will find that The MHE is equal to 161.945 (m) during 10 

second GPS outage without any kind of aiding then we will see 

that  the position error dramatically damp due to the 

enhancement which occurred in the attitude channels after 

attitude aiding with the INS data and the MHE reduced by 

87.205 %; while, after we added the measurement velocity 

from the odometer sensor and vehicle constrains to the 

aforementioned RTS with attitude adding then the MHE 

reduced by 92.74 % and this comparison clearly prove that the 

localization solution will be more accurate in case of our 

proposed technique when UKF integration done after using 

the improved pitch and roll angles as an output of CF and 

using the heading angle from the magnetic compass in 

addition to utilizing  the velocity from the odometer velocity. 
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Figures 13-14 show the improvements which happened in the 

navigation resultant and verify our proposed MSDF technique 

to be a suitable for solving the problem of real time land 

vehicle localization. From Table 2 we can notice that the  

 

utilized extremely low-cost and grade of IMU as an inertial 

sensor is suitable for low-cost integrated navigation systems of 

land vehicle applications which tolerate a 2D position with a 

maximum horizontal error (MHE) of about 11.75 meters in case 

of GPS not available. 

 

Table 1. Position errors during navigation in case of 1sec. GPS update rate. 

 

 
Position errors (m) for 1sec. GPS update rate 

Mean Std. Max. Error Max. Horizontal Error 

RTS without aiding 
East 0.384 0.51 3.964 

5.840 
North 0.688 0.76 4.289 

RTS with attitude 

aiding 

East 0.227 0.24 1.899 
3.1915 

North 0.460 0.41 2.565 

 
 
 
 

 
 

Figure 9. Position errors in east/north for GPS/INS integrated system 

 in case of 1sec. GPS update rate. 
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Figure 10. Attitude errors in roll, pitch and azimuth for GPS/INS integrated system 

 in case of 1sec. GPS update rate. 

 

 
 

Figure. 11 Navigation result in lat/lon for GPS/INS integrated system 

 in case of 1sec. GPS update rate. 
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Table 2. Position errors during navigation in case of 10sec GPS outage. 

 

 
Position errors (m) for 10sec. GPS outage 

Mean Std. Max. Error Max. Horizontal Error 

RTS without aiding 
East 1.789 9.81 116.2 

161.945 
North 1.96 9.17 112.8 

RTS with attitude 

aiding 

East 0.476 1.66 17.51 
20.721 

North 0.646 1.22 11.08 

RTS with attitude & 

odo. Aiding 

East 0.337 0.72 6.342 
11.750 

North 0.623 1.09 9.892 

 
 
 
 

 
 

Figure 12. Position errors in east/north for GPS/INS integrated system 

 in case of 10sec GPS outage. 
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Figure 13. Navigation result in lat/lon for GPS/INS integrated system 

 in case of 10sec GPS outage. 

 

 
 

Figure 14. Attitude errors in Roll, Pitch and Azimuth for GPS/INS integrated system 

 in case of 10sec GPS outage 
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6. Conclusions 

 

In this paper a real time nonlinear MSDF solution based on 

extremely low-cost and grade inertial sensor for land vehicle 

navigation system is presented. The utilized low-cost inertial 

sensor-based MEMS are IMU, commercial GPS, CAN bus (OBD) 

shield which senses the vehicle velocity and digital magnetic 

compass sensors. Loosely coupled integration architecture 

based on two platforms of 32-bit ARM core microcontroller 

and one platform of 16-bit AVR ATMEL microcontroller using 

UKF has been implemented. The integrated mechanism has 

been implemented and its performance has been evaluated 

through real time experimental work and post-processing 

domain.  

A complementary filter (CF) has been implemented to 

improve the tilt angle drift. In case of available GPS conditions, 

the performance of the integrated system and the accuracy of 

the estimated localization state have been improved by using 

the RTS method with attitude aiding and the MHE errors 

reduced by 45.354 %. In case of GPS-denied environments, the 

proposed integrated mechanism based on RTS with attitude 

and odometer with vehicle constrains aiding is presented and 

the MHE reduced by 92.74 %. The proposed mechanism 

overcome the rapidly increasing navigation errors due to GPS 

outage and ensure a land vehicle continuous navigation 

solution with high performance accuracy comparable with 

RTS without aiding technique and RTS with attitude aiding 

technique. The results of the real-time experiment show the 

performance of the proposed technique based on UKF 

applied to the nonlinear system without linearization of the 

state model. Finally, the paper showed that the low-cost 

hardware based on ARM core microcontroller can handle the 

computational complexity of performing the unscented 

transformation process and the calculations of the proposed 

algorithm with good output navigation results compared with 

the reference trajectory. 
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