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Abstract: In this study, we apply a new version of the Homotopy Analysis Method called 

decomposition of the homotopy analysis method (DHAM). The DHAM method is based on the 

decomposition of the right-hand side of a given system of differential equations into a sum of functions. 

After the decomposition one can apply the HAM method. The physical model that we investigate in this 

paper is a complex system of equations that contains nonlinear ordinary differential equations of the 

first order. The system of equations takes into account the important variables such as the pressure, 

the temperature, the mass flow, the torque due to the turbine turbocharger, the torque from the 

compressor, the speed of turbocharger, etc.  This system is very complex and cannot be solved 

analytically. The HAM method includes an artificial small parameter that inserts into the physical 

model and hence it enables one to apply different asymptotic methods.  We compared the results of 

DHAM and HAM to numerical simulations analyses. We concluded that the DHAM results are closer to 

the numerical simulation results. 
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1. Introduction 
 

Turbocharged engines are very popular today. Since the 

turbocharger generates extra power, it allows smaller 

turbocharged engines to equal larger non-turbocharged ones 

in acceleration (Chen, 2012; Bell, 1997; Holmbom, Liang, & 

Eriksson, 2017; Miller, 2008). But because the turbocharged 

engines are smaller, they are also generally capable of better 

fuel economy (Abdelmadjid, Mohamed, & Boussad, 2013; 

Bontempo, Cardone, Manna, & Vorraro, 2015; Burke, 

Copeland, & Duda, 2014; Burke, Vagg, Chalet, & Chesse, 2015). 

How does turbocharging work in practice? A turbocharger is 

effectively two little air fans (also called impellers or gas 

pumps) sitting on the same metal shaft so that both spins 

around together. One of these fans, called the turbine, sits in 

the exhaust stream from the cylinders. As the cylinders blow 

hot gas past the fan blades, they rotate and the shaft they are 

connected to (technically called the center hub rotating 

assembly or CHRA) rotates as well.  The second fan is called 

the compressor and, since it is sitting on the same shaft as the 

turbine, it spins too. It is mounted inside the car air intake so, 

as it spins, it draws air into the car and forces it into the 

cylinders. 

This presents a slight problem: Compressing a gas makes it 

hotter (that is why a bicycle pump warms up when you start 

inflating your tires). Hotter air is less dense (that is why warm 

air rises over radiators) and less effective at helping fuel to 

burn, so it would be much better if the air coming from the 

compressor was cooled before it entered the cylinders. To 

cool it down, the output from the compressor passes over a 

heat exchanger that removes the extra heat and channels it 

elsewhere (Ekberg & Eriksson, 2017; Gancedo, Guillou, & 

Gutmark, 2018; Gronman, Sallinen, Honkatukia, Backman, & 

Uusitalo, 2016; Smolík, Hajžman,  & Byrtus, 2017; Yang, Gu, 

Deng, Yang, & Zhang 2018; Zhao, Sun, Wang, & Song, 2017). 

All the operations we described above can be represented 

by a mathematical model that usually contains a nonlinear 

ordinary differential equation system as has been done by 

Andersson (2005).  There are many numerical simulations and 

semi-analytical methods to investigate such models.  In this 

paper we applied the well-known semi-analytical method 

called the Homotopy Analysis Method (Liao, 2010; 2009a) and 

applied it to various subjects in the sciences (Abbasbandy et 

al. 2006; Liao, 2009b; Molabahrami & Khani, 2009; 

Turkyilmazoglu, 2009; Yang & Liao, 2006). HAM is a 

mathematical tool that is based on homotopy, a fundamental 

concept in topology and differential geometry.  This is an 

analytical approach to formulate the series solution of linear 

and nonlinear partial differential equations. Most perturbation 

methods assume a small parameter exists in the 

mathematical model. The HAM does not depend on a small 

parameter which is difficult to find (Cheng, Liao, Mohapatra, & 

Vajravelu, 2008; Li & Liao, 2005; Liao, 2003; 2012). 

The HAM method also provides a simple way to ensure the 

convergence of the series solution. Moreover, the HAM 

provides a large degree of freedom to choose an appropriate 

base function to approximate the linear and non-linear 

problems ( Abbasbandy, 2006; Fallahzadeh & Shakibi, 2015). 

Another important advantage of this method is that one can 

construct a continuous mapping of an initial guess 

approximation to the exact solution of the given problem 

through an auxiliary linear operator. To ensure the 

convergence of the series solution an auxiliary parameter is 

used.  In addition, Liao has substantiated that the HAM differs 

from the other analytical methods in that it ensures the 

convergence of the series solution by choosing a proper value 

for the convergence-control parameter (Jafari, Saeidy, & 

Firoozjaee, 2009). 

 

2. The turbocharger model 
 

For the present study, the engine model is based on a system 

of first-order ordinary nonlinear differential equations that 

include pressure, temperature, and mass flow observer along 

the air-path of a turbocharged engine (Andersson, 2005).  

The model has states for pressures and temperature in 

each control volume and one state for the turbocharger 

speed.  The dynamical variables of the physical model of 

turbocharger engine model are shown in the following table: 

 
Variable Description Units 

Paf Pressure after air-filter [Pa] 

Taf Temperature after air-filter [K] 

Pc Pressure after compressor [Pa] 

Tc Temperature after compressor [K] 

Pic Pressure after intercooler [Pa] 

Tic Temperature after intercooler [K] 

Pim Intake manifold pressure [Pa] 

Tim Intake manifold temperature [K] 

Pem Exhaust manifold pressure [Pa] 

Tem Exhaust manifold temperature [K] 

Pt Pressure after turbine [Pa] 

Tt Temperature after turbine [K] 

wtc Turbocharger speed [RPM] 
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In addition, the main physical/ mathematical assumptions 

of the model are listed below: - Flows run only in a forward 

direction. Example: the air always flows from the air-filter to 

the compressor, never from the compressor to the air-filter, 

No heat transfer to/from the gas inside of the control volumes, 

- No compressor bypass valve as the modeled engine was not 

initially equipped with such a valve, 

- All gases are ideal and there are two sets of thermodynamic 

properties: 

(a) Air on the intake side has gas constant 𝑅𝑎 and the ratio of 

specific heats is 𝛾
𝑎

, 

(b) Burned (exhaust) gas has gas constant 𝑅𝑒𝑔 and the ratio of 

specific heats is 𝛾
𝑒𝑔

. 

The turbocharged engine model consists of components such 

an as air-filter, compressor, intercooler, etc. Between these 

components, there are pipes or manifolds. These parts can 

be considered as control volumes where the pressure and 

temperature of the gas depends on the mass-flow into and out    

of the volumes.  Mass-flows are determined by restrictions that 

are components that, given the pressure and temperature 

before and after the restriction, determine the mass-flow and 

temperature of the flow. 

The list below contains the partitions to the restrictions 

control parts: 

Restriction: Air-filter, Compressor, Intercooler, Throttle, Engine 

determines port air-mass flow, Turbine/wastegate, Exhaust 

system 

Control volume: Pipe between air-filter and compressor, Pipe 

between and intercooler, Pipe between and intercooler and 

throttle, an intake manifold connects the throttle and 

cylinders, an exhaust manifold connects the cylinders and the 

turbine/ wastegate, Pipe between and turbine/wastegate and 

the exhaust system.  
 

The model has the form of (Andersson, 2005) 

Ṗ𝑎𝑓 = (
𝛾𝑅

𝑉𝑎𝑓
) ∙ (ṁ𝑎𝑓𝑖𝑛

𝑇𝑎𝑓𝑖𝑛 −ṁ𝑎𝑓𝑜𝑢𝑡𝑇𝑎𝑓) ≡ 𝑔1                                                                                                                                                    (1) 

 

Ṫ𝑎𝑓 = (
𝑇𝑎𝑓

𝑃𝑎𝑓
∙
𝛾𝑅

𝑉𝑎𝑓
) ∙ (ṁ𝑎𝑓𝑖𝑛

𝑇𝑎𝑓𝑖𝑛 −ṁ𝑎𝑓𝑜𝑢𝑡𝑇𝑎𝑓 − 𝛾
−1𝑇𝑎𝑓 ∙ (ṁ𝑎𝑓𝑖𝑛

−ṁ𝑎𝑓𝑜𝑢𝑡)) ≡ 𝑔2                                                                             (2) 

 

Ṗ𝑐 = (
𝛾𝑅

𝑉𝑐
) ∙ (ṁ𝑐𝑖𝑛

𝑇𝑐𝑖𝑛 −ṁ𝑐𝑜𝑢𝑡𝑇𝑐) ≡ 𝑔3                                                                                                                                                                   (3) 

  

Ṫ𝑐 = (
𝑇𝑐

𝑃𝑐
∙
𝛾𝑅

𝑉𝑐
) ∙ (ṁ𝑐𝑖𝑛

𝑇𝑐𝑖𝑛 −ṁ𝑐𝑜𝑢𝑡𝑇𝑐 − 𝛾−1𝑇𝑐 ∙ (ṁ𝑐𝑖𝑛
−ṁ𝑐𝑜𝑢𝑡)) ≡ 𝑔4                                                                                                      (4) 

 

Ṗ𝑖𝑐 = (
𝛾𝑅

𝑉𝑖𝑐
) ∙ (ṁ𝑖𝑐𝑖𝑛

𝑇𝑖𝑐𝑖𝑛 −ṁ𝑖𝑐𝑜𝑢𝑡𝑇𝑖𝑐) ≡ 𝑔5                                                                                                                                                            (5) 

 

Ṫ𝑖𝑐 = (
𝑇𝑖𝑐

𝑃𝑖𝑐
∙
𝛾𝑅

𝑉𝑖𝑐
) ∙ (ṁ𝑖𝑐𝑖𝑛

𝑇𝑖𝑐𝑖𝑛 −ṁ𝑖𝑐𝑜𝑢𝑡𝑇𝑖𝑐 − 𝛾
−1𝑇𝑖𝑐 ∙ (ṁ𝑖𝑐𝑖𝑛

−ṁ𝑖𝑐𝑜𝑢𝑡)) ≡ 𝑔6                                                                                         (6) 

 

Ṗ𝑖𝑚 = (
𝛾𝑅

𝑉𝑖𝑚
) ∙ (ṁ𝑖𝑚𝑖𝑛

𝑇𝑖𝑚𝑖𝑛
−ṁ𝑖𝑚𝑜𝑢𝑡

𝑇𝑖𝑚) ≡ 𝑔7                                                                                                                                                   (7) 

Ṫ𝑖𝑚 = (
𝑇𝑖𝑚

𝑃𝑖𝑚
∙
𝛾𝑅

𝑉𝑖𝑚
) ∙ (ṁ𝑖𝑚𝑖𝑛

𝑇𝑖𝑚𝑖𝑛
−ṁ𝑖𝑚𝑜𝑢𝑡

𝑇𝑖𝑚 − 𝛾−1𝑇𝑖𝑚 ∙ (ṁ𝑖𝑚𝑖𝑛
−ṁ𝑖𝑚𝑜𝑢𝑡

)) ≡ 𝑔8                                                                           (8) 

 

Ṗ𝑒𝑚 = (
𝛾𝑅

𝑉𝑒𝑚
) ∙ (ṁ𝑒𝑚𝑖𝑛

𝑇𝑒𝑚𝑖𝑛
−ṁ𝑒𝑚𝑜𝑢𝑡

𝑇𝑒𝑚) ≡ 𝑔9                                                                                                                                                (9) 

 

Ṫ𝑒𝑚 = (
𝑇𝑒𝑚

𝑃𝑒𝑚
∙
𝛾𝑅

𝑉𝑒𝑚
) ∙ (ṁ𝑒𝑚𝑖𝑛

𝑇𝑒𝑚𝑖𝑛
−ṁ𝑒𝑚𝑜𝑢𝑡

𝑇𝑒𝑚 − 𝛾−1𝑇𝑒𝑚 ∙ (ṁ𝑒𝑚𝑖𝑛
−ṁ𝑒𝑚𝑜𝑢𝑡

)) ≡ 𝑔10                                                                 (10) 

 

Ṗ𝑡 = (
𝛾𝑅

𝑉𝑡
) ∙ (ṁ𝑡𝑖𝑛

𝑇𝑡𝑖𝑛 −ṁ𝑡𝑜𝑢𝑡𝑇𝑡) ≡ 𝑔11                                                                                                                                             (11) 

 

Ṫ𝑡 = (
𝑇𝑡

𝑃𝑡
∙
𝛾𝑅

𝑉𝑡
) ∙ (ṁ𝑡𝑖𝑛

𝑇𝑡𝑖𝑛 −ṁ𝑡𝑜𝑢𝑡𝑇𝑡 − 𝛾
−1𝑇𝑡 ∙ (ṁ𝑡𝑖𝑛

−ṁ𝑡𝑜𝑢𝑡)) ≡ 𝑔12                                                                                       (12) 

 

 ẇ𝑡𝑐 = (
1

𝐼𝑡𝑐
) ∙ (𝑇𝑞𝑡 − 𝑇𝑞𝑐 − 𝑤𝑡𝑐𝑐𝑓𝑟) ≡ 𝐹𝑤𝑡𝑐(𝑃𝑎𝑓, 𝑇𝑎𝑓, 𝑃𝑐 , 𝑃𝑒𝑚, 𝑇𝑒𝑚, 𝑃𝑡 , 𝑤𝑡𝑐) ≡ 𝑔13                                                                                (13) 
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ṁ𝑎𝑓𝑖𝑛
=

𝑃𝑎𝑚𝑏
2 −𝑃𝑎𝑓𝑃𝑎𝑚𝑏

𝐶𝑅𝑇𝑎𝑓
, ṁ𝑎𝑓𝑜𝑢𝑡 = ṁ𝑐𝑖𝑛

, T𝑎𝑓𝑖𝑛 = T𝑎𝑚𝑏                                                                                                                                     (14) 

 

ṁ𝑐𝑖𝑛
= (𝜋

𝑃𝑎𝑓𝑤𝑡𝑐𝐷𝑐
3

4𝑅𝑇𝑎𝑓2
) ∙

√
  
  
  
  
  
  
  
  
 

(

 
 
 
 
 
 1−𝑚𝑖𝑛

{
 
 

 
 

𝐾1

(

  
 
𝐶𝑝𝑇𝑎𝑓

(
𝑃𝑐
𝑃𝑎𝑓

)

𝛾−1
𝛾

0.5(𝑤𝑡𝑐0.5𝐷𝑐)
2

)

  
 

2

,1

}
 
 

 
 

𝐾2

)

 
 
 
 
 
 

                                                                                                                        (15) 

 

𝑇𝑐𝑖𝑛 = 𝑇𝑎𝑓 (1 +
(
𝑃𝑐
𝑃𝑎𝑓

)−1

ɳ𝑐
) ,ṁ𝑐𝑜𝑢𝑡 = ṁ𝑖𝑐𝑖𝑛

                                                                                                                                                           (16) 

 

ṁ𝑖𝑐𝑖𝑛
=

𝑃𝐶
2−𝑃𝑖𝑐𝑃𝑐

𝐶𝑅𝑇𝑖𝑐
, ṁ𝑖𝑐𝑜𝑢𝑡 = ṁ𝑖𝑚𝑖𝑛

, T𝑖𝑐𝑖𝑛 = 𝑇𝑐 − ɳ𝑖𝑐(𝑇𝑐 − 𝑇𝑎𝑚𝑏)                                                                                                                  (17) 

 

𝛹 (
𝑃𝑖𝑚

𝑃𝑖𝑐
) = √𝛾 ∙ (

2

𝛾+1
)

𝛾+1

2(𝛾−1)
, 𝑓𝑜𝑟 

𝑃𝑖𝑚

𝑃𝑖𝑐
≤ 0.5283                                                                                                                                                 (18) 

 

 𝛹 (
𝑃𝑖𝑚

𝑃𝑖𝑐
) =  √

2𝛾

𝛾−1
((

𝑃𝑖𝑚

𝑃𝑖𝑐
)

2

𝛾
− (

𝑃𝑖𝑚

𝑃𝑖𝑐
)

𝛾+1

𝛾
) , 𝑓𝑜𝑟 0.5283 <

𝑃𝑖𝑚

𝑃𝑖𝑐
≤ 1                                                                                                                (19) 

 

ṁ𝑖𝑚𝑖𝑛
=

𝑃𝑖𝑐𝐴𝑒(∝)

√𝑅𝑇𝑖𝑐
∙ 𝛹 (

𝑃𝑖𝑚

𝑃𝑖𝑐
) , T𝑖𝑚𝑖𝑛

= 𝑇𝑖𝑐                                                                                                                                                                  (20) 

 

ṁ𝑖𝑚𝑜𝑢𝑡
=

𝑃𝑖𝑚𝑉𝑑ɳ𝑐𝑦𝑙ɳ𝑣𝑜𝑙𝑁𝑟𝑝𝑠

4𝜋𝑅𝑇𝑖𝑚
                                                                                                                                                                                          (21) 

 

ṁ𝑒𝑚𝑖𝑛
= ṁ𝑖𝑚𝑜𝑢𝑡

∙ (1 +
1

𝜆(
𝐴

𝐹
)
𝑠

) ,ṁ𝑒𝑚𝑜𝑢𝑡
= ṁ𝑡𝑖𝑛

                                                                                                                                                 (22) 

 

𝛹 (
𝑃𝑡

𝑃𝑒𝑚
) = √𝛾𝑒𝑔 ∙ (

2

𝛾𝑒𝑔+1
)

𝛾𝑒𝑔+1

2(𝛾𝑒𝑔−1)
, 𝑓𝑜𝑟 

𝑃𝑖𝑚

𝑃𝑖𝑐
≤ 0.5283                                                                                                                                    (23) 

 

𝛹 (
𝑃𝑡

𝑃𝑒𝑚
) = √

2𝛾𝑒𝑔

𝛾𝑒𝑔−1
((

𝑃𝑡

𝑃𝑒𝑚
)

2

𝛾𝑒𝑔 − (
𝑃𝑡

𝑃𝑒𝑚
)

𝛾𝑒𝑔+1

𝛾𝑒𝑔 )  𝑓𝑜𝑟 0.5283 <
𝑃𝑡

𝑃𝑒𝑚
≤ 1                                                                                                      (24) 

 

ṁ𝑡𝑖𝑛
= ṁ𝑡 +ṁ𝑤𝑔, ṁ𝑡 =

𝑃𝑒𝑚𝐾𝑡1

√𝑇𝑒𝑚
∙ √1 − (

𝑃𝑡

𝑃𝑃𝑒𝑚
)
𝑘𝑡2
                                                                                                                                          (25) 

 

ṁ𝑤𝑔 =
𝑃𝑒𝑚

√𝑅𝑇𝑒𝑚
𝛹 (

𝑃𝑡

𝑃𝑒𝑚
)𝐶𝑑𝐴𝑤𝑔𝑚𝑎𝑥

𝑢𝑤𝑔, ṁ𝑜𝑢𝑡 =
𝑃𝑡
2−𝑃𝑡𝑃𝑎𝑚𝑏

𝐶𝑅𝑇𝑡
                                                                                                                              (26) 
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3. Preliminaries to the standard HAM method 

 

In this section we present the concept of HAM as introduced in 

(Liao, 2003).  Due to the model that we are investigating is only 

time-dependent, the method of homotopy must be written 

assuming its reduced form, which fits in the model under 

consideration. 

Consider the following system of differential equations: 

 

𝑁𝑖 [𝑢𝑖(𝑡)] = 𝑔𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑘                                                        (28) 

 

where k = 13 for the following dynamical variables of the 

model: 𝑃𝑎𝑓, 𝑇𝑎𝑓 , 𝑃𝑐 , 𝑇𝑐 , 𝑃𝑖𝑐 , 𝑇𝑖𝑐 , 𝑃𝑖𝑚, 𝑇𝑖𝑚, 𝑃𝑒𝑚, 𝑇𝑒𝑚, 𝑃𝑡 , 𝑇𝑡 , 𝑤𝑡𝑐 . 

𝑁𝑖 are nonlinear operators, t denotes time and 𝑢𝑖  are 

unknown functions, and 𝑔𝑖(𝑡)are known analytic functions. 

For 𝑔𝑖(𝑡)= 0, system of differential equations (28) is the 

homogeneous part. 

 

Zero order deformation of HAM 

 

The zero-order deformation equation is defined as 

 

(1 − 𝑝)ℓ[ɸ𝑖(𝑡; 𝑝) − 𝑢𝑖,0(𝑡)] = 𝑝ℎ𝑖𝑁𝑖[ɸ𝑖(𝑡; 𝑝) − 𝑔𝑖(𝑡)],   (27) 

 

Where ℏ𝑖 is a non-zero auxiliary parameter called the 

convergence-control parameter, ℓ is an auxiliary linear 

operator, 𝑢𝑖,0(·) is an initial guess of 𝑢𝑖 (·), and ɸ𝑖 are unknown 

functions. The degree of freedom is established when the 

initial guess, the auxiliary linear operator, and the auxiliary 

parameter are chosen. If we set p = 0 and p = 1 at equation (29) 
we obtain: ɸ𝑖(𝑡; 𝑝 = 0) = 𝑢𝑖,0(𝑡) and ɸ𝑖(𝑡; 𝑝 = 1) = 𝑢𝑖(𝑡) 

respectively.  Thus, as p increases from 0 to 1, the solution 

ɸ𝑖(𝑡; 𝑝)) varies from the initial guesses 𝑢𝑖,0(𝑡)to the solutions 
𝑢𝑖(𝑡). 

Expanding ɸ in Taylor series with respect to the embedding 

parameter p,  

 

we obtain 

 
ɸ𝑖(𝑡; 𝑝) = 𝑢𝑖,0(𝑡) + ∑ 𝑢𝑖,𝑛(𝑡)𝑝

𝑛∞
𝑛=1 ,                                              (30) 

 

where 

 

𝑢𝑖,𝑛(𝑡) =
1

𝑛!

𝜕𝑛ɸ𝑖(𝑡;𝑝)

𝜕𝑝𝑛
|𝑃=0                                                                   (31) 

 
If the auxiliary linear operator, the initial guess, and the 

auxiliary parameter, are chosen and the above series 

converges at p = 1, then we obtain 

 
ɸ𝑖(𝑡; 1) = 𝑢𝑖,0(𝑡) + ∑ 𝑢𝑖,𝑛(𝑡)

∞
𝑛=1 ,                                                 (32) 

 
which is one of the solutions of the original nonlinear 

equation, as proved in (Liao, 2003). 

 

mth -order deformation 

 

The zero-order deformation is a private case of mth -order 

deformation as follows: 

 

𝑢⃗ 𝑖,𝑛(𝑡) = {𝑢𝑖,0(𝑡), 𝑢𝑖,1(𝑡), … , 𝑢𝑖,𝑛(𝑡)} , 1 ≤ 𝑖 ≤ 𝑘 (𝑘 = 13).  

                                                                                                                    (33) 

 

Differentiating Equation (29) m-times with respect to the 

embedding parameter p and then setting p = 0 and finally 

dividing the terms by m!, we obtain the mth -order deformation 

equation in the form of: 

 

ℓ[𝑢𝑖,𝑚(𝑡) − 𝑋𝑚𝑢𝑖,𝑚−1(𝑡)] = ℎ𝑖𝑅𝑖,𝑚(𝑢⃗ 𝑖,𝑚−1),                            (34) 

 

where, 

 

𝑅𝑖,𝑚(𝑢⃗ 𝑖,𝑚−1) =
1

(𝑚−1)!

𝜕𝑚−1𝑁𝑖[ɸ𝑖(𝑡;𝑝)−𝑔𝑖]

𝜕𝑝𝑚−1 |𝑝=0,                              (35) 

 

and 𝑋𝑚is the unit step function. Applying the inverse 

operator ℓ−1(·) on both sides of Equation (34), we get 

 

𝑢𝑖,𝑚(𝑡) = 𝑋𝑚𝑢𝑖,𝑚−1(𝑡) + ℎ𝑖ℓ
−1[𝑅𝑖,𝑚(𝑢⃗ 𝑖,𝑚−1)]                           (36) 

 

In this way, it is easy to obtain 𝑢𝑖,𝑚 for m ≥ 1, at mth-order 

and finally determine the solution as: 

 
𝑢𝑖(𝑡) = ∑ 𝑢𝑖,𝑛

𝑚
𝑛=0 (𝑡)                                                                            (37) 

 
For the present work, we choose the initial guess to be the 

initial conditions of the considered model. Therefore, the 

linear operator will be: 

 

ℓ =
𝑑

𝑑𝑇
(∙)                                                                                                     (38) 

The initial conditions of the model are as follows: 
 

𝑎𝑡 𝑡 = 0: 𝑃𝑎𝑓 = 𝑃𝑎𝑓0, 𝑇𝑎𝑓 = 𝑇𝑎𝑓0,  𝑃𝑐 = 𝑃𝑐0, 𝑇𝑐 = 𝑇𝑐0 

                                                                                 𝑃𝑖𝑐 = 𝑃𝑖𝑐0, 𝑇𝑖𝑐 = 𝑇𝑖𝑐0,  𝑃𝑖𝑚 = 𝑃𝑖𝑚0, 𝑇𝑖𝑚 = 𝑇𝑖𝑚0 
                                                                                 𝑃𝑒𝑚 = 𝑃𝑒𝑚0, 𝑇𝑒𝑚 = 𝑇𝑒𝑚0,  𝑃𝑡 = 𝑃𝑡0, 𝑇𝑡 = 𝑇𝑡0, 𝑤𝑡𝑐 = 𝑤𝑡𝑐0       (27) 

 



 
 

 

OPhir Nave / Journal of Applied Research and Technology 178-186 

 

Vol. 18, No. 4, August 2020     183 

 

3.1 Description of the DHAM method 

In this section, we present the new concept of the DHAM 

method. Given a system of differential equations 

 

𝑁𝑖[𝑢𝑖(𝑡)] = 𝑔𝑖(𝑡), 1 ≤ 𝑖 ≤ 𝑘.                                                           (39) 

 

The base assumption of the DHAM method is that the 

function 𝑔𝑖(𝑡) can be divided into n terms such as 

 

𝑔𝑖(𝑡) = 𝑓𝑖
0(𝑡)  +  𝑓𝑖

1(𝑡)  + ⋯+ 𝑓𝑖
𝑛(𝑡).                                             (40) 

 

Expanding 𝑔𝑖(𝑡)in powers of the embedding parameter p 

as follows: 

 

𝑔𝑖(𝑡) = ɸ𝑖(𝑡; 𝑝) = 𝑓𝑖
0(𝑡)𝑝0  +  𝑓𝑖

1(𝑡)𝑝1  + ⋯+ 𝑓𝑖
𝑛(𝑡)𝑝𝑛.  

                                                                                                                    (41) 

 

the zero-order deformation has the form of: 

 

(1 − 𝑝)ℓ[ɸ𝑖(𝑡; 𝑝) − 𝑢𝑖,0(𝑡)] = 𝑝ℎ𝑖𝑁𝑖[ɸ𝑖(𝑡; 𝑝) − 𝜙(𝑡)],    (42) 

 

Where 𝜙 = ∑ 𝜙𝑖𝑖  

 

The mth order deformation has the form of: 

 

ℓ[𝑢𝑖,𝑚(𝑡) − 𝑋𝑚𝑢𝑖,𝑚−1(𝑡)] = ℎ𝑖𝑅𝑖,𝑚(𝑢⃗ 𝑖,𝑚−1),                          (43) 

 

where 

 

𝑅𝑖,𝑚(𝑢⃗ 𝑖,𝑚−1) =
1

(𝑚−1)!

𝜕𝑚−1𝑁𝑖[ɸ𝑖(𝑡;𝑝)−𝜙𝑖]

𝜕𝑝𝑚−1 |𝑝=0,                                 (44) 

 

As an example of using the designated analytical method, 

at Equation (1) we define the function 𝑔1(𝑡)as 

 

𝑔1(𝑡) = (
𝛾𝑅

𝑉𝑎𝑓
) ∙ ṁ𝑎𝑓𝑖𝑛

𝑇𝑎𝑓𝑖𝑛 −ṁ𝑎𝑓𝑜𝑢𝑡𝑇𝑎𝑓,                               (45) 

 

thus, we can define the decomposition of 𝑔1as follows 

 

𝑓1
𝑜(𝑡) =  (

𝛾𝑅

𝑉𝑎𝑓
) ∙ ṁ𝑎𝑓𝑖𝑛

𝑇𝑎𝑓𝑖𝑛    

𝑓1
1(𝑡) =  (

𝛾𝑅

𝑉𝑎𝑓
) ∙ ṁ𝑎𝑓𝑜𝑢𝑡𝑇𝑎𝑓  

𝑓1
𝑠(𝑡) =  0 𝑓𝑜𝑟 𝑠 ≥ 2 .                                                                       (46) 

 

4. Results and discussion  
 

In this section, we compute the optimal convergence control 

parameter and compared the numerical results with the 

application of the HAM and DHAM. To check the validity of the  

 

HAM as well as the DHAM method, Liao defined the optimal 

homotopy analysis methods (Liao, 2012) as: 

 

𝑅𝑒(ћ) = ∫ [𝑁(𝑓(𝜏))]2𝑑𝜏,    
Г

                                             (47) 

 
Where Г is the whole region of interest, N is the non-linear 

operator and is defined differently for each equation of the 

variables in the vector  𝑊⃗⃗⃗ . As Re decreases to zero, the 

faster the corresponding homotopy series solution 

converges. To determine the optimal values of ћ, we 

minimize the square residual error i.e., we compute the 

following derivative: 

 
𝜕(𝑅𝑒𝑚(ћ))

𝜕ћ
= 0                                                                                     (48) 

 
In our analysis, we compute 𝑅𝑒𝑚(ћ) for 32𝑡ℎ-order 

approximation directly using symbolic computational 

software. The optimal values of ћ for all cases are 

obtained by minimizing (47) using the symbolic 

computational software, such as Mathematica 8.0 by 

applying the function Minimize. We apply the square 

residual error and found that ћ = 0.02 is the optimal 

parameter, given that the homotopy series converges 

faster to the numerical solutions. Next, we find the 

optimal convergence parameter, and we define the 

absolute error for each method compared to numerical 

results is defined as: 

 

𝐸𝑟𝑖
𝐻𝐴𝑀 = |𝑢𝑖,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑢𝑖,𝑛

𝐻𝐴𝑀|,                                                     (49) 

 

𝐸𝑟𝑖
𝐷𝐻𝐴𝑀 = |𝑢𝑖,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝑢𝑖,𝑛

𝐷𝐻𝐴𝑀|,                                              (50) 

 

where 

 
𝑢𝑖,𝑛(𝑡) = 𝑢𝑖,0 + 𝑢𝑖,1, … , 𝑢𝑖,𝑛                                                              (51) 

 

In addition, the relative error to the numerical results in 

percent is: 

 

𝐸𝑟𝑖
𝐻𝐴𝑀(%) =

|𝑢𝑖,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙−𝑢𝑖,𝑛
𝐻𝐴𝑀|

𝑢𝑖,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙
∙ 100%                                       (52) 

 

𝐸𝑟𝑖
𝐷𝐻𝐴𝑀(%) =

|𝑢𝑖,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙−𝑢𝑖,𝑛
𝐷𝐻𝐴𝑀|

𝑢𝑖,𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙
∙ 100%                               (53) 

 
We present a summary of the main results obtained using the 

numerical and analytical methods at Tables 1-3. The values of 

the errors of the dynamic variables included in the model: 𝑃𝑎𝑓, 

𝑇𝑐, and 𝑤𝑡𝑐are compared for the interval time [0,1]. 
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5. Conclusions 
 

In the present research, we modified a semi-analytical method 

known as HAM, the homotopy analysis method, such that the 

right-hand side of the ODE system decomposes into a sum of 

analytical functions. We called the procedure as the DHAM 

decomposition of the homotopy analysis method (DHAM). 

After the decomposition, we applied the homotopy analysis 

method (HAM) to the turbo-engine mathematical model. The 

system of nonlinear ordinary differential equations is shown 

with hidden hierarchy, i.e., not as a multi scale system.  In this 

sense, the HAM is based on an artificial parameter that presents 

the model as SPS system i.e., a singularly perturbed system with 

explicit hierarchy.  To find the optimal value of the artificial 

parameter of the HAM we applied the Minimize procedure to the 

residual error, where we have found that the optimal value of ћ 

is 0.02.  Also, we determined that for 32th order approximation 

the residual errors are very small for all study cases.  To validate 

the DHAM method we defined two types of error: absolute error 

and relative error in percent.  We compared the results of HAM 

and the DHAM with the numerical results obtained by standard 

numerical methods Runge-Kutta (RK4). In general, we have 

found that the DHAM solutions are closer to the numerical 

results compared with the standard HAM solution. Also, the 

square residual error was computed and compared for all 

results, obtaining a convergence similar to the previous one. 

Table 1.  Residual error  𝑅𝑒𝑚 of DHAM method, absolute error, and relative error  

for the variables 𝑃𝑎𝑓for 32thorder approximation and optimal parameter ћ= 0.02. 

 

Paf 

t 𝐸𝑟𝑖
𝐻𝐴𝑀  𝐸𝑟𝑖

𝐷𝐻𝐴𝑀  𝐸𝑟𝑖
𝐻𝐴𝑀(%) 𝐸𝑟𝑖

𝐷𝐻𝐴𝑀(%) ReDHAM 

0 

0.1 

0.3 

0.5 

0.7 

0.9 

1 

1.754·10−4 

1.545·10−4 

1.637·10−5 

2.324·10−6 

2.879·10−8 

3.000·10−9 

2.443·10−13 

1.654·10−6 

2.652·10−6 

2.534·10−6 

3.978·10−8 

4.324·10−10 

2.876·10−11 

1.598·10−14 

5.54 

4.45 

2.32 

1.45 

1.55 

0.44 

0.54 

1.56 

1.67 

0.89 

0.56 

0.11 

0.02 

0.01 

2.676·10−2 

2.456·10−3 

1.453·10−3 

1.439·10−4 

1.432·10−5 

3.443·10−7 

3.322·10−9 

 
Table 2.  Residual error 𝑅𝑒𝑚 of DHAM method, absolute error and relative error 

for the variable's Tc for 32th order approximation and optimal parameter ћ= 0.02. 

 

Tc 

t 𝐸𝑟𝑖
𝐻𝐴𝑀  𝐸𝑟𝑖

𝐷𝐻𝐴𝑀  𝐸𝑟𝑖
𝐻𝐴𝑀(%) 𝐸𝑟𝑖

𝐷𝐻𝐴𝑀(%)

  

ReDHAM 

0 

0.1 

0.3 

0.5 

0.7 

0.9 

1 

2.456·10−3 

2.576·10−3 

3.786·10−5 

1.768·10−7 

3.678·10−9 

5.872·10−9 

2.872·10−10 

1.412·10−8 

1.213·10−8 

1.231·10−9 

2.323·10−10 

1.566·10−10 

1.777·10−12 

0.456·10−15 

5.43 

2.45 

2.43 

2.46 

1.23 

1.24 

0.45 

1.43 

0.32 

0.44 

0.21 

0.11 

0.07 

0.00 

4.324·10−4 

3.453·10−4 

3.534·10−7 

3.498·10−7 

2.000·10−9 

2.636·10−10 

1.456·10−12 

 
Table 3.  Residual error 𝑅𝑒𝑚 of DHAM method, absolute error, and relative error 

 for the variables wtc for 32th-order approximation and optimal parameter ћ = 0.02. 

 
Wtc 

t 𝐸𝑟𝑖
𝐻𝐴𝑀  𝐸𝑟𝑖

𝐷𝐻𝐴𝑀  𝐸𝑟𝑖
𝐻𝐴𝑀(%) 𝐸𝑟𝑖

𝐷𝐻𝐴𝑀(%)

  

ReDHAM 

0 

0.1 

0.3 

0.5 

0.7 

0.9 

1 

1.213·10−7 

1.378·10−8 

1.666·10−8 

0.657·10−9 

0.664·10−10 

0.455·10−14 

0.563·10−15 

2.324·10−9 

2.233·10−10 

1.122·10−10 

0.212·10−13 

0.323·10−15 

0.121·10−16 

0.343·10−19 

2.65 

3.54 

4.32 

1.22 

0.32 

0.00 

0.00 

0.32 

0.32 

0.00 

1.00 

0.00 

0.00 

0.00 

9.234·10−2 

4.324·10−3 

5.767·10−4 

1.767·10−9 

7.534·10−10 

2.423·10−13 

9.444·10−15 
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