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Abstract: Polymer composites are created by incorporating nanoparticles into polymers and can 
result in significant gains even with a very tiny amount of reinforcement that can be tailored to specific 
purposes. To have a better understanding of the behavior of these polymer composites, a variety of 
characterizations and analysis must be conducted, which demands financial and time investment. 
Thus, computational techniques can be beneficial in reducing the number of characterizations and 
studies required to produce polymer composites. Prediction of thermomechanical characteristics has 

been made possible using a computational technology known as an artificial neural network (ANN). 
The present study used dynamic mechanical analysis (DMA) to characterise polycarbonate / calcium 
carbonate-SiO2 core shell composites (polycarbonate composites). The chosen ANN model 
comprised a network of [2-4-1] (Inputs to the input layer – Neural network count in the hidden layer – 
Output from the output layer) based on the dataset. Prediction accuracy was approximately 90% when 
utilising the ANN approach. The applicability and performance of ANN were also confirmed using mean 
squared error (MSE), which is in the range of 10-5 in this scenario. Correlation coefficient of 0.999 was 
found between the output predicted by ANN and the actual output. Additionally, sensitivity analysis 

established the importance of various input variables in terms of output. Optimizing the variables 
enabled maximization of the circumstances, hence anticipating the glass transition temperature. 
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1. Introduction 
 

Polycarbonate composites are used in a variety of industries, 

including building, vehicles, aerospace, consumer electronics, 

and packaging. To determine the applications, it is necessary 

to analyze the thermal stability, mechanical strength, wear 

resistance, viscoelastic behavior, and flame resistance of 

nanoparticles, as well as their topography, size, and dispersion 
(Charde Sonawane, Sonawane & Shimpi, 2018; Khan et al., 

2019). It is based on a series of experiments conducted with 

sophisticated tools that are both expensive and time 

intensive. When considering mechanical strength at changing 

temperatures, thermo-mechanical qualities are one of the 

critical factors that determine the application of polymer 

composites (Ghanshyam, Sonawane et al., 2016). 
Thermomechanical properties are investigated with the 

use of a dynamic mechanical analyzer (DMA). These dynamic 

tests are beneficial in the investigation of polymeric materials' 

viscoelasticity. It expresses material stiffness and damping as 

storage modulus and tan delta. It is a measure of the degree of 

crosslinking between nanoparticles and the polymer matrix, 
expressed as a glass transition temperature. (Landge et al., 

2021). The enhancement of thermomechanical characteristics 

is dependent on the interaction between matrix and filler, the 

extent of cross linking, and crystallinity. The storage modulus 

and damping behavior of the composites have been reported 

to rise or decrease with the addition of nano-fillers 

(Ghanshyam et al., 2016a; Ghanshyam et al., 2017). 
Polycarbonate composites exhibit a wide range of 

thermomechanical properties that vary according to the type 

of nanofiller, organic modifier, composite synthesis method, 

and processing conditions. According to the literature, 

polycarbonate clay composites displayed superior qualities 

when modified with phosphonium salts rather than 

ammonium salts (Suin, et al. 2013). The dynamic mechanical 
characteristics of polycarbonate with ammonium modified 

clay nanofillers synthesized via melt extrusion did not improve 

(Carrion et al. 2008). Polycarbonate reinforced with 

nanoparticles of silica produced via melt intercalation was 

projected to have improved thermo-mechanical 

characteristics. Due to the existence of hydrogen bonding, the 
strong interaction between the carbonyl group in the PC and 

the hydroxide group on silica results in the increase of 

characteristics. Thus, the effect of silica nanoparticle 

modification does not result in a significant change in dynamic 

mechanical characteristics (Luyt et al., 2011). Additionally, a 

decrease in thermomechanical characteristics was seen for 

PC/carbon nanotubes (Jin et al., 2008) as well as PC/ ZnO 
(Carrion et al. 2007; Charde et al., 2017). In another case, 

thermomechanical characteristics of PC/silica composites 

made by blending and melt pressing were found to be 

improved when compared to pure PC for 1% and 2% 

composites (Chau et al., 2010; Motaung et al., 2012). 

The idea of lowering testing effort has been examined 

consistently by scientists, and after a great deal of work, 

computational procedures have been established as the 
optimum option. It was able to limit the number of analyses in 

order to obtain a rough notion of how composites behave. In 

the instance of an artificial neural network (ANN), a 

computational technique, a subset of experimental data is 

used to accurately anticipate the behaviour of a substance 

without conducting detailed testing (Mishra et al. 2009a; 

Mishra et al. 2009b). 
In material research, ANNs have been effectively utilised to 

forecast characteristics of materials. The dynamic mechanical 

characteristics of PTFE-based short carbon fibre composites 

were determined using ANN. It was determined that a sizable 

dataset was required due to the complexity of the relationship 

between the input and output (Zhang et al., 2002a). A study 

utilising ANN and SVR on polymer clay composites 
demonstrated a link between the thermo-mechanical 

characteristics and composition of the clay and temperature. 

The anticipated model was said to be advantageous for 

producing polymer clay composites with desired mechanical 

properties (Majid & Lee, 2009). Another study used an ANN 

technique called Radial basis functional network to 
investigate polymer-clay/silica hybrid composites. It was 

established that such methods could be used to forecast the 

properties of composites (lingaraju et al., 2011). The 

thermomechanical characteristics of a system of PC-clay 

nanocomposites were predicted using ANN using only the 

input variable as storage modulus (Charde & Sonawane, 2016). 

The present study examines the thermomechanical 
characteristics of polycarbonate/caco3-silica core shell 

composites (polycarbonate composites), utilising input and 

output data from DMA results for polycarbonate composites 

generated via melt extrusion. The purpose of this study was to 

determine the ability of artificial neural networks to anticipate 

and simplify in order to estimate thermomechanical 

characteristics. A model (ANN) was constructed to facilitate 
the study of the thermomechanical properties of 

polycarbonate composites, hence reducing the number of 

experiments required and aiding in the understanding of such 

composites' behavior (Malika & Sonawane, 2021a; Malika & 

Sonawane, 2021b; Shimpi, Khan et al., 2018). 

Such ANN models facilitated the identification of 
composites' potential without the need for tests. This could 

result in cost and time savings associated with material 

characterization and analysis (Aktay et al., 2005; Majid & Lee, 

2009; Khan & Khan, 2002). 
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2. Materials and methods 

 

2.1. Materials 

CaCO3 nanoparticles were synthesized and used after drying. 

Na2SiO3.9H2O, and HCl used in the experiments were of 

analytical purity and were used as obtained. Polycarbonate 

(MAKROLON® 2407) was purchased from Bayer, India. 

 

2.2. Synthesis and modification of nanoparticle 

The Na2SiO3 solution was added to the slurry of CaCO3 

nanoparticles in a mole ratio of SiO2/CaCO3 of 1:5. Heating the 

mixture to 80°C and monitoring the pH continuously until a pH 
of 7 was achieved. The slurry was aged for two hours. CaCO3 

SiO2 core shell nanoparticles were obtained by washing the 

slurry, filtration, and drying. 

Stearic acid was used to modify the product. Drying 

nanoscale CaCO3/SiO2 core shell nanoparticles at 100°C for 12 

hours to remove any absorbed moisture. Stearic acid (0.002 

mol) was dissolved in 100 ml pure toluene and then 
transferred to a flask equipped with a stirrer. Around 5g of 

CaCO3/SiO2 core shell nanoparticles were slowly added over a 

10-minute period with vigorous stirring (2,500 rpm). After the 

particles were completely added to the mixing chamber, the 

materials were mixed for an additional hour with continuous 

stirring. After grinding the product, a fine powder of stearic 
acid-coated CaCO3/SiO2 core shell nanoparticles was 

obtained. (Sonawane et al., 2011; Zhang & Li, 2004). 

 

2.3. Polycarbonate composites 

Melt extrusion at 280°C and 100 rpm was used to fabricate 

polycarbonate composites. The injector was maintained at 

310°C and filled with melt polymer. The mould was kept at 

145°C, the moulding pressure was approximately 900 bars for 

7 seconds, and the post pressure was approximately 650 bars 
for 5 seconds. Prior to mixing, the PC pellets were dried at 80°C 

for 12 hours, and the PC was gradually fed with 5g of PC and 

the corresponding percentage of nanoparticles. The use of 

counter current screws and recycling for three minutes should 

ensure adequate mixing of nanoparticles into the 

polycarbonate matrix. Composites were moulded to a 50x10x1 

mm3 dimension for the purpose of evaluating their 
thermomechanical properties. 

 

2.4. Characterization methods 

2.4.1. XRD 
After thoroughly cleaning the sample holder, the nano 

powder was spread on the sample holder. The sample was 

then placed inside the XRD machine (Model-DY-1656) and 

the sample was investigated to understand the phase(s) 

and size of the nano powder. 

 

2.4.2. SEM 

The sample of nano powder was affixed to a metallic stub which is 

placed on the sample holder. There is a fixed sample holder inside 

the machine on a rotatable disc. The nano powders were thus 

made ready for SEM. The equipment used was SEM (JEOL-JSM 

5800), to study the morphology of the nanoparticles operated 

under low vacuum at an accelerating voltage of 25 kV to get the 

sharp image of the sample. 
 

2.4.3. TGA 

From TGA, the data on weight loss and decomposition of the 

samples with temperature is available. Thermo-gravimetric 

analyzer was TG 6300 type analyzer (SII Nanotechnology 

Incorporation, Japan) under the inert atmosphere with nitrogen at 

the rate of 60-100 ml/min. About 2 to 10 mg of the sample were 

heated from 25 to 800°C at a heating rate of 10°C. 

 

2.4.4. DSC 

DSC 7020, AS-3D, SII Nanotechnology Inc., Japan was used to 
determine the glass transition temperature (Tg). The analysis 

was carried out under inert atmosphere at a rate of 60 – 100 

ml/min using 5-10 mg of sample. It involves heating the samples 

from 25°C to 550°C at a rate of 10°C/ min. 5 mg of the sample was 

taken in an aluminium pan and sealed for the DSC analysis.  

 

2.4.5. DMA 

DMA Q 800, TA Instruments Inc., USA, was used to study the 
storage modulus and tan ∂. Temperature range was 40-170°C 

and the rate of heating was 3°C/ min in an ambient condition. 

The specimens were prepared by injection molding machine 

“HAAKE Mini CTW” and had the dimension 50x10x1mm3. 

Analysis was carried out at a constant vibration frequency of 1 

Hz, using a single cantilever clamp. 

 
2.5. Computational method 

The biological nervous system stimulates an artificial neural 

network that is being used as a tool. Similar to the brain, it is 

capable of recognizing patterns within data. Numerous 

processing units (or artificial neurons) are connected in a 

predetermined manner to perform a desired pattern 
recognition task (Yegnanarayana, 2003). Neurons are 

organized into three layers: input, hidden, and output. The 

input layer is the one that receives the input dataset. The 

hidden layer functions as the system's brain. The target layer 

determines the system's final output, referred to as the output 

layer. The neurons and their interconnections adjust the input 
data at each step to produce the output. Additionally, one or 

more layers of hidden neurons can be used (Nasir et al., 2009). 

Each neuron has the ability to transmit data to the next 

neuron. The output of a preceding neuron is multiplied by the 
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weight, then modified using function, and finally deviated by 

the bias. Throughout the training period, system changes result in 

weight and bias adjustments to achieve optimal performance. 

Finally, the model's performance is quantified using the mean 

squared error (MSE) (Zhang et al., 2002b). The equation used to 

attain the output for a neuron t is given as below, 
 

𝑡 = 𝑎(∑ 𝑤𝑖𝑥𝑖 − 𝑏𝑛
𝑖=1 )                                                                          (1) 

 

Where xi, signifies the ith weight, b denotes the bias and, a 

signifies the transfer function. Here a feed forward neural network 

with three layers was chosen. The transfer function being tangent 

sigmoid (tansig) for the hidden layer. A linear transfer function 

(purelin) was selected for the output layer. The log sigmoid 

function is determined by eq. 2 and tansigmoid by eq. 3. 
 

𝑓(𝑥) =
1

1+ ⥂𝑒−𝑥
                                                                                             (2) 

𝑡𝑎𝑛 𝑠 𝑖𝑔(𝑥) =
2

1+𝑒−2𝑥
− 1                                                                   (3) 

 

where linear activation function is given by eq. 4 

 

𝑓(𝑥) = 𝑥                                                                                                   (4) 

 
The performance of ANN model was evaluated in terms of mean 

squared error (MSE) as given by eq. 5 

 

𝑀𝑆𝐸 = √∑
(𝑦𝑖,𝑒−𝑦𝑖,𝑝)

𝑛

𝑛
𝑖=1                                                                       (5) 

 

Where, n is the number of experimental data, the 

experimental data is denoted as Yi,e  and the corresponding 

predicted data denoted as Yi,p.  
We have used MATLAB based ANN toolbox, version R2012a 

(“Matlab neural network toolbox, http://www.mathworks.com/ 

products/ neural-network,” n.d.) for developing the model. This 

tool provides supervised learning. This tool is a combination 

of feedforward, backpropagation, radial basis, and dynamic 

networks (Khanam et al., 2016). A sensitivity analysis is useful 

for the evaluation of the comparative significance of each 
input variable on the output and is given by Garson (1991),  

 

𝐼𝑗 =
∑ ((|𝑊𝑗𝑚

𝑖ℎ | ∑ |𝑊𝑘𝑚
𝑖ℎ |𝑁𝑖

𝐾−1⁄ )×|𝑊𝑚𝑛
ℎ𝑜 |)

𝑚=𝑁ℎ
𝑚=1

∑ {∑ (|𝑊 𝑘𝑚
𝑖ℎ ∑ |𝑊𝑘𝑚

𝑖ℎ |𝑁𝑖
𝐾=1⁄ |×|𝑊𝑚𝑛

ℎ𝑜 |)
𝑚=𝑁ℎ
𝑚=1 }

𝑘=𝑁𝑖
𝑘=1

                               (6) 

 
where, the comparative implication of the jth input variable 

on the output variable is Ij. The number of input neurons is Ni 

and hidden neurons is Nh. The connection weight is W. The 

input, hidden and output layers are denoted by the 
superscripts I, h and o respectively. The input, hidden and 

output neurons are represented by the subscripts k, m and n 

respectively. 

 

2.6. Proposed Methodology 

We are considering that percentage composition of 

nanoparticles and temperature influences the output that is 

tan δ and finally glass transition. The system is a 

polycarbonate/ calcium carbonate-silica core shell 

composites with varying concentration of nanoparticles such as 

1%, 3% and 5%. The damping effect (tan δ) is considered as a 

nonlinear function of percentage of nanoparticles and 
temperature. Additionally, for fast learning of the model, we 

consider transition temperature at zero percentage 

nanoparticles composition (pure PC). It is only one and constant 

value obtained from loss tangent (tan δ) peak point (Khan et al., 

2009). We are using MATLAB, R2012a which applies supervised 

and feed forward back propagation via neural network tool. 

 

3. Results and discussion 

 

3.1. SEM 

The nanoparticles were analysed using SEM images and found 
to be hexagonal, cube-like crystals. Figure.1 is the image of 

CaCO3 /SiO2 core shell nanoparticles which are hexagonal 

cubes same as the basic CaCO3 nanoparticles. This confirms 

that the shape of nanoparticles used as core is governed by 

the shape of core shell nanoparticles. CaCO3 nanoparticles 

were directly coated with a layer of silica by hydrolysis and 
condensation of Na2SiO3 in aqueous solution. 

 

 
 

Figure 1. SEM image of CaCO3-SiO2 core shell 
 nanoparticles revealing morphology. 

 

3.2. XRD 

The shape and size of CaCO3 /SiO2 core shell nanoparticles were 

evaluated by XRD. The analysis of crystal structure using XRD 

illustrates the strong and sharp peaks showed that the 

nanoparticles was well crystalline. The average crystallite size 

(D) of the CaCO3 /SiO2 core shell nanoparticles was calculated 

using Scherer’s formula. 
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𝐷 =
0.9𝜆

𝛽𝑐𝑜𝑠𝜃
                                                                                                                  (7) 

 

Where, shape factor is D, x-ray wavelength is λ, FWHM of 

diffraction peak is β, Bragg angle is θ.  

The average crystallite size (D) of the calcium carbonate 

was calculated using Scherer’s formula and was found to 

be 32 nm. It was concluded from Figure 2 that all of the 

peaks obtained in the XRD pattern of CaCO3 /SiO2 core shell 
nanoparticles matched perfectly with the standard CaCO 3 

pattern as is evident from. XRD image as given in Figure 2 of 

CaCO3 /SiO2 core shell nanoparticles show that coating on 

CaCO3 does not change the crystal structure of CaCO3 core 

(Klugg & Alexander, 1974). 

 

3.3. FE-SEM 

3% loading of CaCO3 /SiO2 core shell nanoparticles were 
found to be aggregated together and the aggregation were 

detached from each other as shown in Figure 3a. 
 

 
 

Figure 2. XRD of CaCO3-SiO2 core shell 

nanoparticles utilized for size evaluation. 
 

With increasing CaCO3 /SiO2 core shell nanoparticles 

loading, the amount of the aggregation increased as can be 

seen for 5% loading in Figure 3b. These aggregations 

comprised of several nanoparticles due to which their size 

reached micrometre level. Obviously, it was difficult to 

disperse nanoparticles homogeneously in the PC matrix 
through compounding PC pellets with CaCO3 /SiO2 core 

shell nanoparticles during the melt extrusion processing 

(Sen et al., 2018). 

 

 

 

 
 

Figure 3a. FE-SEM images of polycarbonate composites 
representing 3% loading of nanoparticles. 

 

 
 

Figure 3b. FE-SEM images of polycarbonate composites 
representing 5% loading of nanoparticles. 

 

3.4. Thermal properties 

Thermal degradation of pure PC and polycarbonate/ CaCO3-

silica core shell composites (polycarbonate composites), 
confirmed a two-stage process as is evident from Figure 4a. The 

reinforcement of core shell nanoparticles did not lead to any 

significant enhancement in thermal stability of the 

polycarbonate composites. From Table 1, it was observed that 

the onset of degradation for the case of polycarbonate 

composites was at a lower temperature as compared to the 

pure PC. This behaviour indicated a decrement as the 
concentration of nanoparticles increased. But the early 

degradation has also resulted in higher charred residue for the 

polycarbonate composites, indicating probable improvement 

in flame resistivity (Sonawane et al., 2009a; 2009b). 
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Figure 4a. TGA curves for evaluation of thermal stability of 
polycarbonate composites and pure PC. 

 

 
Table 1. TGA data as obtained for PC and 

polycarbonate composites. 

 
The DTG curve as is shown in Figure 4b, confirmed two 

stage degradation process of pure PC and polycarbonate 

composites. Also, the DSC endotherms depicted by Figure 4c, 
specified that the glass transition temperature values (Tg) of 

polycarbonate composites are nearly similar as that of pure 

PC. The Tg did not improve which confirmed the thermal stability 

decrement, as is observed by TGA. It means that presence of 

nanomaterials could not restrict the mobility of PC chain 

segments, indicating a poor reinforcement. Tg values did not 

change much, which can be confirmed with Tan Del curves. Table 
2 displays a comparison of Tg values (Sonawane et al., 2010). 

 
Table 2. DSC results for PC and 

 polycarbonate composites. 

 
Sample PC PC/CaCO3 -SiO2 

Tg(oC) Pure 1% 3% 5% 

150 148.6 149 148 

 

 

 
 

Figure 4b. DTG curves confirming number 

of stages of degradation. 
 

 
 

Figure 4c. DSC endotherms to evaluate 

the glass transition temperature (Tg). 
 

3.5. Thermo-mechanical properties 

The calcium carbonate-silica core shell nanoparticles were 
modified using stearic acid to achieve a good compatibility 

with the polycarbonate matrix. Polycarbonate composites 

were prepared at 280°C in an extruder using counter current 

screw arrangement. Figure 5a and 5b represent the results 

obtained from DMA. Figure 5a shows dependence of storage 

modulus on filler composition with temperature for 

polycarbonate composites. It is observed that the storage 
modulus of composites increases with the percentage 

composition thus leading to increase in stiffness of the material 

but only in the room temperature region. It is also clear that 

storage modulus for 5% polycarbonate composites confirmed 

maximum enhancement. The transition value of 5% 

polycarbonate composites is slightly lower than that of 1% and  

Sample Ton set(oC) T0.5 
oC Charred 

Residue   

PC 461 519 0.8% 

PC+ 1%CaCO3-

SiO2CS 
459 505 0.8% 

PC+ 3%CaCO3-

SiO2CS 
447 498 2.8% 

PC+ 5%CaCO3-

SiO2CS 
436 491 2.7% 
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3%. This is supported by Figure 5b where the peak points 

represent Tg and it is higher for 1% and 3% polycarbonate 

composites. When the reinforcement of nanoparticles in the 

polymer matrix is good, the damping effect represented by the 

peak in Figure 5b should decrease with percentage 

composition leading to better Tg. The dynamic mechanical 
properties depend on several factors i.e., filler’s size, 

morphology and the extent of interaction between the filler 

and the polymer matrix. Here in spite of the presence of surface 

modifier, the Tg values did not improve, and the reinforcement 

achieved is low. The reason could be the catalysis of 

degradation due to a degradation of surface modifier at the 

processing temperature which is high. It is thus confirmed that 
the presence of higher percentage of nanoparticles did not 

lead to a restriction of polymer chain mobility. If this behaviour 

can be predicted using ANN a lot of time and money could be 

saved (Shimpi, Borane et al., 2018; Ghanshyam et al., 2016b). 

 

 
 

Figure 5a. DMA curves to evaluate storage 

modulus of polycarbonate composites. 
 

3.6. Designing ANN model 
A neural network, in its broadest sense, is made up of a number 

of neurons that, when combined, can perform any constructed 

function. To improve results, a sufficient training set should be 

identified. Approximately 70% of the data set is used for 

operating system training, with the remaining 30% divided 

between testing and validation. The input layer, the hidden 
layer, and the output layer comprise the three layers of an ANN. 

Every neuron has three components: a normalised input, a 

transfer function, and an output. The network's neuron is 

stimulated by the weighted number of inputs, and one 

outcome is sent to the output units. The network will continue 

to operate until a convincing measurement accuracy is 

achieved. The data obtained from dynamic mechanical 
analyzer are in large volume, which is preferred for ANN 

applications. The data was obtained for a system of PC/ 

calcium carbonate-silica core shell composites with various 

compositions of nanoparticles like 1%, 3% and 5%. 

 

 
 

Figure 5b. Damping effect of the nanoparticles 

on the polycarbonate composites. 

 
The datasets were used to train various developed ANN 

model. The data were separated as the training data set and 

validation data and the values are listed in supplementary 
Table S1. The data were normalized to obtain dimensionless 

parameters within a certain range using eq. 8. 

 

𝒚 =
𝒙−𝒙𝒎𝒊𝒏

𝒙𝒎𝒊𝒏𝒎𝒂𝒙
                                                                                                            (8) 

 
Where, the normalization value is y, the original value is x. The 

maximum original value is xmax. The xmin is the minimum original value 
Thus, the collected data using the normalization technique 

were processed. The same data was used to design neural 

network models to predict thermo-mechanical properties. The 

process of designing included a sequence of trials with several 

neural configurations along with layer and the function 

configuration. These models were compared, and the most 

successful model selected. 
The different transfer functions available are purelinear, tan-

sigmoid and log sigmoid. The function used for the second layer 

input to output is purelinear as it can generate the output in any 

numerical values, whereas tansigmoid and logsigmoid can 

generate outputs of either 1 or 0. The algorithm used to train 

the network was Levenberg-Marquardt algorithm (TrainLM). 

For most of the systems, the highest accuracy in prediction 
was provided by TrainLM. The training of models up to 1000 

epochs using training dataset was an integral part before 

selecting any model. Epochs can be defined as number of 

times an ANN model is permitted to regulate the weight and bias  
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to accomplish better simulation. A better performance using 

the single-layer models was observed in training as 

compared to the multiple layer models. In single layer 

models, large models as compared to smaller models 

were confirmed to be comparatively better, e.g. 2-[4]-1. It 

was found that as the hidden layer increases in size like 
more than 4 neurons, no further enhancement in 

performance is expected. The single layer model with 

number of neurons as 4, was selected for the hidden layer 

as shown in Figure 6a. 

The final model was selected when the system gradually 

converged and further improvement in performance was not 

observed anymore. It was observed that as the training cycles 
increased the error percentile dropped sharply. The parameter 

settings for ANN model are mentioned in Table 3. 

 
Table 3. Parameter settings for ANN based Prediction model. 

 
Neural network 

parameters 
Selected values 

Input layer neurons 2 
Number of hidden layers 1 

Number of neurons in the 

hidden layers 
4 

Number of neurons in the 

output layer 
1 

Activation function of 
hidden layers 

Tansig 

Activation function of 
output layers 

Purlin 

Training algorithm Levenberg-Marquardt 
Number of epochs 1000 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

3.6.1. Comparison of experimental and ANN results 

By comparing the experimental values with its corresponding 

predicted values as obtained by using ANN model, the final 

model was tested and validated. Figure 6b represents all 

prediction set with training, validation and test and the 

regression (R) was found to be close to 1. In all the cases it was 

observed that the values of R were close to 1, indicating the fact 

that the suggested ANN model was precise in predicting tan δ 
values. This also proves that the ANN model is capable of 

predicting the thermo-mechanical properties of polycarbonate 

composites (Sarve et al., 2015). Figure 6c represents the 

performance curve and it shows that performance converges to 

the range of 10-6 with 272 epochs. The experimental results were 

found to be in good relationship with the predicted values for all 

the parameters tested here with a high regression coefficient of 
0.9999. Figure 7 shows assessment of experimental and ANN 

outputs when compared. It was observed that the coefficient of 

correlation is also close to 1 depicting the fact that the model 

used is the most suitable for the said system. 
 

3.6.2. Prediction of thermo-mechanical properties for 

sample data 

Using the established ANN model, it was easier to predict the 
tan δ values i.e., thermo-mechanical properties for a given 

sample inputs with different concentrations of PCNC. Table 4 

shows the data set used for testing the model along with 

experimental and predicted values of tan δ. The experimental 

and predicted properties follow the same trend with a 

correlation coefficient of 0.992 as shown in Figure 8. This value 

of correlation coefficient indicates the capability of the model 
to predict the results.  

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

Figure 6a. ANN network structure selected 

 for the system study. 
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Figure 6b. Correlation between target and network outputs during training, its validation and testing together. 
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Figure 6c. Performance curve showing number of epochs  
and convergence of mean squared error. 
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Figure 7. Comparison between experimental 
 output and ANN predicted output. 
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Figure 8. Comparison of experimental output with 
 the ANN output for unseen data. 

 

 

3.6.3. Prediction of tan δ for an unknown concentration 

2% PCNC 

The prediction capability of the ANN model is checked using an 
unknown concentration of 2% PCNC. The results obtained 

using the designed ANN model is listed in table 4. The values 

when compared to the experimental outputs of 3 % PCNC are 

close to the expected range which proves that the model is the 

most suitable for prediction of thermo-mechanical properties 

of polycarbonate composites.  

 

3.6.4. Sensitivity analysis 

The weights used for sensitivity analysis is obtained from the 
ANN model. In the biological sciences, the strengths between 

the axons and dendrites are equivalent to these weights. 

Subsequently the percentage of the input signal which should 

be transmitted into the body of neurons, will be decide by each 

weight (Slokar et al., 1999). The comparative significance of the 

three input variables is listed in Table 5. The relative 

importance of temperature at which load is being applied is 
more than the other variable but they help in learning the 

system faster for better performance. In absence of these the 

system takes longer time to converge, and generalization 

obtained is not good (Shimpi et al., 2011; Charde, Sonawane, 

Sonawane, & Navin, 2018). 

 

3.6.5. Prediction of Glass transition temperature using 

optimization by genetic algorithm 

Figure 9 demonstrates the effects of temperature and 

concentration on the tan δ values in 3D. The ANN model was 
used to optimize the conditions using genetic algorithm. It is 

observed that tan δ values are almost constant up to a 

temperature of 130°C very close to its transition value. A steep 

increase in the values is observed up to a maximum value of tan 

δ=1.2. This peak value corresponds to the glass transition 

temperature of the polycarbonate composite for a 

concentration of 5% PCNC and it is 147°C.  
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 Table 4. Model tested for 1 and 2% composition of PCNC at 149°C peak temperature. 
 

Concentration (%) Temperature Experimental Tan δ Predicted Tan δ % Error 

1 93.13809 0.014528 0.014148 2.61564 

1 94.03843 0.014662 0.014417 1.67099 

1 95.08978 0.014947 0.014739 1.39158 

1 96.14039 0.015097 0.015068 0.19209 

1 97.04145 0.015352 0.015357 -0.03257 

1 98.09259 0.015548 0.015701 -0.98405 

1 99.1447 0.015834 0.016052 -1.37678 

1 100.0445 0.015907 0.016358 -2.83523 

1 101.0944 0.016144 0.01652 -2.32904 

1 102.1443 0.01638 0.016089 1.77656 

1 103.0436 0.016526 0.016409 0.70798 

1 104.0937 0.016768 0.016788 -0.11927 

1 105.1428 0.017139 0.017171 -0.18671 

1 106.0427 0.017325 0.017503 -1.02742 

1 107.0918 0.01758 0.017894 -1.78612 

1 108.1418 0.017889 0.017289 3.35402 

1 109.0426 0.01825 0.018631 -2.08767 

1 110.0928 0.018659 0.01850034 0.85031 

1 111.1484 0.018937 0.018443 2.60865 

1 112.0485 0.019346 0.019797 -2.33123 

1 113.0988 0.02006 0.020215 -0.77268 

1 114.1486 0.020256 0.0201643 0.45271 

1 115.0477 0.020795 0.0202018 2.85261 

1 116.0984 0.021414 0.0212472 0.77893 

1 117.1472 0.022258 0.022948 -3.10001 

1 118.0479 0.022743 0.0223379 1.78121 

1 119.0959 0.023599 0.0236919 -0.39366 

1 93.13809 0.014528 0.014148 2.61564 

2 108.0515 0.022193 0.022166 0.1230 

2 108.2017 0.02228 0.021932 1.5600 

2 108.3514 0.022367 0.021992 1.6780 

2 108.5018 0.022454 0.022414 0.1789 

2 108.6518 0.022541 0.022263 1.2340 

2 108.802 0.022628 0.021999 2.7800 

2 108.9511 0.022714 0.022058 2.8900 

2 109.0992 0.0228 0.022369 1.8900 
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Figure 9. Three-dimensional plot showing the 
effects of temperature and concentration of nanoparticles 

 
Table 5. Sensitivity analysis result as obtained from 

 the ANN model. 
 

Input Variables 
Percentage of 

importance 

Temperature (oC) 64.42 

Concentration (%) 35.25 

 

4. Conclusions  
 

The current effort was an attempt to investigate the possibility 

of using an artificial neural network to precisely predict the 

thermomechanical properties of polycarbonate composites. 

The experimental results are found to be consistent with the 

predictions of the ANN. This model is best suited for a system 
composed of polycarbonate composites, as the addition of 

filler results in a decrease in Tg values. Correlation coefficients 

that are high and mean squared error values that are small 

ensure that the training process is accurate. The uniform 

correlation coefficient values and close mean squared error 

values observed for the training, validation, and testing data 

sets indicate that the ANN model has a high degree of 
generalization competence. Tan values for unknown 

concentrations are also within the acceptable range. 

Optimization contributes to the determination of the glass 

transition temperature of polycarbonate composites. Thus, 

using an ANN model, it is possible to predict the 

thermomechanical properties of polycarbonate composites 

as a function of concentration and temperature. This prior 
knowledge is beneficial when determining the ultimate 

application for the new composite product. After the network 

is finalized, the time required is only a few seconds to a few 

minutes, making it a faster option than characterizations and 

testing, saving both time and money. 
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