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Abstract: The water sorption characteristics of Kevlar fiber–reinforced epoxy composites were studied 
by immersion in water at 80 °C. The hydrothermal aging process was conducted on treated and 
untreated Kevlar/epoxy composites; also, the composite was evaluated by the three-point bending 
test. The phosphoric acid (PA) pretreated with Epichlorohydrin (ECH) was used for the surface 
modification of Kevlar. In the case of chemically modified fiber composites, water uptake was found to 
be dependent on the chemical treatment done on the fiber surface. The lowest water uptake was 
observed for composites treated with PA with ECH. The effect of thermal aging on the flexural strength 
of the treated Kevlar composite was 20.42% higher than the untreated composite. Consequently, the 
flexural modulus was 13.9% higher than the untreated Kevlar composite. Moreover, the water diffusion 
coefficient of treated composite is 30.19% higher than untreated composite. It was concluded that 
fiber/matrix degradation time at the interface region was increased in the case of the treated 
composite due to the increase of interfacial polar bonding in the Kevlar composites. The surface 
morphology (SEM) and XRD analysis were used to validate the experimental results.  
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1. Introduction 
 

Kevlar is a fiber that is synthetic and organic in fragrant 
polyamide own family. Kevlar has a specific residence and 
wonderful chemical composition of aromatic polyamides 
(aramids). It has a unique mixture of excessive energy, high 
modulus, sturdiness, and thermal stability (Marshall, 1985). 
However, the mechanical properties of Kevlar fiber 
composites were decreased at high-temperature 
environmental conditions. Moreover, the Kevlar fiber has more 
strength degradation compared with glass fiber composite in 
the wet medium state (Menail et al., 2009). Further, the authors 
were presented surface chemical modification was the 
prominent role to decrease the water uptake in the 
composites; also, the diffusion coefficient of untreated 
banana/glass hybrid composite was higher compared with 
treated composites (Pothan & Thomas, 2004). Further, the 
authors stated  that the diffusion coefficient and equilibrium 
water content were increased in Kevlar composites by about 5 
to 10 times compared with glass/graphite composites; also, 
the permeable effect of Kevlar fiber was attributed to 
increasing the water absorption level in the Kevlar composites 
(Gopalan et al.,  1986).  The researchers have investigated 
several methods for moisture absorption characteristics and 
their effect on the mechanical properties of a composite 
material (Shen & Springer, 1976; Gopalan et al., 1989; Xian et 
al., 2012). The researchers have discussed the effect of the 
aging process on hybrid (Glass / Kevlar) / polyester 
composites. Further, the damage mechanism (Kevlar fiber 
fraying and micro buckling) was promoted after the aging of 
hybrid composites, which was attributed to reducing the 
strength of composites (Felipe et al., 2019; Demuts, & 
Shyprykevich, 1984). Furthermore, the damage initially 
occurred at the resin-rich boundaries; also, the hydrothermal 
residual stresses lead to change from tensile to compressive 
at the resin region. In contrast, uniform distribution of fiber 
was attributed to changing the residual stresses from 
compressive to tensile at the fiber/matrix interface (Wood & 
Bradley, 1997). Further, the researchers have indicated that 
flexural, interlaminar, and compressive strength of glass 
fiber/epoxy composite were severely damaged in saltwater 
compared with distilled water immersion for the same 
temperature and duration (Rege & Lakkad, 1983). The water 
immersion was attributed to affecting the microstructural 
integrity of composite, which lead to internal defects. 
Moreover, the interfacial crack and fiber/matrix debonding 
occurred due to poor interfacial adhesion in composites   
(Imielińska & Guillaumat, 2004). The authors were addressed 
the interfacial adhesion could be enhanced by surface 
modification techniques; also, fiber/matrix debonding was 
improved through surface modification of Kevlar fabric using 
various chemical treatments (Ramasamy et al., 2019). The 

focus on the present investigation is to find the results on 
mechanical properties under the controlled environmental 
condition at 80 °C constant temperature with chemical 
treatment and without chemical treatment on Kevlar/epoxy 
composites.  

The novel contribution of the present study is to establish 
whether any thermally induced deterioration occurs in Kevlar-
29 fibers after the surface modification process of fiber 
composites. The effects of water exposure on Kevlar/epoxy 
composites, moisture absorption, and its effect on flexural 
strength have been studied. The novel contribution in this 
research for better understanding of the pre-treatment 
approach with chemical treatments on Kevlar fiber under a 
controlled temperature of  80 °C to reduce the moisture 
absorption and to increase the durability of composites. 

 
2. Materials and methods 
 
2.1. Materials 
Kevlar 29 was used as the Kevlar fiber for fabricating the 
composite specimen with the epoxy matrix. Epoxy resin (Araldite 
LY 556) matrix having outstanding properties has been used. And 
work Hardener (Araldite) HY 951 was used. Phosphoric acid (PA), 
KOH, and Epichlorohydrin (ECH) purchased through sugar 
biological and chemicals, Chennai, India. 

 
2.2. Fiber treatment 
The Kevlar fiber was treated by ECH with PA pre-treated   
composite. The fiber was immersed in acetone for four hours 
to remove the impurities and dust from the Kevlar fiber. The 
Kevlar fabric was soaked in one percent KOH solution at room 
temperature for 2 hours, subsequently washed with purred 
water and dried for 48 hours at room temperature. Then fiber 
was treated by 15 weight % phosphoric acid, then cleaned and 
dried. The PA treated fiber was grafted by ECH for 1 hour at 70 
°C, and then grafted fiber was washed and dried in a vacuum 
oven for improving debonding strength of Kevlar/epoxy. 
 
2.3. Hydrothermal ageing treatments 
The hydrothermal aging process was used for treated and 
untreated Kevlar/epoxy composites. The moisture was 
absorbed during the aging process of composite; also, water 
absorption percentage (Mt) was calculated by using the 
Equation (1) (Zhang & Mi, 2019). 
 
𝑀𝑀𝑡𝑡

=
𝑤𝑤𝑡𝑡 − 𝑤𝑤𝑜𝑜
𝑤𝑤𝑜𝑜

𝑥𝑥100%                                                                        (1) 

 
𝐷𝐷

=
𝜋𝜋ℎ2𝑆𝑆2 
16𝑀𝑀2                                                                                         (2) 
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Where, 
Wt -water absorption at the period (Kg) 
Wo-initial water absorption (Kg) 
H-thickness of specimen (3.2 mm) 
S-modulus of water absorption (1/√s) 
M-equilibrium moisture content (%) 
The construction of hydrothermal aging equipment for 

aging the samples up to 66 days (9 weeks) at 80 °C (Menail et 
al., 2009). The samples were taken for flexural testing every 
three weeks. For each week three samples were used for 
evaluating the samples of treated (names as T3, T6, and T9) 
and untreated (named as NT3, NT6, and NT9). Consequently, 
the weight of water absorption was observed after cleaned 
samples on all days by using 0.1g electronic weight 
measurement. The components used for this equipment are 
W 1209 temperature relay, immersion heater, and 
temperature sensor. The temperature relay module can 
intelligently monitor the power of most types of electrical 
devices based on the temperature sensed by the high 
precision NTC temperature sensor. Immersion heaters have a 
metal tube that holds a temperature sensor. Unlike a gas-
heated tank with burners underneath it, immersion heaters 
heat water directly from inside the tank. A strong electric 
current is passed through the part that heats the surrounding 
water. AC adapters are used for electrical devices that need 
power. The immersion heater is immersed in a bucket filled 
with water for the hydrothermal aging process.   

To maintain a constant temperature inside the bucket it is 
surrounded by insulation material such as sand. To maintain 
the temperature  of the heater the relay is used. The  tempera- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ture sensor connected to the relay is dipped into the water. 
When the water reaches a certain temperature (80 °C) the relay 
automatically cuts the power supply to the immersion heater, 
so the temperature is maintained in the setup was shown in 
Figure 1a. Moreover, the water diffusion coefficient (D) was 
determined from Equation (2). 
 
2.4. Experimental characterization 
The three-point bending flexural test provides values for the 
modulus of elasticity in bending, flexural stress, flexural 
modulus, and the reduction of flexural stress response of the 
material. This test was performed on a universal testing 
machine in 100kN load carrying capacity Tinus Olsen universal 
testing machine (UTM) with a three-point bend fixture which is 
shown in Figure 1b. The sample was prepared as per ASTM D 
790-03 and three samples were used for each group of testing. 
The flexural test has been done treated (T) and untreated (NT) 
Kevlar specimen without hydrothermal aging.  

Subsequently, the hydrothermal aging samples were 
evaluated for the performance behavior of Kevlar composites. 
The crystallinity index of surface treated aramid fiber and 
untreated aramid fiber were determined by using X-ray 
diffraction (XRD). The step size adopted for this study was 0.02° 
(2θ) in the angular range of 5°-100°. The sealed-tube of Cu-Kα 
radiation was operated at 40 kV and 50 mA at a wavelength of 

1.54 
o
A  for calculating crystallinity index by Segal peak height 

method. Further, fracture surface morphology of treated and 
untreated Kevlar fiber composites was observed using in a 
scanning electron microscope (model- SNE-3200M, SEC).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. a) Hydrothermal setup and b) flexural testing. 



 
 

 

G. Mahadevan et al. / Journal of Applied Research and Technology 850-857 

 

Vol. 21, No. 5, October 2023    853 
 

3. Results and discussion 

3.1. XRD analysis 
The XRD spectra of treated and untreated Kevlar fiber was 
shown in Figure 2. It was reported that there was no additional 
peak in the treated fiber, indicating that the fiber is unaffected 
by the Kevlar fiber surface chemical treatment. Moreover, the 
untreated fiber has more crystallinity materials compared with 
treated Kevlar fiber (Zhao, 2013). Hence, the surface treatment 
on Kevlar fiber was attributed to decreased crystallinity index 
value by about 21.09% compared with untreated Kevlar fiber. 
 

 
 

Figure 2. XRD analysis of untreated and treated Kevlar fiber. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.2. Effects of water absorption on Kevlar composites 
The water absorption of surface treated and untreated 
Kevlar/epoxy composite on the hydrothermal aging process 
was shown in Figure 3(a), where the x-axis is the square root of 
immersion time in hours and the y-axis is water absorption 
percentage (Imielińska & Guillaumat, 2004). The treated Kevlar 
composites absorbed less water with increasing immersion 
time. Consequently, the water absorbed was more in 
untreated composites. The water absorption attained 
maximum level in 32 days at 4.35% for untreated and 3.28% in 
44 days for treated composites. This can be due to surface 
modification of Kevlar having more wettability with epoxy 
matrix lead to increase interphase strength of the composite. 
Moreover, the void and flaws were occurred less in treated 
composites (Tao et al., 2016) due to which water inhibits into 
the matrix very slowly. Figure 4 shows the fracture surface 
morphology of untreated and treated Kevlar fiber composites. 
It was indicated that voids and flaws were higher than 
untreated Kevlar/epoxy composites.       

Furthermore, the diffusion coefficient was determined for 
treated (T) and untreated (NT), which was shown in Figure 
3(b). The modulus of water absorption (S) was calculated from 
Figure 3(a). The D of treated and untreated composites was 
5.63x10-12 m2/s and 7.33x10-12 m2/s, respectively. This could be 
concluded that D was less for treated Kevlar composites 
because polar functional groups were activated on the surface 
of treated composites (Ramasamy et al., 2019) lead to slow 
water ingress in treated composites. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Kevlar/epoxy composite of a) water absorption and b) diffusion coefficient. 
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3.3. Properties of flexural 
The mechanical property of composites depends on the 
interfacial strength between fiber and matrix. The load-
displacement curves were shown in Figure 5. For the non-
hydrothermal aging process, the load was attained 440N for 
treated and 400N for untreated. Consequently, the attained 
load was decreased after the hydrothermal aging process.  

In particular, the flexural load was significantly reduced 
after three weeks of aging. Meanwhile, the flexural load was 
decreased after water absorption reached saturation level. 
The flexural strength of Kevlar composites as shown in Figure 
6a. The flexural strength of treated composites was 277.5MPa, 
202.7MPa, 185.8MPa, 182.1 MPa; also, the non treated were 
249.5MPa, 169.5MPa, 145.4MPa, 144.9 MPa for non-
hydrothermal aging,  3 weeks, 6 weeks,  9 weeks,  respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The flexural strength was reduced after the aging process due 
to the mechanism of capillary action between the fiber and 
matrix composite. The water ingress in the composite leads to 
plasticization and swelling of the matrix system.  

Moreover, the untreated Kevlar fiber has poor bonding 
with the epoxy matrix; also, the voids may affect the flexural 
strength of composite (Li et al., 2013). Furthermore, the 
flexural modulus also drastically reduced in untreated 
Kevlar/epoxy composites as shown in Figure 6b.     

The aging process in Kevlar composite might be reduced 
crystallinity of composite (Arrieta et al., 2011). The prolonged 
aging in composite was attributed to reducing the mechanical 
properties as well as load-carrying capability was decreased. 
This was concluded that treated composite could be attained 
the required performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Fracture surface morphology of Kevlar/epoxy composites a) untreated and b) treated. 
 

 
 

Figure 5. Load versus displacement of a) treated and b) untreated. 
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3.4. Influence of aging in flexural 
The hydrothermal aging process was the influencing factor for 
reducing of flexural behavior of composite. Figure 7 was 
concerned about the reduction of flexural strength in the 
percentage. After the hydrothermal aging untreated 
composites were 32.06%, 41.72%, and 41.94% for NT3, NT6, 
and NT9, respectively. The treated composite has process, the 
strength for treated composite comparison with non-
hydrothermal aging composites  were 26.9%,33.03%,34.38% 
for T3, T6, and T9, respectively. Consequently, the strength of 
improved interfacial characteristics lead to improve 
mechanical properties of composites 

 
Figure 7. Reduction of the strength of hydrothermal  

aging composite. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Conclusion 

 
The water absorption of treated and untreated Kevlar 
composite was discussed in this research. The results were 
concluded the followings: 

● The water absorption results state that the 
absorption is less when the fiber is treated with 
epichlorohydrin   compared to untreated fiber. 

● During Hydrothermal aging, the attaining saturation 
state of absorption, there is a certain decrease in weight gain 
in composites. This was caused by the degradation of the 
fiber. 

● The flexural strength of treated Kevlar composite was 
10% higher than the untreated for the non-hydrothermal 
process as well as 16.3% higher than untreated for T3 aging 
process. 

● The flexural modulus of treated Kevlar composite was 
10.97 % higher than the untreated for non hydrothermal process 
as well as 34.65 % higher than untreated for T3 aging process.  

● Thus, it was perceived that the treatment of fiber 
increases the performance of the composite at temperature 
and water immersion conditions. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Kevlar/epoxy composites of a) flexural strength and b) flexural modulus. 
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