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Abstract

In this study, we have proposed a three-dimensional (3D) model reconstruction system for breast tumors. The proposed system can establish an 
accurate 3D model of tumors, which will serve as a diagnostic reference for physicians and also address the shortcomings of the traditional breast 
needle localization method and other localization methods reported in previous studies. This developed system uses multispectral breast magnetic 
resonance images as input and detects the contour of the tumor in different sections using an active contour method — multispectral gradient vector 
flow snake (MGVFS) method. Thus, the system constructs a 3D model of only the tumor is contained in a breast surface model and excludes other 
tissues. Since the accuracy of the reconstructed 3D model depends on the accuracy of the tumor contour detection, for confirming the results 
obtained with the MGVFS method, we conducted experiments to evaluate its accuracy in contour detection, and compared the results with those 
traditional contour detection methods. Our results demonstrate that the MGVFS method has the highest accuracy in contour detection, with a 
correct contour detection rate as high as 99.79%.
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access item distributed under the Creative Commons CC License BY-NC-ND 4.0.
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1. Introduction

In current clinical practice, the size and shape of a tumor is 
often an important diagnostic reference. Currently, however, the 
majority of medical imaging instruments only provide two-di-
mensional (2D) images, although a few expensive instruments 
can provide three-dimensional (3D) images by stacking the 
original 2D images, but these 3D images are unprocessed and 
often cause problems in segregating the target from a mix of 
complex tissues. In addition, when doctors diagnose breast tu-
mors through screening and need to determine their positions 
for subsequent surgical treatment, they usually require the as-
sistance of a program called breast needle localization (BNL) 
(Central Vermont Medical Center, 2015). BNL entails using a 
positioning wire to puncture the body surface and localizing the 
tumor in the breast through X‑ray photography to guide the sur-
geon in the surgical operation. BNL is predominantly used 
clinically in patients, whose breast tumors can be clearly identi-
fied using breast X‑rays and not through palpation diagnosis. 
This method of localizing the tumor is simply based on conjec-
tures made using two X‑ray images (craniocaudal and mediolat-

eral oblique views), which rely heavily on the experience of the 
surgeon. Specifically, when there are two or more lesions in the 
same image, the depth of the surgeon’s experience determines 
whether the localization process goes well. An incorrect guess 
may cause an increase in the number of punctures, as well as an 
increase in the number of X-ray images taken (each puncture 
requires two additional breast X-ray images to verify that the 
lesion has been pierced). A higher number of images taken im-
plies increased medical costs, greater time spent by the sur-
geons, and relatively longer X-ray exposure time for the patients.

In our earlier studies, we have developed an automated 3D 
localization system for breast microcalcification to assist doc-
tors in solving the problem of tumor localization (Chung & 
Yang, 2001). This system digitizes two X-ray images of the 
breast (craniocaudal and mediolateral oblique views) and di-
rectly imports them, finally generates a 3D localization report 
through system computations. Since both the craniocaudal and 
mediolateral oblique views of the images are taken of flattened 
breasts, minor errors are introduced in the results of this local-
ization system owing to the fact that the breast is compressed. 
To reduce the errors in lesion localization caused by breast 
compression, we applied the constant volume principle and cor-
rected the shift caused by compression, as reported in a subse-
quent article (Yang et al., 2005). This approach effectively 
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as an external force, it limits the snake’s capture range and its 
ability to converge on recesses in the target. To overcome this 
shortcoming, we used a gradient vector flow snake (GVFS) to 
replace the traditional gradient. GVFS acts as an external force 
to enhance the calculation ranges and to effectively converge on 
recesses. Compared to earlier methods, the MGVFS method 
proposed in this study combines these two advantages, and is 
able to present the contour of the tumor more accurately. The 
system architecture is shown in Figure 1. 

2. Methods

2.1. Constrained Energy Minimization (CEM) Method

We exploited MRI with multispectral features by using CEM 
algorithms to process the multispectral images, so as to gener-
ate images with high background contrast, which would facili-
tate the subsequent contour detection. The CEM algorithm was 
derived from the minimum variance distortionless response 
(MVDR) processed by the sensor array, and it required only the 
target’s information (no background information needed) dur-
ing its entire processing. The potential of CEM was better 
showcased when the target and a complex background were 
present in the same image. First, for the practical application of 
CEM, we stacked MR images from the same section on differ-
ent spectrums to form a 3D cube. Then, the set of pixels at the 
same location on different spectral images could be regarded as 

reduced the errors in localization. However, since the localiza-
tion method based on earlier studies only referred to the cranio-
caudal and mediolateral oblique views taken of compressed 
breasts, a certain degree of error was unavoidable in the final 
localization results. Subsequent studies (Montefusco et al., 
2011; Zhang et al., 2013) incorporated magnetic resonance im-
aging (MRI) or computed tomography (CT) imaging to recon-
struct 3D models. Though MRI or CT images are based on 
natural body posture, which eliminates errors caused by com-
pression, these methods construct 3D models by stacking the 
original cross-sectional images. Thus, a mix of various internal 
tissues (e.g., vascular, breast, fat, muscle) is included in the im-
ages, creating problems in localizing the specific target- the 
tumor. In another study (Huang et al., 2006), the augmentation 
technique was applied to construct 3D breast models from 
streaming video images. However, this technology can only 
generate 3D images of the physical contours of the human body, 
and not of the relative positions of the physical contours and 
lesions within it.

To create an accurate 3D model of tumors and to thereby 
provide surgeons with a diagnostic reference, as well as to ad-
dress the shortcomings of the traditional BNL and other meth-
ods from earlier research, this article proposes a 3D model 
reconstruction approach for breast tumors. This approach pri-
marily uses the proposed multispectral gradient vector flow 
snake (MGVFS) method to collect images from all sections of 
the breast MRI to obtain the outlines and to accordingly recon-
struct a 3D image perspective of the tumor and breast. This is 
done through computer graphics technology, using the tumor 
sections and the breast contour. The breast contour is presented 
using graphical transparency, with only the tumor inside, ex-
cluding other tissues as background noise. Using the auxiliary 
coordinate system, the direction of the breast tumor and the 
distance between its center and the nipple can be viewed from 
different angles.

Currently, there are several related studies and methods be-
ing proposed regarding image segmentation or contour detec-
tion, such as region based segmentation (Haddon & Boyce, 
1990), watershed (Beucher, 1991), level set method (LSM) (Jin-
da-apiraksa et al., 2009), snake (Kass et al., 1988). Some of 
these methods are based on image gradients, which are liable to 
lead to false conclusions if the images have imperceptible edg-
es; some methods are based on image intensities, which are sus-
ceptible to low noise interference; other methods use only local 
features, which affect the accuracy of the segmentation or con-
tour results. The MGVFS method proposed by us has two pri-
mary advantages: First, we use the multispectral signature 
detection technology based constrained energy minimization 
(CEM) to increase the contrast intensity of the breast tumor and 
to remove background noise and then detect the tumor contour 
based on the CEM processing results. Compared to single spec-
tral techniques such as Wavelet (Elbaşı, 2012; Mamun et al., 
2013) or Gradient Enhancement, CEM has superior perfor-
mances and has been confirmed to perform satisfactorily for 
multispectral target detection and classification (Resmini et al., 
1997; Wang et al., 2003). The second advantage is with respect 
to contour detection. Since the traditional snake uses a gradient Fig. 1. System architecture.
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� (5)

As can be seen from Equation (5), when r = d and , 
the required constraints for Equation (3) are satisfied. Notably, 
the value  obtained from Equation (5) represented the 
abundance fraction of target feature d in pixel r. Therefore, un-
like most of the space based classification algorithms that used 
label (class) assignment techniques, the CEM filter used Equa-
tion (5) to assess the content value to detect the desired target. 
In practice, we set the target as the tumor, and the abundance 
fraction after CEM operations resulted in high contrast tumor-
background images. Next, we required a proper segmentation 
(snake) method to separate the target (tumor) from the high con-
trast image, which was executed by the GVFS algorithm.

2.2. Gradient Vector Flow Snake (GVFS)

The conventional snake is a curve defined in an image do-
main; its model comprises the sum of the energy of the external 
and internal forces. The internal force is the energy contained 
in the curve, and the external force is obtained by calculating 
the image gradients. Assuming that the snake is a curve 

, , the energy function, Esnake, is de-
fined as follows:

	
� (6)

where the internal force function is defined as

	
� (7)

in here the internal force is used to calculate the continuity and 
smoothness of the curve v(s). The parameters a and b deter-
mine the tension and rigidity of the snake, respectively. Because 
they are used to obtain the elastic energy and bending energy, 
so they can be interpreted as a continuous force and bending 
force, respectively. When the a value is large, the snake curve 
is a straight line; and when the b value is large, the snake is a 
smooth curve.

In different cases, the external force can be set with different 
limits, so that the snake can be pushed to the edges or segments 
of the object. The external force function is defined as follows:

	 � (8)

or

	 � (9)

a column vector. Hence, CEM used the correlation between the 
column vectors of each location and of the target for classifica-
tion. This advantage was not available to other algorithms 
based on spatial analysis. The actual operations involved in ap-
plying CEM to MRI images were as follows.

First we defined L as the spectrum (band) number of the 
MRI, and therefore, the i-th pixels in each spectral image could 
be considered an L-dimensional pixel vector, represented by 
ri = (ri1, ri2,… riL)

T, where rij represented the greyscale value of 
pixel i in band j. We assumed that {r1, r2,… rN} represented the 
pixels in a MRI image, where N represented the total number of 
pixels in the image. Let d represented a target feature, which, in 
fact, was the L‑dimensional pixel vector of the target. Next, we 
designed a linear finite impulse response (FIR) filter, which 
could be represented as an L-dimensional weight vector, 
w = (w1, w2,… wL)

T . Then, we limited the output of the weight 
vector w and the target vector d after calculation (e.g., limiting 
the result of dTw to 1). Next, we determined the optimal w by 
minimizing the output energy, which was defined as the sum of 
the outputs of and all pixels, after calculation. We used yi to 
represent the output of the pixel ri on the MRI image i, using our 
linear FIR filter. yi can be expressed as follows:

	
� (1)

The average output energy of {r1, r2,… rN}, after processing 
through the FIR filter, is expressed as follows:

	

� (2)

where  is the MRI sequence autocorrelation 
sample array. Therefore, the CEM filter is an approach that can 
be used to solve the following linear constrained optimization 
equation:

	 � (3)

Equation (4), proposed in Farrand and Harsanyi (1997), can 
be used to solve Equation (3):

	
� (4)

Substituting w in Equation (5) of the CEM filter, which is 
able to complete the detection, with the optimal value deter-
mined through Equation (4), a pixel vector, r, can be computed 
from the following:
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	 � (15)

where k is a weight parameter. When the right side of Equation 
(15) is equal to zero, it means that there are no changes in vertex 
positions.

The traditional snake has two shortcomings (Davatzikos & 
Prince, 1995; Xu & Prince, 1997). One is that the initial contour 
of the snake has to be very close to the target to facilitate its 
progress towards the target contour. The other is that the tradi-
tional snake cannot converge to the recesses on the target. These 
two shortcomings hinder the application of the traditional snake 
in several ways. These drawbacks exist primarily owing to the 
fact that the snake uses the image gradient as an external force. 
The GVFS proposed by Xu and Prince (1997) addressed the two 
shortcomings of the traditional snake. GVFS uses gradient vec-
tor flow as a new external force function, which allows for the 
tracking of the initial contour, starting from a location at a dis-
tance from the target. Even if the target has a concave shape, this 
method is still able to converge to the target contour.

In GVFS, a gradient vector f low is defined as 
, and its minimum energy function is 

expressed as follows: 

	
� (16)

where f is the edge of the image,  is the gradient of the 
edge, and m is the weight parameter. When the value of  is 
large, the energy value is determined from the second part of 
Equation (16). In this case, the minimum energy can be obtained 
by assigning . When the value of  is negligible, the 
energy value is determined from the first part of Equation (16), 
in which case, a smooth vector field that changes gradually can 
be generated. In addition, when there is a large amount of noise 
in the image, the value of m needs to be increased slightly.

According to the variation principle, the minimization of en-
ergy in Equation (16) should satisfy Euler equation:

	 � (17)

By substituting Eext  in Equation (15) with X(x,y), Equation 
(15) can be rewritten as follows:

	

� (18)

Since CEM produce high contrast breast tumor images, the 
initial tumor contour for GVFS could be manually set at the 
periphery of the tumors.

where  is the gradient transporter, I(x,y) represents the image, 
and  is the 2D Gaussian filter function defined as fol-
lows:

	
� (10)

According to the principle of variation, the energy maximi-
zation in Equation (6) must satisfy the Euler equation:

	 � (11)

The approximate solution of the Euler equation is obtained 
through the finite difference method. Next, we represent Equa-
tion (11) with vectors:

	 � (12)

where vi = (xi , yi). When converted to matrix form, it can be 
represented as follows:

	 � (13)

where , A is a banded ma-
trix of size  (n is the number of vertices). Assuming the 
snake has five vertices, the matrix A can be represented as fol-
lows:

To solve the matrix system, we can set a stepping parameter 
g on the right side of Equation (13) so that the equation becomes

	

� (14)

where the subscript t represents the number of iterations. By 
obtaining the inverse matrix, Equation (14) becomes
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four images with different parameters) during the experiment. 
Figure 2 shows one section of breast MRI containing tumor 
with 4 different parameters

3.2. Comparison of single-spectral contour methods

First, we conducted contour detection using LSM, snake, 
and GVFS on the four images of breast MRI sections with dif-
ferent parameters. To evaluate the accuracy of the contour de-

3. Experimental results

3.1. Experimental data

The experimental images used in this paper are the MRI im-
ages obtained from three patients with breast tumors admitted 
to the Women Healthcare Center at Tri-Service General Hospi-
tal. Four parameters were used: T1-FS, PD, T1, and T2. We 
captured 11 sections containing the tumor (each section had 

Fig. 2. One breast MRI section containing tumor with four different parameters. Parameters were T1-FS (A), PD (B), T1 (C), and T2 (D).

A B

C D
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1 2

Fig. 3. The high contrast breast tumor image generated through CEM operations using multispectral sections as shown in Figure 2.

high contrast breast tumor images, as shown in Figure 3. Then 
we used the three different breast contour methods —LSM, 
Snake, and GVFS— to detect the contour of the high contrast 
breast tumor images generated through CEM (Fig. 3). Figures 
4B-D show the results obtained for one of the sections, wherein 
Figure  4D shows the resulting contour obtained using the 
MGVFS method. It can be observed that the contour in Figure 
4D closely resembles the contour drawn by the professionals. 
Table 2 lists the average accuracy rates of the three types of 
multispectral contour methods applied to the 11 sections. It can 
be observed from Table 2 that the proposed contour method, 
MGVFS, has a relatively high correction rate, which is higher 
than any of the single spectrum contour methods.

tection, we invited three professionals to sketch the outline of 
the tumor, and used the intersection area as the standard, as 
shown in Figure 4A. Table 1 lists the accuracy rate of each of 
the three methods in depicting the contour of the four single 
spectral image sections. Table 1 indicates that GVFS showed 
better accuracy in most sections.

3.3. Comparison of multispectral contour methods

In this section, we evaluate the performance of the multi-
spectral contour method. First, we conducted a CEM operation 
on the four original images seen in Figures 2A-D and produced 

Table 1
Comparison of the correction rates (CR) of single-spectral MR image contour 
detection obtained through GVFS, Snake, and LSM methods.

Section 1

Mathod\spectral T1-FS PD T1 T2

LSM 94.50% 91.44% 87.77% 90.74%
Snake 99.27% 99.35% 99.36% 99.36%
GVFS 99.80% 99.63% 99.82% 99.58%

Section 2

Mathod\spectral T1-FS PD T1 T2

LSM 94.93% 95.31% 95.80% 95.70%
Snake 99.65% 99.77% 99.82% 99.75%
GVFS 99.84% 99.92% 99.94% 99.86%

Averaged CRs of 11 sections

Mathod\spectral T1-FS PD T1 T2

LSM 94.62% 95.87% 95.56% 94.15%
Snake 99.43% 99.33% 99.26% 99.30%
GVFS 99.42% 99.62% 99.51% 99.52%

Table 2
Comparison of the correction rates (CR) of multi-spectral MR image contour 
detection obtained through MGVFS, MSnake and MLSM methods.

Section 1

Method CR

MLSM 95.46%
MSnake 99.69%
MGVFS 99.95%

Section 2

Method CR

MLSM 99.57%
MSnake 99.64%
MGVFS 99.95%

Averaged CRs of 11 sections

Method CR

MLSM 98.32%
MSnake 99.63%
MGVFS 99.79%



	 S.-C. Yang et al. / Journal of Applied Research and Technology 13 (2015) 279-290	 285

as the standard in Figure 5B for comparison. Please note that we 
transformed tumor contours into binary images here, which 
would facilitate the subsequent 3D tumor model reconstruction.

Since the area of the breast is distinct from the background, 
we obtained the breast area using a fuzzy c-means method 
(FCM) with dilation and erosion. Figure 6 shows the breast area 
detection results of partial sections in two cases. The combina-
tion of breast and tumor area will be used in the subsequent 3D 
breast-tumor model reconstruction.

4. Developing the 3D breast-tumor model

4.1. 2D binary images of breast and tumor

A 3D model of the tumor can be developed based on the 
contour detection results of the tumor sections in MR images 
using the proposed MGVFS method. Figure 5A shows the tumor 
contour detection results of partial tumor sections in case 1. 
Moreover, we show the same sections sketched by professionals 

A B

C D

Fig. 4. Contour detection results for a section. A: tumor contour sketched by professionals. B: contour detection results using MLSM. C: contour detection results 
using multispectral snake (MSnake). D: contour detection results using the MGVFS method.
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MATLAB 2012a version programming languages and imple-
mented on a PC with Intel i7-2600 CPU and 8 GB RAM. Before 
process, all 2D binary images of a case were saved to a mat file 
in the order and become a 3D matrix. An example of MATLAB 

4.2. 3D breast-tumor model reconstruction

2D binary images can be stacked into 3D model via software 
program. The proposed approach in this paper was coded in 

A

B

1

2

Fig. 5. 2D binary images of the tumor area (white) obtained by using MGVFS method (A) sketched by professionals (B).

A

B

1

2

Fig. 5. 2D binary images of the breast area (white) for in two cases obtained by using fuzzy c‑means method (FCM) with dilation and erosion.
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presented with a high degree of transparency. Furthermore, the 
relative direction and distance between tumor and nipple can be 
calculated using 3D coordinates, as shown in Figure 10.

5. Conclusions

This article proposes a new contour detection method, the 
MGVFS method, to trace the outline of each section of a breast 
MRI and to accordingly create a 3D breast-tumor model that 
will assist doctors in the localization of tumors. This system 
uses multispectral breast MR images, obtained using a natural 
breast posture, as input. Next, the system incorporates CEM 
operations to obtain high contrast tumor background images. 
Finally, it applies the GVFS contour detection technology, 
which is based on an active contour model, to the CEM image 
to depict the tumor contour. Since the accuracy of tumor con-
tour detection is related to the accuracy of the 3D model recon-
struction, to confirm the effectiveness of the MGVFS method, 
we conducted experiments to compare the accuracy rates of the 
MGVFS method, LSM, and the traditional Snake. As can be 
observed from the results, MGVFS showed the greatest contour 
detection accuracy, with a CR as high as 99.79%. 

program for constructing a 3D model with coordinates from 2D 
binary images was shown as follows:

%# get a sample data with 0 for empty, 1 for solid
load breat3D.mat
v = B3;  %# 2D binary images saved in a 3D matrix B3 and 
assign to V
figure
%# visualize the volume
p = patch( isosurface(v,0) ); %# create isosurface patch
isonormals(v, p)  %# compute and set normals
set(p, 'FaceColor','r', 'EdgeColor','none')  %# set surface props
daspect([1 2 3])   %# axes aspect ratio
view(3), axis vis3d tight, box on, grid on %# set axes props
camproj perspective  %# use perspective projection
camlight, lighting phong, alpha(.5)  %# enable light, set 
transparency

Figure 7 shows a 3D model of a tumor in two cases, and 
Figure 8 shows a 3D breast model for the same cases. We fur-
ther integrated the breast contour and the 3D tumor model to 
created a 3D breast-tumor model, excluding other tissues, as 
shown in Figure 9. The location of the tumor inside the breast 
can be observed clearly, since the breast contour in the model is 

1

2

Fig. 6. Different views of reconstructed 3D tumor model for two cases.
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1

2

1

2

1

2

1

2

Fig. 7. 3D breast-tumor model for two cases.

 Fig. 8. 3D breast model for two cases.
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P.C., Yang, C.W., & Chang, C.I. (2003). Detection of spectral 
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The outcome of this article provides doctors with an accu-
rate 3D breast tumor model, which excludes extraneous tissues. 
These results not only provide helpful information for diagno-
ses but also further assist doctors in localizing the tumor accu-
rately and rapidly. It reduces the time required for tumor 
localization prior to surgery, relieves the pain suffered by pa-
tients caused by the traditional localization process using inva-
sive needles, and therefore enhances treatment efficiency.
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