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Abstract

This paper analyzed the chaotic behaviors and vibration phenomenon of a flexible rotor with different mass and bearing number supported by 
ultra short aero-lubricated bearing (USAB) system. The hybrid method combined with differential transformation method and finite difference 
method are proposed and used to calculate gas pressure distribution of USAB system. The results are shown that system exist chaotic motions over 
the specific ranges, and the maximum Lyapunov exponent is positive as chaos occurred.
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1. Introduction

Ultra short aero-lubricated bearing (USAB) system is differ-
ent from general gas-lubricated bearings (Ascanio et al., 2007) 
due to the limit of length-diameter ratio. USAB system is char-
acterized by low frictional losses and low noise under rotation. 
As a result, it is frequently employed within precision instru-
ments, where it yields zero friction when the instruments are 
used as null devices, and within high-speed requirements. Be-
cause of the rotational speed of the rotor can be operated over 
106 rpm, the stability of flexible rotor dynamics is one of the 
most important and key factors for the design of USAB sys-
tems. So, how to increase the stability of rotor systems and 
avoid the appearance of non-periodic motion becomes the ma-
jor execution of this paper.

Recently, dynamic responses of bearing systems were ana-
lyzed and the bifurcation phenomenon and dynamic behavior of 
rigid rotor supported by noncircular aero-lubricated bearing sys-
tem were studied by Rashidi et al. (2009, 2010). The finite ele-
ment method and Runge-Kutta method are applied to solve the 
Reynolds’ equation and rotor dynamic equations, respectively. 
The results show that the key parameters including rotor mass 
and bearing number are dominated to bifurcation and responses 
of rotor behaviors. Meanwhile, those reponses includes different 
types of motions under different real operational conditions.

For the analysis of USAB, Zhou et al. (2009) analyzed the 
bifurcation of ultrashort self-acting air journal bearings for MENS. 
This bearing system is modeled as a rigid rotor supported by 
bearing forces as a result of gas viscosity and rotational speed. 
The nonlinear behaviors of micro gas journal bearings are fur-
ther studied by Wang (2010a) and the bifurcation and non-peri-
odic motion of rigid rotor are also solved. The results show that 
the rotor exhibits complex dynamic behaviors comprising peri-
odic, sub-harmonic, and quasi-periodic responses at different 
values of the rotor mass and bearing number, respectively. 

For the studies of relative short bearings, in 2010, Wang 
(2010b) analyzed the bifurcation behavior and nonlinear dynam-
ics of a flexible rotor supported by a relative short spherical gas 
bearing system. The analytical results reveal several types of 
dynamic behavior including chaotic responses of the rotor cen-
ter and the journal center. Furthermore, the results reveal the 
changes which take place in the dynamic behavior of the bear-
ing system as the rotor mass and bearing number are increased.

In the present paper, the chaotic (Pérez, 2008) and bifurcation 
response of a flexible rotor supported by two ultra short aero-lu-
bricated bearings are studied. In order to analyze the bearing sys-
tem, the Reynolds’ equation are used to model the time-dependent 
motions of the rotor center. Then, the hybrid method combined 
with differential transformation method (DTM) and the finite dif-
ference method (FDM) are applied to solve the Reynolds’ equa-
tion. The dynamic response of the rotor and journal centers are 
simulated and analyzed for non-dimensional rotor masses and 
bearing number in the ranges 0.01~0.85 and 1.0~7.5, respectively.
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The following transformations and non-dimensional groups 
can be introduced:

  ,  , ,  

  ,  , 
 (6)

 , , ,  (7)

Substituting the transformations given in Eqs. (6) and (7) 
into Eqs. (2)-(5), and introducing the non-dimensional groups 
defined in Eq. (7), Eqs. (2)-(5) become

 
 (8)

 
 (9)
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The computation procedure begins by specifying an initial 
static equilibrium state. The initial displacement of the rotor 
corresponds to the static equilibrium position and defines the 
gap T. The initial velocity of the rotor is assumed to be zero. The 
iterative calculation procedure can be summarized as follows:

•	 Step 1: Following a time increment, the new values of accel-
eration, velocity, and displacement of rotor are obtained by:

 

 (12)

 

 (13)

2. Mathematical modeling

2.1. Governing equations

The application for high rotational speed more than 106 rpm 
can be used by ultra short aero-lubricated bearing (USAB) sys-
tem and the stability of this system is focused to be analyzed. 
An USAB is different from general air bearing system and the 
ratio of bearing length to diameter (L/D) is less than 0.1

The USAB systems are designed and assumed as following:

•	 The flow is assumed isothermal and the gas flow in and out of 
the sides of the bearing is neglected.

•	 The gas viscosity is assumed to be constant.

The air pressure distribution between the shaft and the bush-
ing in USAB system (Wang & Yau, 2013) is modeled by the 
Reynolds’ equation shown in Eq. (1).

 

 (1)

Where D is the diameter of bearing, L is the length of bear-
ing, Λ is the bearing number; θ and Φ are the coordinates in the 
circumferential and axial directions, respectively. Φ=PT, P is 
the non-dimensional pressure corresponding to the atmospheric 
pressure; T is the non-dimensional film thickness between the 
rotating shaft and the bushing, corresponding to the radial 
clearance.

The air pressure distribution is fulfilled the following bound-
ary conditions:

•	 Air pressure on both ends of the housing is equal to the atmo-
spheric pressure and is a periodic function for θ.

•	 Air pressure is an even function for Φ, and is continuous at 
Φ= 0.

In the transient state, the flexible rotor is supported by the 
USAB system, and equations of motion of rotor center  
and journal center  can be written in Cartesian coordi-
nate form as

 
 (2)

 
 (3)

Where Kp is the stiffness of the shaft, r and w are the mass 
eccentricity and rotational speed of the rotor, respectively.

For balancing forces, the resultant forces acting on the jour-
nal center in the horizontal and vertical directions are applied 
to journal center. It can be given by
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ferential transformation method (DTM) (Wang & Yau, 2013) to 
discretize the Eq. (1) with respect to time. Eq. (1) becomes

 

 (16)

where

 
 (17)

Then, finite difference method (FDM) is applied to dis-
cretize Eq. (16) with respect to the θ and f directions. Substitut-
ing (17) into (16) yields

where  is time step value, i and j are the coordinates of the 
node position, and k indicates the kth term.

Air pressure distribution is obtained for each time interval, 
and the motions of the rotor center are computed using an itera-
tive procedure.

(18)

 

 (14)

•	 Step 2: The displacements of the rotor center obtained from 
Step 1 are substituted into Eqs. (8) and (9). The displacements 
of the journal center can then be determined and the corre-
sponding change in the value of T can be calculated. Substi-
tuting the new value T into Eq. (1) gives the new pressure 
distribution between the shaft and the journal.

•	 Step 3: The internal force can then be estimated by integrat-
ing the pressure distribution obtained from Step 2.

•	 Step 4: The displacement and velocity values computed in 
Step 1, the pressure distribution calculated in Step 2, and the 
internal force obtained in Step 3 are taken as the new initial 
conditions. Using this new set of conditions, the calculation 
procedure returns to Step 1 to compute the changes in the 
bearing system during the next time interval.

2.2. Mathematical formulation of numerical simulations

For solving Eq. (1), it is discretized initially by central-dif-
ference scheme in the θ and f directions and is then discretized 
once again using the implicit-back-difference scheme in the 
time domain. Note that for simplicity, a uniform mesh size is 
used. Eq. (1) can be transformed into the following form:

 (15)

The pressure distribution at each time step can then be ob-
tained using an iterative calculation process.

In order to compare the numerical results, the hybrid method 
is proposed in this study and is commenced by using the dif-



 J.-H. Chen, C.-C. Wang / Journal of Applied Research and Technology 13 (2015) 328-341 331

3.3. Bifurcation analysis for rotor mass

Figure 2 shows the bifurcation diagrams for the rotor center 
displacement in the horizontal and vertical directions as a 
function of the non-dimensional rotor mass in the range 0.005 
to 0.85. Figures 3A-G present the Poincaré maps of the rotor 
and journal centers trajectories at  = 0.26, 0.497, 0.5165, 
0.552, 0.5525, 0.71, and 0.843, respectively. In Figure 2, it can 
be seen that the rotor center performs T-periodic motion over 
the rotor mass range 0.005 ≤  < 0.497 and proved by Fig-
ure 3A. The T-periodic motion becomes unstable at  = 0.497 
and is replaced by sub-harmonic with a period of 2T motion 
(Fig. 3B). This sub-harmonic behavior persists over 0.497 ≤ 

 < 0.5165. For rotor mass in the range 0.5165 ≤   < 0.5525, 
the rotor and journal center repeats T→2T motion (Figs. 3C-D). 
As the rotor mass further increased to 0.5525, system becomes 
to chaos shown in Figure 3E, and behaved over 0.5525 ≤  < 
0.71. Finally, the rotor is stabilized as the rotor mass over 0.71, 
and also behaves 2T-periodic and 4T-periodic over 0.71 ≤ 

 < 0.843 and 0.843 ≤  < 0.85, respectively shown in Fig-
ures 3F and G.

Figure 4 shows that the maximum Lyapunov exponent has a 
positive value when  equals to 0.5525, and also indicates that 
the system has a chaotic response. Meanwhile, over the inter-
vals 0.5525 ≤  < 0.71 shown in Figures 2, 3E and 4E, the sys-
tem behaves non-stable behavior and also should be avoided to 
operate under these parameters.

Table 3 summarizes the motions performed by the rotor cen-
ter for rotor mass values in the interval 0.005 ≤   ≤ 0.85.

3.4. Rotor orbits, phase trajectories and power spectra 
analysis for bearing number

In Figures 5A and B, the results show that the dynamic orbits 
of the rotor and journal center are regular at specific value of 
bearing number (Λ = 3.5 and 5.07) and also verified by the pow-
er spectra analysis. Then, USAB system becomes non-periodic 
and irregular at Λ = 6.51, and the rotor and journal centers per-
form non-periodic motion shown in Figure 5C. At bearing num-
ber of Λ = 6.98, the rotor and journal center in both the 
horizontal and the vertical directions resort to a regular peri-
odic motion shown in Figure 5D.

3.5. Bifurcation analysis for bearing number

Figure 6 plots the bifurcation diagrams for the rotor center 
displacement in the horizontal and vertical directions as a func-
tion of the bearing number Λ in the range 1.0 to 7.5. Fig-
ures 7A-D present the Poincaré maps of the rotor and journal 
centers trajectories at Λ = 3.5, 5.07, 6.51, and 6.98, respectively. 
In Figure 6, it can be seen that the rotor center performs T-peri-
odic motion over the bearing number range 1.0 ≤ Λ < 5.07 and 
proved by Figure 7A. The T-periodic motion changes to 2T-pe-
riodic motion at bearing numbers of Λ = 5.07 (Fig. 7B). This 
2T-periodic behavior persists over 5.07 ≤ Λ < 6.51. As the bear-
ing number is further increased to 6.51, USAB system becomes 
to chaos shown in Figure 7C, and behaved over the range of 

In this study, the data generated by procedures described 
above are used to obtain power spectra, Poincaré maps, bifurca-
tion diagrams and Lyapunov exponents with which to analyze the 
nonlinear dynamic response of the USAB system over represen-
tative ranges of non-dimensional rotor mass and bearing number.

3. Results and discussion

3.1. Numerical analysis

The numerical results for the orbits of the journal center are 
calculated by the FDM and hybrid method (FDM&DTM) 
shown in Table 1. It is observed that a good agreement exists 
between the two sets of results. However, it can be seen that 
journal orbits obtained by hybrid method have better precision 
than FDM under all the considered conditions and therefore 
represents a more appropriate method for the responses of the 
USAB system.

The Poincaré map data calculated by the hybrid method us-
ing different time step values, , for bearing number values are 
shown in Table 2. The journal center orbits are in agreement to 
approximately 5 decimal places for the different time steps,  
for a given rotor mass and bearing number.

3.2. Rotor orbits, phase trajectories and power spectra 
analysis for rotor mass

The results show that the dynamic orbits of the rotor and 
journal center are regular at a low value of the rotor mass (  = 
0.26, 0.497, 0.5165, 0.552) shown in Figs. 1A-D, and also proved 
from the power spectra. But system becomes irregular at  = 
0.5525, and the rotor and journal centers perform non-periodic 
motion simultaneously in both the horizontal and the vertical 
directions shown in Fig. 1E. At rotor mass of  = 0.71 and 
0.843, the rotor and journal center resorts to a regular periodic 
motion shown in Figs. 1F and G.

Table 2
Comparison of Poincaré maps of journal center with different values of Λ and 

 by hybrid method at  = 0.26.

Λ = 3.5

τ X3 (nT) Y3 (nT)

π/300 –0.0533553042 0.0984698923
π/600 –0.0533774619 0.0984618691

Λ= 6.98

τ X3 ( n T ) Y3 ( n T )

π/300 –0.1903737457 –0.2721891409
π/600 –0.1903786126 –0.2721896082

Table 1
Comparison of journal center orbits calculated by FDM and hybrid method, 
respectively (  = 0.26; w = 1.2 × 106 rpm).

X3(nT) Y3(nT)

 =1×10–3  =1×10–2  =1×10–3  =1×10–2

FDM –0.092222 –0.0925945 0.0486793 0.04782724
Hybrid method –0.092958 –0.0929531 0.0469702 0.04697963



332 J.-H. Chen, C.-C. Wang / Journal of Applied Research and Technology 13 (2015) 328-341

Fig. 1. Dynamic behavior of bearing system at rotor mass  = 0.26, 0.497, 0.5165, 0.552, 0.5525, 0.71, 0.843. Phase orbit of rotor center in A(a)-G(a);journal 
center orbit in A(b)-G(b);power spectra of rotor center in A(c,d)-G(c,d) at w = 1.2 × 106 rpm.
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Fig. 1. Dynamic behavior of bearing system at rotor mass  = 0.26, 0.497, 0.5165, 0.552, 0.5525, 0.71, 0.843. Phase orbit of rotor center in A(a)-G(a);journal 
center orbit in A(b)-G(b);power spectra of rotor center in A(c,d)-G(c,d) at w = 1.2 × 106 rpm.
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Fig. 1. Dynamic behavior of bearing system at rotor mass  = 0.26, 0.497, 0.5165, 0.552, 0.5525, 0.71, 0.843. Phase orbit of rotor center in A(a)-G(a);journal 
center orbit in A(b)-G(b);power spectra of rotor center in A(c,d)-G(c,d) at w = 1.2 × 106 rpm.
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6.51 ≤ Λ < 6.98. Finally, the rotor is transferred to stable situa-
tion over the bearing number range 6.98 ≤ Λ ≤ 7.5 and also be-
haves T-periodic motion shown in Figure 7D. 

When the chaotic motion occurs, the maximum Lyapunov 
exponent has a positive value (as Λ equals 6.51) shown in Fig-
ure 8C and equals zero, which means system behaves periodic 
motion over the intervals 1.0 ≤ Λ < 6.51 and 6.98 ≤ Λ ≤ 7.5 
shown in Figures 8A, B and D. Table 4 summarizes the motions 
performed by the rotor center for bearing number values in the 
interval 1.0 ≤ Λ ≤ 7.5.
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Fig. 1. Dynamic behavior of bearing system at rotor mass  = 0.26, 0.497, 0.5165, 0.552, 0.5525, 0.71, 0.843. Phase orbit of rotor center in A(a)-G(a);journal 
center orbit in A(b)-G(b);power spectra of rotor center in A(c,d)-G(c,d) at w = 1.2 × 106 rpm.
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Table 3
Behavior of rotor center at different non-dimensional rotor masses.

Rotor
mass

(0.005,0.497) (0.497,0.5165) (0.5165,0.552)

Behavior T 2T T
Rotor
mass

(0.552,0.5525) (0.5525,0.71) (0.71,0.843)

Behavior 2T Chaos 2T
Rotor
mass

(0.843,0.85)

Behavior 4T

Table 4
Behavior of rotor center at different bearing numbers.

Bearing
number

(1.0,5.07) (5.07,6.51) (6.51,6.98) (6.98,7.5)

Behavior T 2T Chaos T
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Fig. 4. Maximum Lyapunov exponents of system at different values of rotor mass at A: mr = 0.26; B: 0.497; C: 0.5165; D: 0.552; E: 0.5525; F: 0.71, and G: 0.843.
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Fig. 5. Dynamic behavior of bearing system at bearing number Λ = 3.5, 5.07, 6.51, and 6.98. Phase orbit of rotor center in A(a)-D(a). Journal center orbit in 
A(b)-D(b). Power spectra of rotor center in A(c,d)-D(c,d) at  = 0.25).
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4. Conclusions

This paper has studied the USAB system for rotor vibration 
and bifurcation behavior by the finite difference method (FDM) 
and hybrid method. The system dynamic orbits, power spectra, 
bifurcation, Poincaré maps, and maximum Lyapunov expo-
nents have revealed the presence of a complex behavior com-
prising periodic, sub-harmonic, and chaotic responses of the 
rotor and journal centers. The results of this study provide an 
understanding of the dynamic behavior of USAB systems char-
acterized by different rotor masses and bearing numbers. Spe-
cifically, the numerical results shown that the proposed hybrid 
method is more suitable than FDM for USAB system and can 
be obtained higher and better precision than other schemes. On 
the other hand, the results have shown that system occurs cha-
otic motions at specific rotor mass and bearing number and 
should be avoided when USAB system is designed.
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