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Abstract

This paper proposes the chaos synchronization-based XXY stage real-time extension fault detection; the main characteristic signal is extracted 
by filtering from the microvibration of stage. The chaos synchronization systems are used to extract the dynamical map of chaotic synchronization 
error. The Eigen value is extracted from the centroid value of phase plane plot, and the value is analyzed by extension theory, so as to determine the 
state of XXY stage. The stage states can be detected by the PC based real-time analysis; there are four fault statuses, including normal, X1 motor 
fault, X2 motor fault and Y motor fault. The dSPACE is used for signal acquisition and monitoring interface making. The real-time fault monitoring 
and diagnosis can be implemented at the computer side.
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1. Introduction

With technical development of various industries, product 
design tends to focus on compact size and portability. However, 
the unit mounting becomes more difficult as the size of internal 
components is reduced. In order to assemble the aforesaid mi-
cro components, higher accuracy is required. Therefore, the 
manual assembly is no longer applicable, and reducing the pro-
duction speed. The registration stage improves the manual po-
sitioning in limited conditions (De Luca & Dominguez, 2011).

In terms of current requirement for registration, the unidi-
rectional accuracy of registration stage is required, and the an-
gle shall be corrected, so as to meet the present requirement for 
registration. Therefore, the XYstage is developed (Lin & 
Shieh, 2006) to provide better registration accuracy, but the de-
fect is large height, so the demand for space is higher. In addi-
tion, the motor controls the rotation angle of stagecenter point, 
the weight capacity is limited, so the XXY stage is proposed in 
this paper (Lee et al., 2012). It uses three motors for positioning 
as XYstage, its uniaxial movement is similar to XYstage, the 
difference is that the X-axis is moved by X1 and X2 motors 
synchronously. In terms of angular rotation, the X1 and X2 mo-
tors are horizontally staggered to change the angle. Finally, the 
Y motor movement corrects the stagecenter point error, so as to 
rotate the angle. 

Compared to XYstage, the XXY stage improves the large 
volume and low weight capacity of XYstage. However, there 
are few research data of XXY stage fault detection, it is more 
difficult to be detected compared with XY stage. The constant 
faults in XXY stage are divided into three major types, motor 
fault, driver fault and stage fault. This study focuses on the 
XXY stage motor fault detection. Different papers of fault de-
tection extract the characteristic signals of analysis faults, the 
vibration signal of analysis is extracted in (Ebrahimi & Faiz, 
2012; Rivas et al., 2010; Immovilli et al., 2009; Barrón-Meza, 
2010), mostly applied as detection signal to different mechani-
cal faults. The current and voltage signals are used as electrical 
fault detection signals in (Gong & Qiao, 2012; Mohanty & Kar, 
2006; Gong & Qiao, 2013). The plural signal sources are mixed 
for fault detection in (Watson et al., 2010). Most of detection 
methods use the aforesaid signals for analysis. There are mul-
tiple methods for signal analysis, for example, the wavelet anal-
ysis is used for fault detection in Teotrakool et al. (2009), and 
Yang et al. (2010), the spectral analysis is used for detection in 
Ishigaki et al. (2010), Zhang et al. (2012), and Arjona et al. 
(2011), and the neural is used for detection in Martins et al. 
(2007) and Tan and Huo (2005).

The fault diagnosis flow chart of this study is shown in Fig-
ure 1. This paper considers the quantity and installation of sen-
sors, thus using fewer sensors for fault detection. Finally, in 
terms of signal selection, this study uses vibration signal as 
stage fault detection signal. The accelerometer is mounted on 
the mobile stage to extract the vibratory magnitude. Most of the 
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� (2)

The characteristic quantity extracted in this paper is the nat-
urally tracked dynamic error amount of MS and SS in the mas-
ter‑slave synchronization system. Therefore, there is no 
controller for the master‑slave synchronization system in this 
paper, as long as the master and slave chaos systems are sub-
tracted from each other, the dynamic error can be obtained. 

	

� (3)

where

 ,   , 

Finally, the dynamic error status also generates chaos phe-
nomenon; this paper uses the kinematic trajectory of chaos phe-
nomenon to increase the vibration signal differences among 
various stage statuses. The chaotic dynamic error equation is 
used as the basis of recognition. This paper uses Lorenz Chaos 
System (Posadas-Castillo et al., 2005). The two identical Lo-
renz systems are divided into MS and SS, expressed as equa-
tions (4) and (5).

	

� (4)

	

� (5)

where

, , 

aforesaid methods cannot cooperate with dSPACE, or are dif-
ficult to be used for real-time fault diagnosis. Therefore, this 
paper combines chaos synchronization with extension theory, 
and carries out spectral analysis of the stage vibration to deter-
mine the spectra of various motors, so as to extract the charac-
teristic signals of motors from the measured vibratory 
magnitude. The extracted signals are imported into the chaos 
synchronization system to extract dynamic error amount. This 
can strengthen the micro features between normal status and 
fault status, making the features of various statuses more obvi-
ous for subsequent stage fault diagnosis. Finally, the dynamic 
error amount results E1, E2 and E3 obtained by chaos synchroni-
zation are used as characteristic quantity, and the characteristic 
quantity changing each status apparently is selected to calculate 
the centroid value. This calculated value is used as eigenvalue 
for reducing the utilization of characteristic quantity. The pro-
cessed eigenvalue is used as matter-element model of each sta-
tus. The correlation function between analysis and each status 
is calculated by the particular simple calculation of extension 
set. This function is normalized to recognize the status of stage 
rapidly. Finally, the chaos synchronization and extension theory 
are implemented on dSPACE. The analog-to-digital converter 
(ADC) of dSPACE reads the signals in the computer, the simu-
link makes chaos synchronization and extension theory imple-
mentation, and the dSPACE provides interface design. This 
interface is used for XXY stage diagnosis and monitoring and 
real-time stage detection. 

2. Chaos synchronization method

The chaos theory (Lorenz, 1963) is of nonlinear system the-
ory. It is characterized by unpredictability and irregular motion. 
The chaos system makes dramatic change in micro variation. 
The chaos synchronization (Huang et al., 2011) synchronizes 
the kinematic trajectories of two chaos systems, the controller 
makes the error zero. In the chaos synchronization system, the 
two chaos systems are called Master System (MS) and Slave 
System (SS). When the two systems have different initial val-
ues, the kinematic trajectories of the two systems are different. 
However, when a controller is added to the SS to track the MS, 
and the MS and SS act synchronously, the kinematic trajecto-
ries of two chaos systems have the same change at the same 
time. The MS and SS are defined as follows:

	

� (1)
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Fig. 1. XXY fault diagnosis flow chart.
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3.2. Extension set

In order to quantify and solve problems, the extension set is 
generated. The matter-element eigenvalue range is used as the 
set range, and the correlation function is used for calculation to 
obtain the matter-element extension relationship. The approxi-
mate characteristics of things are known from the extension 
relationship.

Figure 2 shows <X1, X2> is the classical domain, <Y1, Y2> 
is the neighborhood domain, <Y1, X1> and <X2, Y2> are ex-
tension field, representing the extended region outside the clas-
sical domain. To calculate the correlation grade of an analysis 
to the matter-element classical domain, the extended correlation 
function is calculated as follows:

	
� (10)

	
� (11)

Equations (10) and (11) quantify the measured matter-ele-
ment, v is the value of analysis, Vn is the classical domain, Vρn is 
the neighborhood domain. The relationship of analysis to clas-
sical domain and neighborhood domain can be obtained. The 
correlation function of analysis in the classical domain is calcu-
lated by equation (11):

	

� (12)

If the calculated correlation function k(v) is positive, the 
analysis is in classical domain. If it is negative, the analysis is 
outside the classical domain. In multiple matter-element model, 
the number of weights is adjusted as required, but the sum of 

The discrete normal signal S1 is extracted and imported into 
the MS. The tested signal S2 from ADC is extracted and im-
ported into the SS as follows:

	 , , � (6)

	 , , � (7)

Finally, the dynamic error system in matrix form can be ex-
pressed as equation (8):

	

� (8)

where

, , 

This paper uses the final dynamic errors E1, E2 and E3 to 
draw the dynamic error trajectory diagram for observation. 
This can obtain the centroid value of each dynamic error value, 
reduce the amount of computation, and increase the identifi-
ability. Finally, the degree of correlation between analytic stage 
and each status is tested by extension theory.

3. Extension theory

The extension theory (Wang, 2004) determines the regular-
ity from the extensibility of things’ statuses, and concludes the 
characteristics mathematically. The extension theory is divided 
into two major parts, matter‑element theory and extension set. 
The matter‑element theory and extension set are introduced as 
follows:

3.1. Matter-element

The matter-element theory can express the difference be-
tween matter-elements. The objects are distinguished by dis-
playing the name of object, characteristic name and 
characteristic, representing the difference between objects. The 
matter-element model is defined as follows:

	 R = (N, C, V )� (9)

Where N is the name of matter-element, C is the matter-ele-
ment characteristic, V is the matter-element eigenvalue. One 
object can have plural matter-element characteristics. If the ei-
genvalue is a region, this range is called classical domain, and 
all the classical domains shouldbe in the neighborhood domains.

k(v)

1

-1

Y1 X1 X2 Y2

v

Fig. 2. Schematic of extension correlation function.
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among various statuses, and enhancing the recognition of stage 
status. The matter-element model of each status was made using 
extension theory. The relationship to matter-element model was 
calculated, so as to identify the fault status. The motor was dis-
connected in this experiment, and the stopped motor was re-
garded as faulty motor, so as to simulate motor fault in the stage. 
The stage fault statuses that can be recognized by the chaos 
synchronization extension theory proposed in this paper includ-
ed normal, X1 motor fault, X2 motor fault and Y motor fault.

The vibration signal of the stage in normal state is shown in 
Figure 4. This vibration signal is influenced by the vibration 
caused by three stepping motors. Therefore, the normal signal 
consists of the vibration signals of Y, X1 and X2 motors. The 
spectrum of normal signal was analyzed by FFT, as shown in 
Figure 5. The main frequency band and noise distribution is 
known by FFT. The main signal frequency band of three motors 
is 500‑1000 Hz. This frequency band is amplified, as shown in 
Figure 6. There are three prominent amplitudes in this frequen-
cy band. The experimental results showed that the prominent 
amplitudes represent the main frequency bands of vibration 
caused by X1 motor, X2 motor and Y motor from left to right.

various characteristic weights shall be 1. Finally, the correlation 
functions <k(v)min,k(v)max> after weight processing are normal-
ized to <–1,1> for judgment. If the normalized status correlation 
function is 1, then it means that this analysis is current state.

The status data are observed experimentally, the matter-ele-
ment model of each fault status is built, and the correlation 
function of analysisstage to each fault status is calculated to 
know the fault status of analysis stage.

4. Experimental results

The stage was XXY registration stage of Chiuan-Yan Tech. 
Co. Ltd. The fault detection platform is shown in Figure 3. The 
accelerometer was used as sensor to detect the stage vibration. 
The signal was sent by ADC via dSPACE to the computer. The 
computer processed and analyzed the signal, and displayed the 
stage waveform and fault status. The XXY stage in different 
statuses generated different vibratory magnitudes and frequen-
cies. The signal was extracted and imported into the SS of cha-
os synchronization system, thus increasing the differences 

Fig. 3. XXY stage fault detection experiment platform.
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The signals of various motor conditions were highlighted and 
extracted by band passfiltering, so as to obtain the signals of 
various motors, as shown in Figure 7. The signal was micro. 
Therefore, the characteristics of the extracted X1 motor, X2 
motor and Y motor signals were amplified by Lorenz chaos 
synchronization system. The dynamic error values E1, E2 and E3 
of motors are drawn on Figure 8. The graph of dynamic errors 
may have circles due to chaotic attractor.

When the motor has a fault, take X1 motor fault as an ex-
ample, the change in vibration signal is shown in Figure 9. It is 
observed that the extracted signal is reduced and the frequency 
is changed. The change after the signal is transformed by FFT 
is shown in Figure 10. This frequency band of 500‑1000 Hz is 
amplified, as shown in Figure 11. The amplitude disappears at 
the spectrum of 600‑650 Hz, meaning the X1 motor has a fault. 
This change is also found in the X1 motor extraction, as shown 
in Figure 12, and the X1 motor extraction is imported into cha-

This study extracted the stage vibration signal imported into 
the computer.The filter was established by simulink for filter-
ing. The Butterworth filter was used for filtering, because it de-
cays slowly and evenly compared with other types of filters. 
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Fig. 7. A: extracted X1 motor signal. B: extracted X2 motor signal. C: extrac-
ted Y motor signal.
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It was observed that the error amount E2 was most sensitive to 
the stage fault statuses. Therefore, E2 was used as the matter-
element model of fault status, the variation range of E2 in each 
status was used as classical domain range, and the maximum 
value and minimum value of classical domain in each status 
were used as the neighborhood domain range. The matter-ele-
ment model and neighborhood domain of various faults are 
shown in Table 1. The weight of three eigenvalues was set as 
1/3. Finally, the extension theory can be used to obtain the cor-
relation function of analysis stage and matter-element models. 
The normalization result was used for judgment. The correla-
tion function 1 represents the state of stage.

This study used the ADC of dSPACE to extract the stage 
vibration signal. The ADC extracted signals at frequency of 
10 kHz. This study also diagnosed the stage at intervals of 1000 
data, namely, the stage status was judged per 0.1 sec, so as to 
implement real-time stage fault monitoring and diagnosis. The 
computer-side stage diagnosis dSPACE interface is shown in 
Figure 14. This interface displays the variance in oscillogram 
and correlation function. The signal map shows the stage vibra-
tion signal and the signals representing various motor condi-

os synchronization system. It is observed when the motor has a 
fault, the dynamic error status difference from the signal ex-
tracted in normal state is enlarged. When other motors have 
faults, the chaos error of the corresponding motor extraction 
after chaos synchronization is shown in Figures 13. After chaos 
synchronization system, the dynamic errors of faulty motor and 
normal motor change, much larger than those without chaos 
synchronization. When the motor has a fault, the dynamic error 
values E1, E2 and E3 are reduced, they are more convenient than 
the original signal for observing the stage status and recogni-
tion, and the fault detection recognition rate is increased. The 
same change occurs in other motor fault statuses. When a fault 
occurs, the represented dynamic error graph shrinks.

The reduction of E1, E2 and E3 was used as fault feature, and 
the centroid values of three dynamic error amounts were used 
as eigenvalues. It was observed that the dynamic error graph 
rotated centering on 0, so the centroid value of each status ap-
proached to 0. Therefore, the centroid of positive and negative 
dynamic error values was used as feature. Finally, the distance 
between positive centroid and negative centroid was used as 
judgment eigenvalue, so as to reduce the amount of calculation. 
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Fig. 9. X1 motor stage fault vibration signal.
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tions extracted from the input signals, as well as the normalized 
correlation function displayed by motors.The stage fault status 
is judged by this value. In terms of fault detection accuracy rate, 
there were 10,000 fault status data tested to check the accuracy 
rate of results. The stage status detection accuracy rate obtained 
by using the chaos synchronization extension theory proposed 
in this paper is shown in Table 2. As seen, the fault detection 
centroid accuracy rate of stage in various statuses is 98%. The 
results prove that the method proposed in this paper can diag-
nose four stage fault statuses effectively.

5. Conclusions

This study discussed the XXY stage fault detection. The dy-
namic error amount was extracted from the stage vibration sig-
nal by chaos synchronization detection mode. The error amount 
extracted from each status was used as eigenvalue. The coeffi-
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Table 1
Matter-element model of XXY stage fault status.

Table 2
XXY stage fault accuracy rate.

Fault status Diagnostic accuracy

Normal 97%
X1Fault 99%
X2Fault 98%
YFault 98%

Fig. 14. XXY stage monitoring and diagnosis interface.
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synchronized Lorenz circuits. Joural Applied Research and Technology, 
2, 127-137.
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envelope wavelet for detecting faults in the OLTC tap selector. IEEE 
Trans. Power Deliv., 25, 1629-1636.

Tan, W.W., & Huo, H. (2005). A generic neurofuzzy model-based approach 
for detecting faults in induction motors. IEEE Trans. Ind. Electron., 52, 
1420-1427.

Teotrakool, K., Devaney, M.J., & Eren, L. (2009). Adjustable-speed drive 
bearing-fault detection via wavelet packet decomposition. IEEE Trans. 
Instrum. Meas., 58, 2747-2754.

Wang, M.H. (2004). Application of extension theory to vibration fault 
diagnosis of generator sets. IET Gener. Transm. Distrib., 151, 503-508.

Watson, S.J., Xiang, B.J., Yang, W., Tavner, P.J., & Crabtree , C.J. (2010). 
Condition monitoring of the power output of wind turbine generators 
using wavelets. IEEE Trans. Energy Convers., 25, 715-721.
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263-271.
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monitoring of the wind turbine gearbox. IEEE Trans. Energy Convers., 
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cient of correlation between statuses was distinguished by ex-
tension calculation, so as to shorten the computing and judgment 
time. This method is simple and fast, providing better real-time 
fault diagnosis environment. The experimental results showed 
that this method can detect stage faults in four statuses by using 
only one sensor, and the final accuracy rate is 98%, proving that 
the proposed detection method has good effect on XXY stage. 

References

Arjona, M.A., Gonzalez, C., & Hernandez, C. (2011). Development of a 
synchronous-generator experimental bench for standstill time-domain 
tests. Joural Applied Research and Technology, 9, 117-128.

Barrón-Meza, M.A. (2010). vibration analysis of a self-excited elastic beam. 
Joural Applied Research and Technology, 8, 227-239.

De Luca, A., & Dominguez, H. (2011). Design of a high precision testbed of an 
automatic inspection system for detecting fine defects in PCBs (pp. 1-5). 
Merida City: 8th International Conference on Electrical Engineering 
Computing Science and Automatic Control (CCE).

Ebrahimi, B.M., & Faiz, J. (2012). Magnetic field and vibration monitoring 
in permanent magnet synchronous motors under eccentricity fault. IET 
Electr. Power Appl., 6, 35-45.

Gong, X., Qiao, W. (2012). Imbalance fault detection of direct-drive wind 
turbines using generator current signals. IEEE Trans. Energy Convers., 
27, 468-476.

Gong, X., & Qiao, W. (2013). Bearing fault diagnosis for direct-drive wind 
turbines via current-demodulated signals. IEEE Trans. Ind. Electron., 
60, 3419-3428.

Huang, C.H., Lin, C.H., & Kuo, C.L. (2011). Chaos synchronization-based 
detector for power-quality disturbances classification in a power system. 
IEEE Trans. Power Deliv., 26, 944-953.

Immovilli, F., Cocconcelli, M., Bellini, A., & Rubini, R. (2009). Detection 
of generalized-roughness bearing fault by spectral-kurtosis energy of 
vibration or current signals. IEEE Trans. Ind. Electron., 56, 4710-4717.

Ishigaki, T., Higuchi, T., & Watanabe, K. (2010). Fault detection of a vibration 
mechanism by spectrum classification with a divergence-based kernel. 
IET Signal Process., 4, 518-529.


