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Abstract

The surface deformation detection of an object has been a very popular research project in recent years; in human vision, we can easily detect 
the location of the target and that scale of the surface rotation, and change of the viewpoint makes the surface deformation, but in a vision of the 
computer is a challenge. In those backgrounds of questions, we can propose a framework that is the surface deformation, which is based on the 
detection method of BRIEF to calculate object surface deformation. But BRIEF calculation has some problem that can’t rotate and change character; 
we also propose a useful calculation method to solve the problem, and the method proved by experiment can overcome the problem, by the way, 
it’s very useful. The average operation time every picture in continuous image is 50~80 ms in 2.5 GHz computer, let us look back for some related 
estimation technology of surface deformation, and there are still a few successful project that is surface deformation detection in the document.
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access item distributed under the Creative Commons CC License BY-NC-ND 4.0.
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1. Introduction

Object surface deformation detection has been a rather popu-
lar research topic in recent years and subsequent applications 
have also been extensive. Augmented reality (AR) is an inter-
esting man-machine interaction technology in which a filming 
camera is used in combination with an effective algorithm for 
image calculation to enable interaction between people and 
virtual images, making hardware equipment become more 
than just computation tools but also allowing lively and fun 
man-machine interaction. The incessant quest of humans for 
novelty, speed, and innovation has provided the drive behind 
advancements in information technology and prices have also 
become more affordable, unlike the high costs that limited the 
availability of hardware equipment in the past. Kinect, that 
Microsoft released for Xbox 360 in 2010, for instance, was a 
breakthrough both in hardware performance and price wise. 
Previously, hardware equipment of such specifications could 
easily cost hundreds of thousands of New Taiwan (NT) dollars, 
but today people are able to acquire such equipment by spend-
ing a few thousand dollars. 

Due to the affordability of hardware prices and upgrades 
in computation speeds, the growth of AR application and ser-

vices has been amazing. The market value increase from 2010 
to 2013 has been rather considerable. This means that object 
surface deformation estimation will remain a worthwhile topic 
and objective of studies for quite some time.

Feature descriptors, sometimes called descriptors, have al-
ways been a popular research topic and a tough challenge. They 
are commonly used in algorithms for target detection and fur-
ther applications such as automatic control, product inspection, 
face identification, and object tracking, etc. Such subsequent 
applications have resulted in problems that need solving, in-
cluding detection of change of angle of view, scale and rotation 
of objects and multi-targets. Therefore, an effective algorithm 
is required to solve these problems. A detector is used to lo-
cate in an image the keypoints which can be edges or corners. 
The keypoints are then filtered to keep only the ones that meet 
the established conditions. The purpose is to facilitate detec-
tion and reduce the quantity of keypoints to be processed. The 
descriptors are applied to describe the features, such as the size 
and shape of an eye, to make the keypoints more distinguish-
able. In the end, matching between the template and the target 
is conducted and match results are generated. (Baker & Mat-
thews, 2004) proposed a theory called image alignment to de-
pict other algorithms and framework extension.

Scale-Invariant Feature Transform (SIFT) is a feature de-
scription method proposed by Lowe (2004). It is a pioneer in 
the feature description. When the SIFT algorithm is applied, 
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as outstanding as those of FAST detectors. Also mentioned in 
the paper was a way to find reliable keypoints under different 
scales and an approach different from the methods adopted in 
past literature to establish DAISY descriptors to make the de-
scriptors more robust.

In 2012, A. Alahi proposed FAST Retina Keypoint (FREAK) 
(Alahi et al., 2012) to establish descriptors based on the concept 
behind the human retina and claimed that the approach could 
lead to better results than BRISK, SURF and SIFT. Before per-
forming the two descriptor matching, stages, the first section 
was first examined to see if it met the threshold and, if so, the 
matching for the second section was then conducted; thus, the 
cost of computation could be reduced.

Other papers released, including those by Ke and Sukthan-
kar (2004), Dalal and Triggs (2005), and Mikolajczyk and 
Schmid (2005), were all related to feature descriptor algo-
rithms. K. Mikolajczyk also published another paper in 2008 
to discuss the comments about descriptors (Rosten, Porter & 
Drummond, 2010).

The framework of the algorithm put forward in this paper. 
First, the template and the target image are imported for detec-
tion and matching to obtain match results. Then, mismatches 
are rejected. The keypoint initially acquired is incorporated in 
the tracking algorithm to be the initial point and complementa-
tion is performed through detection and tracking. In the end, a 
deformation function is obtained according to the matching re-
lationship between the template and the target. The objective of 
this algorithm is to find out how to conduct real-time non-rigid 
surface deformation detection by using feature descriptors.

2. The proposed method

The objective of this study is to identify with effectiveness 
the relationship between the matches of the template and target 
keypoints and then, according to the relationship, to establish 
a warp function that represents the coordinate conversion rela-
tionship between corresponding template target keypoints.

2.1. FAST detector

The purpose of detection is to locate the keypoints such as 
corners or edges in the image, and they would be described into 
the descriptors. How to effectually locate the keypoints, filtering 
and descriptors generation is main issue in this chapter (Yasmin 
et al., 2014; Yasmin et al., 2013).

The description of keypoint detection will be divided in two 
parts FAST (Features from Accelerated Segment Test) corner 
detection and FAST corner filtering.

In 2006, E. Rosten proposed the FAST (Rosten & Drum-
mond, 2006; Tuytelaars & Mikolajczyk, 2008), a quick corner 
detection algorithm based on the idea of scanning one by one 
all the pixels in an image, and using each pixel as the center 
to detect whether the grayscale difference of the pixel on a 
radius point meets the grayscale difference threshold as well 
as calculate the number of pixels that meet the said threshold. 
If the cumulative number of pixels meets the quantity thresh-

the difference of Gaussians (DoG) is used first to figure out the 
gradient changes because distinct features like edges and corners 
are needed to calculate gradient directions in order to establish a 
pyramidal image to indicate the different scales, in other words 
different scaling ratios. In subsequence, feature description is 
conducted. The feature description in this paper is conducted 
from block to block to calculate the different gradient directions 
around a feature to identify the primary and secondary gradient 
directions, equip them with rotational invariance, and establish 
the descriptors (Yasmin et al., 2014; Yasmin et al., 2013).

H. Bay put forth Speeded Up Robust Features (SURF) (Bay 
et al., 2006), and proposed to apply the Hessian matrix to lo-
cate changeable keypoints and consolidate integral images to 
achieve scale invariance, same as the steps to establish the py-
ramidal image. The method greatly improved the bottleneck in 
SIFT computation speed because, after obtaining the overall 
integer value, it only requires the Hessian matrix of different 
sizes to indicate the image ratio changes resulted from different 
scales. Then, the keypoints around each keypoint are calculated 
and the direction with the most keypoints is regarded the direc-
tion of the said keypoint to achieve rotational invariance. Fi-
nally, the features around the keypoint are divided into feature 
descriptors carrying a symbol and not carrying a symbol.

M. Calonder came up with the Binary Robust Independent 
Elementary Features (BRIEF) (Calonder et al., 2010) algorithm. 
Since detectors used in algorithms developed in the past, such as 
SURF, could be used in search of initial keypoints and scales, 
Edward Rosten proposed in 2010 the FAST corner detector, 
while Elmar Mair also put forward the AGAST corner detector. 
Both algorithms were not only able to search initial keypoints 
quickly, but also reliable and capable of effectively reducing the 
cost of initial computation; they were therefore suitable to pro-
vide a good foundation for establishment of subsequent descrip-
tors, while different image scale changes could also be identified 
by using integral images. They proposed the use of binary de-
scriptors to break through the bottleneck encountered in studies 
on subsequent descriptor computation so that the cost of match-
ing and descriptor computation could be reduced.

ORB (Rublee et al., 2006) is an algorithm proposed by Mi-
crosoft researcher E. Rublee in 2010. The paper was primarily 
to suggest ways to improve the defect of lack of rotational in-
variance of BRIEF, its initial keypoint filtering mechanism, and 
calculation of different keypoint directions. The keypoint search 
and scale changes could still be conducted in reference to detec-
tion methods adopted in algorithms developed in the past. In the 
beginning, the FAST method was applied to locate the keypoints 
in an image. The keypoints located were filtered to select the 
most reliable keypoints. Then, future directions are calculated 
in accordance with the intensity centroid of each of the selected 
keypoint to establish binary descriptors.

S. Leutenegger presented Binary Robust Invariant Scalable 
Keypoints (BRISK) (Leutenegger et al., 2011) in 2012. The 
main contribution of the paper was the approach of incorpora-
tion of AGAST detectors to locate keypoints with scale invari-
ance and improve descriptors effectiveness. In the paper, it was 
described how AGAST detectors were able to locate keypoints 
effectively and reliably and the outcome and speed were at least 
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In equation 1, x1 and y1 respectively stand from the point 
in front and the point behind the number n pair in the sample 
set. After constructing the BRIEF pattern, all the keypoints can 
be put in the sample array. The n number of pairs are to be 
formed. The grayscale values of the two points in each pair are 
compared. The result is either 0 or 1. Then, the 0 or 1 of each 
pair is taken to form a group of binary character string and this 
binary character string is the descriptor of the keypoint. Equa-
tion (2) shows the pixel grayscale value of sample pair p. The 
x is a point in front, and y is the point behind. If the grayscale 
of the point in front is smaller than that of the point behind, p 
is 1; otherwise, it is 0. Equation (3) shows the binary descriptor 
formation process. In that, n is the number of samples, such as 
32, 64, 128, 256, or 512. The result of every comparison, 0 or 1, 
moves leftward and the i–1 bit is accumulated.

	
	 (2)

	
	 (3)

2.3. Descriptor matching

As mentioned in the beginning of this paper, our objective 
is to identify the corresponding relationship between the tem-
plate and the target. The explanation above is the preliminary 
process of finding the keypoints and describing their features to 
form a set of descriptors to perform the matching. 

After the keypoints of the template and the target are trans-
formed into descriptors, matching is performed to identify the 
corresponding relationship between the template and the target. 

Since the descriptors used in BRIEF are binary character 
strings, XOR can be applied to compute the difference between 
each pair of descriptors. For example, suppose that the number 
i group of descriptors taken from an O set of descriptors of 
the template and the number j group of detectors from the U 
group of descriptors of the target are respectively 00001111 and 
10001001. The result after XOR computation is 1000110. The 
XOR result is accumulated and 3 is obtained, indicating that 
the difference of each pair of descriptors is 3. Likewise, all the 
descriptors are matched to find the pair of descriptors with the 
smallest distance. Figure 2 shows the matching results between 
the template and target descriptors.

old, the pixel is selected as the FAST corner and the grayscale 
difference aggregate, corner response, is recorded. When this 
algorithm is applied, only simple addition and subtraction are 
required; therefore, performance optimization can be conduct-
ed by using SSE (Streaming SIMD Extensions) instruction sets.

FAST is a good algorithm for detection of corners in an im-
age. Only simple addition and subtraction are needed, but the 
grayscale threshold setting is also required. Grayscale difference 
threshold parameter setting has always been a baffling issue be-
cause different questions call for different grayscale difference 
thresholds to meet the conditions in order to obtain decent re-
sults. For this reason (Rublee et al., 2006), the author proposes 
to apply low grayscale difference thresholds to detect the FAST 
corners in an image and then filter the corners detected and re-
tain the ones meeting the requirements. FAST includes two steps 
for filtering the keypoints, N and M indicate the number of cho-
sen keypoints in steps 1 and 2, respectively. The choice of the N 
and M parameters is conducted in accordance with the empirical 
rule. In this paper, N is 1400 and M is 700. They will lead our 
algorithm to get good results. 

The rule of filtering is divided into two steps:
Step 1. �According to the pixel difference aggregate stored, 

all the corners detected with FAST are arranged in 
descending order.

Step 2. �The first M number of corners selected in Step 1 re-
quires filtering, mainly because some of them can be 
noisy fallen on the edge. As shown in Figure 1, such 
noise may be selected in Step 1, but it is not a corner 
we are looking for.

2.2. Descriptors

BRIEF stands for Binary Robust Independent Elementary 
Features, presented by M. Calonder (Tuytelaars & Mikolajczyk, 
2008) in ECCV in 2010, and feature descriptors were adopted 
in the algorithm. In this paper, the BRIEF sampling pattern 
includes 256 pairs of samples in a 31 × 31 region. The pattern 
results can be stored in an array. The effect of the number of 
sample pairs on the outcome and the speed can be found by 
Calonder, Lepetit, Ozuysal, Trzcinski, Strecha & Fua (2012).

	

	 (1)
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Fig. 1. Schematic of FAST corner detection. Fig. 2. Schematic of descriptor matching.
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ance become equipped with rotational invariance and the issues 
entailed will also be explained. The BRIEF algorithm does not 
calculate the direction of corners. Hence, each of the four cor-
ners of the square in Figure 4 can be clearly described with 
a binary character string. The binary character strings of the 
four descriptors of the template are 00011, 10100, 01000 and 
00000, and the four binary character strings of the target are 
00011, 10100, 01000 and 00000. Due to the difference existing 
in between, the four descriptors for the template and the target 
therefore can be separated distinctly.

Next, we will discuss how to equip descriptors with rota-
tional invariance. An intensity centroid is applied to calculate 
corner directions, as shown in equation (4), by computing the 
vectors of the x and y directions in the corner area. In this pa-
per, a circle with a radius of 15 is defined as the area; x and 
y respectively stand for the coordinates of a location; I(x,y) is 
the image grayscale of the coordinates; p and q represent the 
directions selected. When w = 0 and q = 1, the Y direction is 
calculated; when w = 1 and q = 0, the X direction is calculated. 

After obtaining the x and y vectors, equation (5) is applied 
to calculate the trigonometric function of the two vectors, 
then atan–1 is used to figure out the ratio between m01 vector 
and m10 vector. Afterwards, radians are converted to degrees 
to ascertain the direction of each corner. Figure 5 shows the 
direction of every corner obtained from the above mentioned 
computation.

	
	 (4)

	
	 (5)

After performing direction computation on the corners of 
the template and the target, we are able to conduct rotation on 
the sampling model, as shown in equation (6). Except for the 
changes made to the sampling model, the direction computation 
approaches adopted in recent years to equip descriptors with 
rotational invariance, such as BRISK and FREAK, are more or 
less the same as ORB. Therefore, ORB is used as an example to 
provide the explanation.

	 	 (6)

2.4. Feature correspondences

The corresponding results of the template and target descrip-
tors can be divided into correct matches and mismatches. To 
maintain correctness in subsequent deformation computation, 
we need a reliable algorithm to reject error matches. Taking the 
speed and level of difficulty of implementation into consider-
ation, we choose the algorithm applied in Tran, Chin,  Carneiro, 
Brown and Suter (2012)

2.4.1. RANdom SAmple Consensus
The concept behind this algorithm is based on RANdom 

Sample Consensus (RANSAC), put forward by Fischler and 
Bolles (1981). As shown in Figure 3, samples are extracted from 
the lines (black solid line) formed by two random points in the 
data point set, and the distance between every other data point 
in the data point set to this line is calculated. If it is smaller than 
the established distance threshold, it is selected as an inlier (a 
hollow point), otherwise an outlier (a solid point). The number 
of inliers resulted from each iterative sampling is recorded. At 
the end of the computation, the line with the most inliers is the 
sampling model of this data point set. A number of times of 
sampling can be determined as the condition for termination of 
the computation.

2.4.2. Rejection of mismatches
The algorithm applied in (Tran, Chin, Carneiro, Brown & 

Suter, 2012) is to locate the mismatches according to RANSAC.

2.4.3. Rotationally invariant descriptors
In this section, rotationally invariant BRIEF descriptors are 

introduced. A target in continuous images can have rotation or 
scaling. The original BRIEF algorithm is not equipped with ro-
tational invariance and, therefore, the algorithm will fail when 
the target rotates. How the descriptors without rotational invari-

Inlier

Outlier

Fig. 3. Schematic of RANdom SAmple Consensus.

Fig. 4. Schematic of BRIEF feature description.
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Fig. 5. Schematic of corner directions.
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get keypoint coordinates (10, 10) at time t, at t+1 they can be 
matched with the target keypoint coordinates (100, 100) be-
cause deformation can occur on the target surface as a result of 
rotation, scaling and angle of view of the target in continuous 
images. This makes detection difficult. Since we hope to use 
these matches as the control points in deformation estimation, 
the match keypoints have to be stable. 

Realizing the problem, we therefore add in the framework 
a tracking algorithm as a solution. Tran et al. (2012) also men-
tioned this concept at the end of the paper. Hence, we combine 
detection and tracking as they can collaborate and comple-
ment each other. The purpose of initialization is to provide the 
keypoints required for the tracking algorithm. In this frame-
work, we adopt the Lucas-Kanade optical flow. These initial 
keypoints are the match keypoints on the template and the tar-
gets detected, but they need to be filtered so that good matches 
can be retained and the number of matches can be reduced to 
bring down the overall computation cost. Next, we use Figure 8 
to explain the filtering mechanism. Suppose that the continu-
ous images include l number of frames. Starting from the a = 
1 picture, the match keypoints on the template are arranged 

Figure 6 shows that a descriptor with rotational invariance 
can still have the same binary character string 0110 as the de-
scriptor of the template when the target rotates. However, a new 
problem appears. The four corners in the template apparently 
are four different corners, yet they share the same binary char-
acter string 0110. As a result, it is impossible to separate the 
four corners distinctly.

After the above mentioned analysis, we discover that BRIEF 
descriptors have high differentiation rates, but no rotational in-
variance and descriptors with rotational invariance have low 
different rates. Therefore, we work on the problem to come up 
with an algorithm to solve it.

This algorithm can be divided into two steps:
Step 1. �A small number of descriptors with rotational invari-

ance are applied to detect the rotation angle of the 
match descriptors of the template and the target and 
the angle that appears the most number of times is 
the result we want. In this paper, we adopt ORB de-
scriptors to perform the probing. 

Step 2. �The degree obtained from the probing suggests the 
likely rotation angle of the target. Then the directional 
rotation is conducted on the BRIEF sampling model.

By doing so, we are able to give BRIEF descriptors rota-
tional invariance without losing their high differentiation rates. 
Figure 7 shows how ORB descriptors are applied to probe for 
the degree of the descriptors on the template and the target in 
Step 1 and how to rotate the BRIEF sampling model according 
to the degree obtained in Step 2.

3. Tracking initialization

This section elaborates on the second half of the real-time 
deformation estimation framework that we propose. The first 
half focuses on detection in order to identify the corresponding 
relationship between the template and the target in continuous 
images. In earlier experiments we have discovered that some 
problems exist if only detection is applied to complete real-time 
deformation estimation, such as instability of match keypoints 
on the template and the target. This instability means if the 
template keypoint coordinates (5, 5) are matched with the tar-

Fig. 6. Schematic of descriptors with rotational invariance.
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Fig. 7. Schematic of BRIEF with rotational invariance.

Fig. 8. Schematic of Lucas-Kanade optical flow initialization. A: schematic 
of a Corner’s Neighboring Area. B: schematic of filtering outcome.
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However, the degree estimated for the Wall and Tree sets turn 
out to be 0; the low identification rate may have been caused 
by excessive change of the angle of view of testing images 
or fuzziness of the details. In addition, we also quantify the 
test results and present them in Tables 1‑6. Figure 16 shows 
the pure rotation test results can be recognized clearly almost 
100% by keypoints.

Equation (7) is a criterion for assessment of the identifica-
tion rate template and target keypoints. Recall is a kind of 
identification rate to estimate the accuracy of matches. True 
matches are the number of correct matching keypoints on the 
template and target, and total matches are the total number 
of the matching keypoints on the template and target. There-
fore, the value of Recall is higher indicated that the test results 
are good.

	
	 (7)

5. Conclusions

In this paper, we propose a feature-based detection algo-
rithm to develop the framework of real-time non-rigid surface 
deformation detection. The advantages and disadvantages of 
having and not having rotational invariance are also analyzed 
and improved computation methods are established in accor-
dance with these advantages and disadvantages to give the fea-
ture detection algorithm rotational invariance. The experiments 
performed have ended up with rather outstanding results. The 
length of each image tested for non-rigid surface deformation 
detection is about 50~80 ms and the experiments are conducted 
with a 2.5 GHz desktop computer.

in descending order according to the above mentioned FAST 
corner responses and the search begins from the corner with 
a high response toward the neighboring area (the red box) to 
see if there is any matching keypoint and remove it if there is. 
Because matches come in pairs, a descriptor from the template 
and one of the target, the template and the target also need to be 
removed when the aforesaid matching keypoint removal takes 
place. Then the same procedure is conducted for the next match 
until all the matching keypoints are inspected.

After all the matching keypoints are inspected, the filter-
ing mechanism is completed. Figure 8B shows the outcome of 
filtering in Figure 8A. Then the keypoints from the target are 
placed in the Lucas-Kanade optical flow algorithm to be the 
initial tracking points. By doing so, we also define the mod-
el of the keypoints on the template and it is applied in sub-
sequent matching computation of keypoints from targets in a 
> 1 images.

4. Experimental results

We test the proposed algorithm with the follows data sets. 
Figures 9A-F show 1|2, 1|3, 1|4, 1|5 and 1|6 stands for the tem-
plate and 2, 3, 4, 5 and 6, respectively, represent the targets. In 
other words, 1|2 shows the matching rate of the template and 
target 2, and so on. The experiment results can prove that the 
algorithm we propose can indeed solve the problem of lack of 
rotational invariance, while at the same time keep the high dif-
ferentiation rate. The 0-360° rotating image in Figures 9A‑F are 
taken from Baker and Matthews (2004).

Figures 10‑15 show that the algorithm we propose produce 
rather fine results in handling different problems, whereas 
the outstanding characteristics of BRIEF are still retained. 

Fig. 9. Wall test data set. A: template. B: target 1. C: target 2. D: target 3. E: target 4. F: target 5.

A B C

D E F



	 C.-M. Wang / Journal of Applied Research and Technology 13 (2015) 297-304	 303

Table 1
Wall test results.

Target 1 Target 2 Target 3 Target 4 Target 5

BRIEF 90.5093 86.8293 67.2131 39.4636 8.44444
ORB 75.5844 64.2442 32.5503 18.2156 1.91571
BRISK 80.4094 67.7632 32.5758 15.5102 1.7316
FREAK 86.1333 81.7337 53.5316 26.8182 5.31401
Proposed 90.5093 86.8293 54.5126 39.4636 0

Table 2
Graffiti test results.

Target 1 Target 2 Target 3 Target 4 Target 5

BRIEF 46.8 27.4882 2.74725 10.8808 1.17647
ORB 77.6758 33.7121 11.7117 3.57143 1.94175
BRISK 74.6177 30.6383 10.1064 1.1236 0.561798
FREAK 86.087 44.3636 24.7619 4.24528 0.543478
Proposed 87.4384 49.6575 29.717 10.8808 1.17647

Fig. 10. Wall test results.
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Fig. 11. Graffiti test results.
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Fig. 12. Trees test results.
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Fig. 13. JPG test results.
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Fig. 14. Leuven test results.
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Fig. 15. bikes test results.
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Fig. 16. Data sets and results of image rotation. A:  data set of image rotation 
0~360° increased in each rotation. B: image rotation results.

Table 3
Trees test results.

Target 1 Target 2 Target 3 Target 4 Target 5

BRIEF 79.7844 63.9296 42.268 24.3243 12.5628
ORB 60.3125 44.186 25.0951 12.4424 4.34783
BRISK 65.9794 52.809 25.7261 16.9643 4.41176
FREAK 70.684 53.7415 29.8755 15.9794 4.20561
Proposed 79.7844 63.9296 42.268 24.3243 0

Table 4
JPG test results.

Target 1 Target 2 Target 3 Target 4 Target 5

BRIEF 99.6774 98.8255 98.3666 95.8932 91.6031
ORB 99.8369 99.6454 96.9697 90.2381 72.0339
BRISK 99.4966 98.7544 98.0545 90.0943 82.2157
FREAK 99.6656 98.5841 97.9008 93.5841 84.5109
Proposed 99.6774 98.8255 98.3666 95.8932 91.6031

Table 5
Leuven test results.

Target 1 Target 2 Target 3 Target 4 Target 5

BRIEF 96.3218 94.4162 93.4286 90.6627 86.039
ORB 91.8465 85.7895 82.2157 80.1223 77.3519
BRISK 91.4706 88.1967 85.1711 81.5686 73.2759
FREAK 92.3483 86.4458 82.3333 79.7203 75.6654
Proposed 96.3218 94.4162 93.4286 90.6627 86.039

Table 6
Bikes test results.

Target 1 Target 2 Target 3 Target 4 Target 5

BRIEF 93.4732 91.4454 80.7143 29.7872 13.3333
ORB 90.3465 85.9813 69.2982 15.2174 0
BRISK 90.7928 87.1383 65.3846 16.6667 5.26316
FREAK 90.8642 87.619 71.0938 20.7547 0
Proposed 93.4732 91.4454 80.7143 29.7872 13.3333
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