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Abstract: Clustering is a widely used technique for grouping of objects. The objects, which are similar 
to each other, should be in the same cluster. One disadvantage of general clustering algorithms is that 
the user must specify the number of clusters in advance, as input parameter. This is a major drawback 
since it is possible that the user cannot specify the number of clusters correctly, and the algorithm thus 
creates a clustering that puts very different elements into the same cluster. The aim of this paper is to 
present our representation and evaluation technique to determine the optimal cluster count 

automatically. With this technique, the algorithms themselves determine the number of clusters. In 
this paper, first, the classical clustering algorithms are introduced; then, the construction and 
improvement algorithms and then our representation and evaluation method are presented. Then the 
performance of the algorithms with the test results are compared. 
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1. Introduction 
 

Clustering is a data mining algorithm whose goal is the 

grouping of objects. Objects that are similar to each other 

should belong to the same cluster, and objects that are 

different from each other should belong to different clusters. 

There are several clustering algorithms in the literature, for 

example, partitioning methods, hierarchical methods, 
density-based method, the neural network-based method 

and the grid method, graph theory-based method, fuzzy 

methods. The disadvantage of clustering algorithms is that the 

algorithms also expect a cluster number as input. The optimal 

number of clusters can often not be determined by the user, 

therefore, an algorithm is needed to help the user determine 

the cluster number. In this paper, we present a representation 
mode and its evaluation by which the algorithms themselves 

determine the optimal cluster number. The article is 

structured as follows: Section 2 contains a brief introduction 

of clustering algorithms and literature review. Section 3 

contains the traditional clustering algorithms, section 4 

includes a cluster validation index (Silhouette index). Section 
5 contains the construction algorithms, which are the 

followings: Nearest Neighbor, Nearest Insertion, Cheapest 

Insertion, Arbitrary Insertion, Farthest Insertion, Greedy. 

Section 6 includes the improvement algorithms, such as 

Genetic algorithm, Tabu Search and Particle Swarm 

Optimization. After that our representation and evaluation is 

detailed. In section 8 test results are detailed. After that 
conclusion remarks are made. 

 

2. Clustering 

 

Clustering is a widely used technique for grouping of elements. 

If two elements are similar, then belong to the same cluster. If 

they are different, they belong to different clusters. Optimal 

clustering is a difficult task because there are many ways to 

group a dataset.  
There are lots of types of clustering algorithms, for example 

(Xu & Wunsch, 2005): 

- Partitioning methods: elements are divided into k groups. 

Each group contains at least one element. After an initial 

clustering, a re-partitioning follows. At this point, the 

individual points may be placed in other clusters. The process 
ends when the elements move slightly (clustering changes 

only slightly). For example K-Means, Partitioning Around 

Medoid (PAM) 

- Hierarchical methods: clusters can be represented by a 

dendrogram. There are two main methods of hierarchical 

clustering: the divisive and the agglomerative methods. The 

agglomerative methods are Single linkage, complete linkage, 
group average linkage, median linkage, centroid linkage, 

Ward’s method etc. The divisive methods are divisive analysis 

(DIANA), monothetic analysis (MONA). 

- Other clustering methods include the density-based method, 

the neural network-based method and the grid method, graph 

theory-based method, fuzzy methods. 

Some publications have been published in recent years 
that using metaheuristic algorithms for clustering. The Fast 

Genetic K-means Clustering Algorithm (Lu et al.,2004) 

combines the K-Means algorithm and the Genetic Algorithm. 

The algorithm applies the mutation, selection and crossover 

techniques (based on the Genetic Algorithm) and also has a K-

Means operator. The K-Means operator (one step of the 

classical K-means algorithm) is the following: the elements are 
re-partitioned based to the closest cluster centroid. Another 

clustering analysis with the Genetic Algorithm is introduced in 

paper (Hruschka & Ebecken, 2003), where also the classical 

genetic operators are used. The objective function is based on 

the Average Silhouette Width. The author of paper (Maulik & 

Bandyopadhyay, 2000) is also used the Genetic Algorithm for 

the clustering of a data object. The objective function is the 
minimization of the distance of the objects to their cluster 

centroids. Their fitness calculation is the following: clusters are 

formed according to the centers encoded in the chromosome, 

after the clustering, the cluster centers will be the mean points 

of the respective clusters. Over the years many crossover and 

mutation techniques are developed to the Clustering Genetic 
Algorithm, for example, the one-point mutation, biased one-

point mutation, which change the value of a center randomly 

picked (Kudova, 2007). The K-means mutation, which 

performs several steps of the k-means algorithm. (Kudova, 

2007). The cluster addition and cluster removal modify the 

number of clusters (adds one center chosen randomly from 

the data set and deletes one randomly chosen center). 
(Kudova, 2007) For the fitness function in paper (Kudova, 2007) 

also the Silhouette is used. 

Over the years the Particle Swarm Optimization (PSO) is 

also applied to clustering data. (Li & Yang, 2009). The PSO is 

applied with Hierarchical Clustering method, called CPSO 

Algorithm. A hybrid K-Means PSO algorithm is applied in paper 

(Van der Merwe & Engelbrecht, 2003). In this case, the result of 
the K-Means algorithm is improved with the PSO algorithm. 

The objective function of the PSO algorithm is based on the 

sum of the average distance of the object to their cluster 

centroids. In paper (Chen & Ye, 2012) also the PSO algorithm is 

applied to the clustering of the dataset. In this paper the 

encoding is also presented, which is the following: the string 
of the particle contains the cluster centers (in the paper the x 

and y coordinates of the cluster centroids). 

In the case of applying the Ant Colony Optimization (ACO) 

to clustering data objects, the objective function can be also 

the minimization of the distance between the cluster elements  
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and the centroids. (Runkler, 2005) The representation of the 

solution can be a string, which elements are numbers. The 

numbers indicate the cluster-object assignment. If the string is 

for example 2,1,3,1, it means, that the first object belongs to 

cluster 2, the second object belongs to cluster 1, the third 

object belongs to cluster 3, and the fourth object belongs to 
cluster 1. (Shelokar et al., 2004)  

In paper (Osman & Christofides, 1994) the objective 

function of the Simulated Annealing algorithm is the 

minimization of the sum of distances between the clusters. 

The Capacitated Clustering Problem (CCP) is also solved with 

the Simulated Annealing algorithm. In the case of CCP, each 

object has a weight, and each cluster has a given capacity 
which must not be exceeded by the total weight of objects in 

the cluster. 

Cluster Analysis with K-Modes and K-Prototype Algorithms 

in presented in (Madhuri et al., 2014). The authors used Iris 

Data Set and Cholesterol Data Set for Incremental k-Means, 

Contact-Lens Data Set and Post-operative Data Set for 

Modified k-Modes, Blood Information Data Set and Weather 
Data Set for k-Prototypes . 

Automatic clustering with Teaching Learning-Based 

Optimization (TLBO) is presented in paper (Murty, Naik et al., 

2014). The efficiency of the TLBO is compared also with 

Particle Swarm Optimization (PSO), Differential Evolution (DE). 

The efficiency of the algorithms is compared with the 
following benchmark datasets: Iris Data, Wine Data, Breast 

Cancer Data, Glass Data and Vowel Data.  

The purpose of cluster validation indices is to compare 

individual clusters with each other considering certain 

aspects. Several such indices have been published, but these 

indices are not suitable for data sets of any size, density, 

shape. The authors of (Murty, Murthy et al., 2014) have 
developed a validation index (Homogeneity Separateness) 

that is effective for clusters of any shape, size, and density. 

Some clustering problems and the algorithms that solve it are 

illustrated in Table 1. 

 

3. Traditional clustering algorithms 

 

In this section, the applied traditional clustering algorithms 
are presented based on the literature. 

 

3.1. K-Means 

This procedure belongs to a group of partitioning methods. 

First, the elements are clustered and then the elements move 

from the initial clusters to improve the quality of the clustering. 

The algorithm uses the SSE function. Here, the number of 

clusters (𝑘) must be specified. (Wagstaff et al.,  2001) Figure 1 

illustrates the psedo code of the K-Means algorithm. 
 

E(C) = ∑ ∑ d(u, r(Ci))
2

u∈Ci
k
i=1                                                                    (1) 

Table 1. Some clustering problems  

and the algorithms that solve it. 

 
Article Clustering algorithm Problem 

(Milano & 
Koumoutsakos, 

2002) 

Genetic Algorithm cylinder drag 
optimization 

(Doval et al., 
1999) 

Genetic Algorithm software systems 

(Scheunders, 

1997) 

Genetic Algorithm color image 

quantization 

(Cui et al., 

2005) 

Particle Swarm 

Optimization 

document clustering 

(Omran et al., 
2006) 

Particle Swarm 
Optimization 

image segmentation 

(Omran et al., 

2004) 

Particle Swarm 

Optimization 

image classification 

(Paoli et al., 

2009) 

Particle Swarm 

Optimization 

hyperspectral images 

(Kalyani & 
Swarup, 2011) 

Particle Swarm 
Optimization 

security assessment 
in power systems 

(Chiu et al., 

2009) 

Particle Swarm 

Optimization 

intelligent market 

segmentation system 

(Yang et al., 
2010) 

Ant Colony 
Optimization 

multipath routing 
protocol 

(Gao et al., 

2016) 

Ant Colony 

Optimization 

dynamic location 

routing problem 

(Zhao et al., 

2007) 

Ant Colony 

Optimization 

Image segmentation-

based 

(Chang, 1996) Simulated Annealing Chinese words 

(França et al., 
1999) 

Tabu Search capacitated 
clustering problem 

(El Rhazi & 

Pierre at al., 

2008) 

Tabu Search wireless sensor 

networks 

(Kinney et al., 
2007) 

Tabu Search unicost set covering 
problem 

(Hoang et al., 

2013) 

Harmony Search energy-efficient 

wireless sensor 
networks 

(Forsati, 2008) Harmony Search web page clustering 

(Hoang, 2010) Harmony Search wireless sensor 
networks 

(Mahdavi & 

Abolhassani, 
2009) 

Harmony Search document clustering 

 

4. Hierarchical methods 

 
These algorithms organize the clusters into a hierarchical data 

structure. There are two types of algorithms: bottom-up and 

top-down. At the bottom-up, each element is initially a cluster, 

and then each cluster is merged into a single cluster. The top-

down procedure is just the opposite. Here at first, there is a 

single cluster that contains all the elements, and we 

continually divide the clusters. At the end of the procedure, 
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each element means a separate cluster. The following 

hierarchical clustering is applied in this paper: (Murtagh, 1983; 

Olson, 1995) 

Single Linkage: The distance of the two clusters is the 

distance between the nearest objects of the two clusters: 

 

𝑑𝑚𝑖𝑛(𝐶𝑖, 𝐶𝑗) = min𝑢∈𝐶𝑖,𝑣∈𝐶𝑗 𝑑(𝑢, 𝑣)                                                          (2) 

 
BEGIN PROCEDURE 

Step 1. Selecting randomly 𝑘 objects. Initially, these 
represent the center of the cluster. 

WHILE(cluster centers and their associated objects 

change) DO 
WHILE (not all objects have been selected) DO 

Step 2. The object is classified to the closest 
cluster center. 

END WHILE 
Step 3.  Recalculating the cluster centers. 

END WHILE 
END PROCEDURE 

 
Figure 1. The pseudo code of the K-Means 

method (Wagstaff et al., 2001). 
 

 
Complete Linkage: the distance of two clusters is the 

distance between the farthest objects of two clusters: 

 

𝑑𝑚𝑎𝑥(𝐶𝑖, 𝐶𝑗) = max𝑢∈𝐶𝑖,𝑣∈𝐶𝑗 𝑑(𝑢, 𝑣)                                                           (3) 

 

Average method: the distance of two clusters is the 
quotient of the sum of the distances between the objects of 

two clusters and the number of clusters: 

 

𝑑𝑎𝑣𝑔(𝐶𝑖, 𝐶𝑗) =
1

|𝐶𝑖||𝐶𝑗|
∑ 𝑑(𝑢, 𝑣)𝑢∈𝐶𝑖,𝑣∈𝐶𝑗

                                                  (4) 

 
Centroid method: the distance of two clusters will be the 

distance of the center of two clusters: 

 

𝑑𝑚𝑒𝑎𝑛(𝐶𝑖, 𝐶𝑗) = 𝑑 (
1

|𝐶𝑖|
∑ 𝑢𝑢∈𝐶𝑖

,
1

|𝐶𝑗|
∑ 𝑣𝑢∈𝐶𝑗

)                                      (5) 

 

Ward method: merging the two clusters that cause the 
least-squares error increase: 

 

𝑑𝑊𝑎𝑟𝑑(𝐶𝑖, 𝐶𝑗) = ∑ 𝑑2(𝑢, 𝑣) − (∑ 𝑑2(𝑢, 𝑣)𝑢,𝑣∈𝐶𝑖
+𝑢,𝑣∈𝐶𝑖∪𝐶𝑗

∑ 𝑑2(𝑢, 𝑣)𝑢,𝑣∈𝐶𝑗
)                                                                                        (6) 

 

 

 

 

 

5. Cluster validation index 

 

Let {𝐴} be a partitioning, 𝑖 is the index of the data point, and 

𝐴𝑖 denotes the container cluster of element 𝑖. The silhouette 

index of the object 𝑖 is (Wang & Xu, 2019): 

 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max⁡{𝑎(𝑖),𝑏(𝑖)}
                                                                                                        (7) 

 
where, −1 ≤ 𝑠(𝑖) ≤ 1. 

𝑎(𝑖) is the average distance between the object 𝑖 and other 

objects in cluster 𝐴𝑖, 𝑏(𝑖) is the average distance between the 

object 𝑖 and all other cluster elements (except elements in 

cluster 𝐴). Thus 𝑎(𝑖) denotes compactness and 𝑏(𝑖) denotes 

separation. 
 

- If 𝑠(𝑖) is large (close to 1) then the inner (within the cluster) 

difference is much smaller than the smallest outer cluster 

difference. Hence, we can say that object 𝑖. is well grouped. 

- If 𝑠(𝑖) = ⁡0, or very close to zero, then 𝑎(𝑖) and 𝑏(𝑖) are 

nearly equal, then object 𝑖 may belong to cluster 𝐴 or 𝐵. 

- If 𝑠(𝑖) is close to −1, then 𝑎(𝑖) is much greater than 𝑏(𝑖). This 
means that cluster 𝐵 would be a better choice than cluster 𝐴. 

 

With the silhouette method, we can measure the efficiency 

of the whole cluster result. For each element, 𝑠(𝑖) should be 

calculated and the results should be averaged. 

The following conclusions can be made from the average 

silhouette: 
 

- 0.5 or higher value: good clustering 

- 0.25-0.5: the clustering method is good, but some object 

should be moved to another cluster 

- Less than 0.25: Not good clustering 

 
Thus, the higher the average silhouette, the better the 

clustering. 

Therefore, the objective function of our improvement 

algorithms is the average silhouette value. 

 

6. Tour-based construction clustering algorithm 

 

Behind this approach is the shortest route path tour connects 

neighboring elements. The edge distance is usually small, it 
connects elements from the same cluster, but the length is 

large if the edge connects two distinct clusters. Testing the 

distance of the connecting edges of the optimal tour the edges 

with high lengths denote existence of the separate clusters.  
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   The construction algorithms construct one possible 

solution. Running time is relatively low. These algorithms 

always take locally the best steps. Most of the time, the global 

optimum is not achieved by their exclusive usage. The 

construction algorithms are based on the Traveling Salesman 

Problem algorithms. 
 

6.1. Nearest neighbor 

The algorithm always selects the unselected object that is 

closest to the last selected object. The algorithm is fast and 

simple. Figure 2 illustrates the pseudo code of the Nearest 

Neighbor algorithm. 

 
BEGIN PROCEDURE 

WHILE (not all objects have been selected) DO 

Step 1. Selecting an object randomly 

Step 2. Selecting the unselected object which is 
closest to the last selected object 

END WHILE 
END PROCEDURE 

 
Figure 2. The pseudo code of the Nearest 

Neighbor algorithm (Nilsson, 2003). 
 

6.2. Nearest insertion 

The algorithm belongs to the group of insertion heuristics. The 
algorithm always selects the unselected object that is closest 

to the "tour". The distance between the "tour" and an object is 

interpreted by the algorithm as the minimum distance 

between the objects in the tour. The pseudo code of the 

Nearest Insertion algorithm is illustrated in Figure 3. 

 
BEGIN PROCEDURE 

Step 1. Randomly selecting an object, denoting it with 𝑖. 

Step 2. Selecting the object 𝑟 for which 𝑐𝑖𝑟 is minimal 
then making 𝑖 − 𝑟 − 𝑖 „sub-tour”. 

WHILE (not all objects have been selected) DO 

Step 3. Selection Step: Selecting the object 𝑟 that 
has not yet been selected and is closest to any 𝑗 

object in the "sub-tour". 
Step 4. Insertion Step: Searching for the (𝑖, 𝑗) object 
pair in the „sub-tour” where 𝑐𝑖𝑟 + 𝑐𝑟𝑗 + 𝑐𝑖𝑗 is 

minimal. So we select the two adjacent objects that 
insert the object 𝑟 between them the insertion cost 

(cost of increasing the tour) will be minimal. The 
object 𝑟 is then inserted between 𝑖 and 𝑗. 

END WHILE 
END PROCEDURE 

 
Figure 3. The pseudo code of the Nearest Insertion  

algorithm (Golden et al., 1980). 
 

 

 
 

6.3. Cheapest insertion 

This algorithm also belongs to the group of insertion 

heuristics. The algorithm always selects the object with the 

least "insertion cost" into the “tour". Figure 4 illustrates the 

pseudo code of the Cheapest Insertion. 

 
BEGIN PROCEDURE 

Step 1. Selecting an object randomly, indicated with 𝑖. 
Step 2. Taking the object 𝑟, for which 𝑐𝑖𝑟 is minimal, and 

making an 𝑖 − 𝑟 − 𝑖 „sub-tour”. 
WHILE (not all objects have been selected) DO 

Step 3. Selection Step: Find the pair of (𝑖, 𝑗) objects in 
the "sub-path" and the object 𝑟 that is not in the "sub-

path" which minimize the following amount: a 𝑐𝑖𝑟 +
𝑐𝑟𝑗 + 𝑐𝑖𝑗. 

Step 4. Insertion Step: Object 𝑟 will be between the 

searched object 𝑖 and 𝑗. 
END WHILE 

END PROCEDURE 

 
Figure 4. The pseudo code of the Cheapest Insertion  

algorithm (Golden et al., 1980). 
 

6.4. Arbitrary insertion 

This algorithm also belongs to the group of Insertion 

Heuristics. The algorithm randomly selects the next object to 

be inserted into the "tour". Figure 5 presents the presudo code 

of the Arbitrary Insertion algorithm. 

 
BEGIN PROCEDURE 

Step 1. Selecting an object randomly, indicated with 𝑖. 

Step 2. Selecting an object 𝑟, for which 𝑐𝑖𝑟 is minimal, 
and making an 𝑖 − 𝑟 − 𝑖 „sub-tour”. 

WHILE (not all objects have been selected) DO 

Step 3. Selection Step: Taking randomly the object 𝑟 
that is not already contained in the "sub-tour". 

Step 4. Insertion Step: Finding the (𝑖, 𝑗) pair of 
objects in the "sub-path" that minimizes the 
following amount: 𝑐𝑖𝑟 + 𝑐𝑟𝑗 + 𝑐𝑖𝑗. So searching for 

two "adjacent" objects between inserting the object 
𝑟 will have a minimal cost of insertion. Object 𝑟 will 

be placed between 𝑖 and 𝑗. 
END WHILE 

END PROCEDURE 

 
Figure 5. The pseudo code of the Arbitrary Insertion 

algorithm (Rosenkrantz et al., 1974). 
 

6.5. Farthest insertion 

This algorithm also belongs to the Insertion Heuristics group. 

The object that is farthest from the other objects is selected by 

the algorithm. Figure 6 illustrates the pseudo code of the 

Farthest Insertion algorithm. 
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BEGIN PROCEDURE 
Step 1. Selecting an object randomly, indicated with 𝑖. 

Step 2. Selecting an object 𝑟, for which 𝑐𝑖𝑟 is minimal, 
and making an 𝑖 − 𝑟 − 𝑖 „sub-tour”. 

WHILE (not all objects have been selected) DO 
Step 3. Selection Step: Taking randomly the object 𝑟 

that is not already contained in the "sub-tour" and is 

farthest from any object ⁡𝑗 
Step 4.: Insertion Step: Selecting those (𝑖, 𝑗) object 

pair from the „sub-tour” which minimizes the 
following sum: 𝑐𝑖𝑟 + 𝑐𝑟𝑗 + 𝑐𝑖𝑗. So considering the 

two objects that insert the object ⁡𝑟 between them 

to minimize the cost of insertion. 
END WHILE 

END PROCEDURE 

 
Figure 6. The pseudo code of the Farthest Insertion  

algorithm (Golden et al., 1980). 
 

6.6. Greedy 

Each object builds the order from "edges" (pairs of objects) so 

that it always selects the shortest "edge" that has not yet been 

selected and does not form 𝑛 vertex circles (𝑛 indicates the 

number of objects). Also, the degree of the “edge” should not 
be more than two. The pseudo code of the Greedy algorithm 

is illustrated in Figure 7. 

 
BEGIN PROCEDURE 

Step 1. The edges are sorted by their length. 
WHILE (𝑛 objects are not selected) DO 

Step 2. Selecting the shortest "edge" (object pair) 
that has not yet been selected and does not violate 

the above-mentioned conditions. 

END WHILE 
END PROCEDURE 

 

Figure 7. The pseudo code of the Greedy algorithm (Nilsson, 2003). 
 

7. Tour improvement-based clustering algorithm 
 

Behind this approach is also the fact, that the shortest route 

path tour connects neighboring elements. This method tries 

to improve an existing path by rearranging the order of the 
elements iteratively. Their running time can be high, and their 

exclusive usage does not lead to the global optimum in most 

of the cases. 
 

7.1. Genetic algorithm 

The algorithm models natural processes (evolution). The 

algorithm works with a population of solutions. The population 
consists of individuals. (Milano & Koumoutsakos, 2002)  

Individuals have fitness values. Usually, an individual with better  

 

 

fitness value is better against other individuals. The pseudo 

code of the Genetic Algorithm is presented in Figure 8. 

 
BEGIN PROCEDURE 

Step1. Initialization of a population (with random 
individuals or with individuals generated with 

construction algorithms). 
Step 2. Calculation the fitness values for individuals. 

WHILE (termination condition is not met) DO  

Step 3. The transition of certain individuals 
unaltered to the new generation (elitism). 

Step 4. Crossing selected parent pairs. 
Step 5. Mutation of selected new individuals. 

Step 6. Evaluation of new individuals. 
Step 7. Upload the next generation with new 

individuals. 
END WHILE 

END PROCEDURE 

 
Figure 8. The pseudo code of the Genetic Algorithm (Whitley, 1994). 

 

The first step is the initialization of the population. This 
process is usually done with randomly generated individuals. 

Then the fitness values of the individuals are calculated. Then 

the next population is created in a cycle while the termination 

condition is not met. The termination condition may be to 

achieve a certain iteration number or runtime. The next 

population is created by moving certain individuals 

unchanged, which is called elitism. The other elements are 
created with crossover and mutation techniques. We have 

used the 2-opt (Wu et al., 2007) as mutation, and the Partially 

Matched Crossover (PMX) (Lazzerini & Marcelloni, 2000) 

(Starkweather et al., 1991), the Order Crossover (OX) 

(Starkweather et al., 1991), and the Cycle Crossover (CX) 

(Starkweather et al., 1991) as crossover operators. 

 

7.2. Tabu search (TS) 

The algorithm maintains a taboo list containing the results of 
the last few steps. In the process, we can only take the 

neighbor of the current solution that is not in the taboo list. 

The taboo list must be changed at each iteration. If you add a 

new item, you must delete the first item from the beginning if 

the list is already full. (Glover & Laguna, 1998) The pseudo code 

of the Tabu Search is illustrated in Figure 9. 

 
7.3. Particle Swarm Optimization 

It maintains a population of possible solutions. The particles 

move through the search space using a simple mathematical 

formula. Particle movement is determined by the best search 

space positions found (the best position of the particle and the 
best position on the particle - best of all). 
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BEGIN PROCEDURE 
Step 1. Starting with a possible solution that will initially 

be the best solution, indicated with 𝑆𝑏𝑒𝑠𝑡 
WHILE (termination condition is not met) DO 

Step 2. Making the neighbor of 𝑆𝑏𝑒𝑠𝑡 Choose the best 
of these, which is not yet in the taboo list, indicated 
with 𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟. 

Step 3. 𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is inserted as the last item in the 

taboo list. (When the taboo list is full, we delete the 
first item). 
IF (𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 is better than 𝑆𝑏𝑒𝑠𝑡) THEN DO 

Step 4. 𝑆𝑏𝑒𝑠𝑡 =⁡ 𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

END IF 

END WHILE 

END PROCEDURE 

 
Figure 9. The pseudo code of the Tabu Search 

(Glover & Laguna, 1998). 
 

The algorithms use the following formulas: 
 

1. Particle velocity updating formula: 
 

𝒗𝑖𝑑(𝑡 + 1) = 𝒗𝑖𝑑(𝑡)⊕ 𝛼(𝒑𝑖𝑑 − 𝒙𝑖𝑑(𝑡)) 

⊕𝛽(𝒈𝑑 − 𝒙𝑖𝑑(𝑡))                                                                                                   (8) 

 

Current particle velocity updating: 

 

𝒙𝑖𝑑(𝑡 + 1) = 𝒙𝑖𝑑(𝑡) + 𝒗𝑖𝑑(𝑡 + 1)                                                    (9) 

 
where the following notations are used: 

 

• ⁡𝒗𝑖𝑑(𝑡): the new velocity (swap sequence). 

• 𝒑𝑖𝑑 − 𝒙𝑖𝑑(𝑡): the difference between the best and current 

particle position (Basic Swap Sequence - BSS (Wang et al., 

2003). 

•⁡𝒈𝑑 − 𝒙𝑖𝑑(𝑡): the difference between the globally best 
particle position and the current position of a given particle 

(Basic Swap Sequence - BSS (Wang et al., 2003). 

• ⁡𝛼, 𝛽 ∈ [0,1] are random numbers. The ⊕ operation (Wang 

et al., 2003) is the sequential execution of the swap sequences. 

Figure 10 illustrates the pseudo code of the Particle Swarm 

Optimization. 
 

BEGIN PROCEDURE 
Step 1. Initializing the positions of the particles, i.e., 

⁡𝒙𝑖(0). 
Step 2. Initializing the best positions of the particles, i.e., 

⁡𝒑𝑖𝑑(0), initially with the starting positions of the 
particles, so 𝒑𝑖𝑑(0) ≔ 𝒙𝑖𝑑(0). 

Step 3. Generating velocity (𝒗𝑖𝑑(𝑡)) for each particle 

𝒗𝑖𝑑(𝑡). The velocity represents the exchange sequence 
shown in (Wang et al., 2003). 

Step 4. Fitness value calculation and initialization of the 
best particle, 𝒈. 

WHILE (termination condition is not met) DO 
WHILE (not all particles were selected) DO 

Step 5. Update the particle velocity using eq. (8) 
Step 6. From the 𝒗𝑖𝑑(𝑡 + 1) velocity the creation 

of the Basic Swap Sequence (BSS). 
Step 7. Updating the current particle velocity 

with eq. (9). 

Step 8. Updating the  𝒑𝑖𝑑 value. 
Step 9. Updating the global best position, i.e. 𝒈𝑑 . 

END WHILE 
END WHILE 

END PROCEDURE 
 

Figure 10. The pseudo code of the Particle Swarm 

Optimization (Wang et al., 2003). 
 

8. Representation of clustering task, its evaluation, 

objective function 
 

When applying construction and improvement algorithms for 

solving the clustering problem, we need to use a 

representation mode. In this paper permutation 
representation (mapping vector) is applied (Figure 11). The 

elements of the mapping vector are the individual objects. The 

objective function (of the improvement heuristics i.e., PSO, GA, 

TS) is to maximize the Silhouette value. The evaluation of the 

mapping vector is illustrated in Figure 12. 
 

 
 

Figure 11. The permutation (mapping vector) representation. 
 

BEGIN PROCEDURE 

Step 1. Calculating the average distance between the 
elements. 

Step 2. Start with a cluster into which putting some 
elements of the permutation. 

WHILE (not all objects have been selected) DO 
Step 3. Taking the next element of the permutation. 

IF (The distance between the next and previous 
elements of the permutation is greater than the 

average distance) DO 

Step 4. Starting a new cluster and inserting the 
next element of the permutation here. 

ELSE  
Step 5. Inserting the next element of the 

permutation into the current cluster. 
END IF 

END WHILE 

END PROCEDURE 

 
Figure 12. The evaluation of the mapping vector. 
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9. Test results 

 

In this section, the test results are presented. First, test results 

for our own data then results for benchmark datasets are 

presented. The abbreviations and their meaning is presented 

in Table 2. Figure 13-17 illustrates the test result of the 

algorithms. 

 
Table 2. The abbreviations and their meaning. 

 
Abbreviation Meaning 

KM K-Means 

SL Hierarchical Clustering: Single Linkage 
CL Hierarchical Clustering: Complete Linkage 

AM Hierarchical Clustering: Average Method 
CM Hierarchical Clustering: Centroid Method 

WM Hierarchical Clustering: Ward Method 

AI Arbitrary Insertion 
CI Cheapest Insertion 

FI Farthest Insertion 
G Greedy  

NI Nearest Insertion 
NN Nearest Neighbour 

PSO+R Particle Swarm Optimization with 
randomly generated initial solutions 

PSO+C,R Particle Swarm Optimization with 

randomly and construction algorithms (AI, 
CI, FI, G, NN, NI) generated initial solutions 

GA+R Genetic Algorithm with randomly 
generated initial solutions 

GA+C,R Genetic Algorithm with randomly and 
construction algorithms (AI, CI, FI, G, NN, 

NI) generated initial solutions 

TS+R Tabu Search with randomly generated 
initial solution 

TS+AI Tabu Search with Arbitrary Insertion (AI) 
generated initial solution 

TS+CI Tabu Search with Cheapest Insertion (CI) 
generated initial solution 

TS+FI Tabu Search with Farthest Insertion (FI) 

generated initial solution 
TS+G Tabu Search with Greedy (G) generated 

initial solution 
TS+NI Tabu Search with Nearest Insertion (NI) 

generated initial solution 
TS+NN Tabu Search with Nearest Neighbour (NN) 

generated initial solution 

 

In Table 3-7 the N means the number of objects and k 

means the optimal number of clusters. In these tables the 

average values of 10 test runs are detailed. Table 8 present the 

summary of the test results. 

 
In the following test results of the benchmark datasets from 

(Fränti & Sieranoja, 2014) is presented.  

 

 
 

Figure 13. The result of average linkage for our data. 
 

Table 3. Test results for our data. 

 
Own data (N=100, k=10) 

Method Number of 

clusters 

Silhoutte 

value 

Running 

time (min) 

KM 6.0 0.8764 1.8126 E-5 

SL 5.0 0.8470 2.7036 E-5 
CL 5.0 0.8470 2.7898 E-5 

AM 5.0 0.8470 2.7661 E-5 
CM 5.0 0.8470 3.8139 E-5 

WM 5.0 0.8470 3.8730 E-5 
AI 5.5 0.8901 3.5881 E-6 

CI 5.3 0.8863 3.4056 E-5 
FI 5.8 0.8344 3.1482 E-4 

G 5.0 0.9200 4.7099 E-5 

NI 5.6 0.8152 2.9473 E-4 
NN 5.0 0.9133 8.1065 E-6 

PSO+R 1.0 - 0.0956 
PSO+C,R 5.9 0.93055 0.09122 

GA+R 1.0 - 0.0111 
GA+C,R 1.0 - 0.0158 

TS+R 1.0 - 0.1364 

TS+AI 1.0 - 0.1342 
TS+CI 1.0 - 0.1313 

TS+FI 1.0 - 0.1352 
TS+G 1.0 - 0.1233 

TS+NI 5.3 0.7619 0.1352 
TS+NN 1.0 - 0.1324 
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Figure 14. The result of complete linkage for flame data. 
 

Table 4. Test results for Flame data. 
 

Flame (N=240, k=2) 

Method Number of 
clusters 

Silhoutte 
value 

Running time 
(min) 

KM 4.0 0.6275 2.4643 E-4 

SL 3.0 0.3866 0.0010 
CL 4.0 0.5545 8.8634 E-4 

AM 5.0 0.5125 0.0010 
CM 4.0 0.4754 0.0010 

WM 4.0 0.5201 0.0010 

AI 5.0 0.5662 1.0601 E-4 
CI 5.2 0.4964 6.3844 E-4 

FI 5.0 0.4397 0.0093 
G 5.0 0.5192 0.0013 

NI 5.0 0.4793 0.0094 
NN 5.1 0.5155 2.1485 E-4 

PSO+R 3.0 0.4377 13.1455 

PSO+C,R 3.0 0.5388 13.7894 
GA+R 3.0 0.5287 14.7877 

GA+C,R 3.0 0.4012 12.1245 
TS+R 3.2 0.5723 13.4832 

TS+AI 3.1 0.5955 12.9809 
TS+CI 3.0 0.4020 13.7845 

TS+FI 3.0 0.5807 14.2906 
TS+G 3.0 0.5292 12.8740 

TS+NI 3.0 0.5237 13.1240 

TS+NN 3.0 0.5070 14.1859 

 

 

 

 
 

 

 

 
 

Figure 15. The result of K-Means for Jain data. 
 

Table 5. Test results for Jain data. 

 
Jain (N=373, k=2) 

Method Number of 

clusters 

Silhoutte 

value 

Running time 

(min) 

KM 5.0 0.6530 9.8182 E-5 
SL 6.0 0.6892 0.0013 

CL 6.0 0.7244 0.0011 
AM 6.0 0.7314 0.0011 

CM 6.0 0.7313 0.0018 
WM 6.0 0.7235 0.0019 

AI 7.0 0.7279 2.8611 E-5 

CI 7.2 0.6703 0.0015 
FI 7.0 0.6295 0.0550 

G 6.0 0.7294 0.0018 
NI 6.6 0.6726 0.0503 

NN 7.0 0.6846 2.4654 E-4 
PSO+R 7.0 0.6026 21.0572 

PSO+C,R 7.1 0.7367 22.7064 

GA+R 7.2 0.6980 20.4734 
GA+C,R 7.0 0.6777 21.9766 

TS+R 7.0 0.6347 21.2806 
TS+AI 7.0 0.6724 22.5610 

TS+CI 7.0 0.7990 21.7342 
TS+FI 7.0 0.7335 20.5112 

TS+G 7.0 0.6438 20.4698 

TS+NI 7.0 0.7059 21.2041 
TS+NN 7.0 0.7266 21.6740 
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Figure 16. The result of Arbitrary Insertion for Pathbased data. 

 
 

Table 6. Test results for Pathbased data. 

 
Pathbased (N=300, k=3) 

Method Number of 
clusters 

Silhoutte 
value 

Running 
time (min) 

KM 5.0 0.5676 4.5017 E-5 

SL 5.0 0.4952 6.1105 E-4 

CL 5.0 0.6247 6.0886 E-4 
AM 6.0 0.5743 5.976 E-4 

CM 6.0 0.6191 9.4529 E-4 
WM 6.0 0.6360 0.0010 

AI 6.4 0.6135 1.4689 E-5 
CI 7.1 0.5564 7.6838 E-4 

FI 6.1 0.5478 0.0231 

G 8.0 0.6627 9.6926 E-4 
NI 6.8 0.5479 0.0216 

NN 6.8 0.5840 1.3669 E-4 
PSO+R 6.5 0.6124 19.7260 

PSO+C,R 6.8 0.4605 18.0736 
GA+R 5.9 0.5030 19.0785 

GA+C,R 5.7 0.5846 20.7408 

TS+R 6.2 0.4322 19.4064 
TS+AI 6.3 0.5785 19.3890 

TS+CI 5.9 0.4850 19.3867 
TS+FI 5.7 0.4553 19.8644 

TS+G 6.4 0.5654 20.5816 
TS+NI 6.5 0.5559 20.3076 

TS+NN 6.0 0.5717 20.6610 

 

 

 

 

 

 

 
 

Figure 17. The result of Arbitrary Insertion for Spiral data. 

 

 
Table 7. Test results for Spiral data. 

 
Spiral (N=312, k=3) 

Method Number of 

clusters 

Silhoutte 

value 

Running time 

(min) 

KM 6.0 0.5431 4.9849 E-5 
SL 8.0 0.4710 7.4046 E-4 

CL 7.0 0.5133 7.4932 E-4 
AM 6.0 0.5448 0.0010 

CM 6.0 0.5330 0.0010 

WM 6.0 0.5448 0.0010 
AI 7.4 0.6022 1.6550 E-5 

CI 9.3 0.5499 8.5700 E-4 
FI 8.1 0.5270 0.0271 

G 10.0 0.5498 0.0010 
NI 9.1 0.4985 0.0247 

NN 9.6 0.5738 1.4543 E-4 
PSO+R 8.2 0.5468 20.6559 

PSO+C,R 8.5 0.4828 21.4954 

GA+R 9.1 0.6571 20.0329 
GA+C,R 8.4 0.8893 20.2922 

TS+R 8.0 0.8092 21.0241 
TS+AI 8.4 0.6826 20.5617 

TS+CI 8.4 0.5627 20.8311 
TS+FI 8.5 0.6349 20.1871 

TS+G 7.9 0.6809 21.9084 

TS+NI 8.2 0.6366 20.0576 
TS+NN 8.3 0.5030 20.6369 
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Table 8. Summary. 
 

Summary 

Method Silhoutte value Running time  

KM + + 

SL + + 
CL + + 

AM + + 
CM + + 

WM + + 
AI + + 

CI + + 

FI + + 
G + + 

NI + + 
NN + + 

PSO+R + - 
PSO+C,R + - 

GA+R + - 

GA+C,R + - 
TS+R + - 

TS+AI + - 
TS+CI + - 

TS+FI + - 
TS+G + - 

TS+NI + - 

TS+NN + - 

 

The test results show that despite the failure to reach the 

desired number of clusters, the silhouette values are high, so 
the implemented algorithms cluster relatively well. We do not 

recommend using improvement algorithms due to their high 

running time, we only recommend modified versions of 

construction algorithms and traditional clustering 

procedures. 

 

10. Conclusion 

 

In this article different tour-based clustering algorithms are 
compared with the classical methods and analyzed. After the 

literature review the traditional clustering algorithms (K-

Means, Hierarchical Methods) are presented, then the 

Silhouette index to measure the quality of the clustering result. 

After that construction algorithms and improvement 

algorithms are detailed. Then our cluster representation 
technique and evaluation is described. After that test results 

are presented. In the test we have implemented and analyzed 

the main clustering methods and the tour construction and 

tour improvement methods. The comparison test performed 

on self-generated dataset and several clustering benchmark 

test: Flame, Jain, Pathbased and Spiral. Based on the test 

results the traditional clustering algorithms and the 
construction algorithms have efficiency in partitioning 

datasets with our representation and evaluation technique. 
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