
1665-6423/All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an open 
access item distributed under the Creative Commons CC License BY-NC-ND 4.0.

Journal of Applied Research and Technology 13 (2015) 261-269

Disponible en www.sciencedirect.com

www.jart.ccadet.unam.mx

Journal of  Applied Research 
and Technology

*Corresponding author. 
E-mail address: ricardo_rodriguez@utcj.edu.mx (R. Rodríguez).

Abstract

This paper presents a novel approach for QRS complex detection and extraction of electrocardiogram signals for different types of arrhythmias. 
Firstly, the ECG signal is filtered by a band pass filter, and then it is differentiated. After that, the Hilbert transform and the adaptive threshold 
technique are applied for QRS detection. Finally, the Principal Component Analysis is implemented to extract features from the ECG signal. 
Nineteen different records from the MIT-BIH arrhythmia database have been used to test the proposed method. A 96.28% of sensitivity and a 
99.71% of positive predictivity are reported in this testing for QRS complexity detection, being a positive result in comparison with recent 
researches.
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1. Introduction

Cardiovascular diseases are the main cause of death world-
wide according to the World Health Organization (Alwan, 2011; 
Palanivel & Sukanesh, 2013). In 2008, around 17.3 million 
people have died from cardiovascular diseases, which represent 
30% of all worldwide deaths (Alwan, 2011). Thereby, cardiac 
health research has acquired significative importance for medi-
cal researchers, mainly for those focused on technological, pre-
ventive and medical advances. Accordingly, traditional 
technologies for cardiovascular-diagnosis used at home, clinics 
and hospitals have been of main interest for researchers in order 
to improve them.

Electrocardiogram (ECG) analysis is the most common clinical 
cardiac examination, which is a useful detection tool for several 
cardiac abnormalities, mainly because it is inexpensive, simple and 
risk-free (Dilaveris et al., 1998; Elgendi et al., 2014). Hence, ECG 
analysis has been widely investigated during the last two decades. 
Mostly, because an ECG signal records a vital sign for heart func-
tional investigation because it represents the electrophysiological 

events that coincide with the sequence of depolarization and repo-
larization of the atria and ventricles (Elgendi et al., 2014).

The three main events presented in the signal of each heartbeat 
are: the P wave, the QRS complex, and the T wave (Hasan & 
Mamun, 2012). Each event contains its own peak, making this 
important to analyze their morphology, amplitude, and duration 
for cardiac arrhythmias detection (Bashour et al., 2004; Tran et 
al., 2004; Tsipouras et al., 2002). Also, their analysis can be 
critical for detecting breathing disorders such as obstructive sleep 
apnea syndrome (Trinder et al., 2001; Zapanta et al., 2004) and 
for studying the autonomic regulation of the cardiovascular sys-
tem during hypertension and sleep (Trinder et al., 2001). Other 
functional or structural cardiac disorders can be monitored too.

Computer-based ECG analysis requires an accurate detection 
of QRS complex, in particular, an accurate detection of the R 
wave. Nevertheless, this is a non-easy task since a real ECG sig-
nal usually faces muscular noise, motion artifacts, and baseline 
drifts changes (Benitez et al., 2001). Other components of an ECG, 
such as P and T waves, are also found to be high in some cases, 
and these waves must be differentiated from the QRS waves. This 
increases the complexity of QRS detection (Benitez et al., 2001; 
Köhler et al., 2003). False R-wave detection or the failure to detect 
R-waves may lead to undesired results in computer-based ECG 
analysis (Köhler et al., 2003). In addition, the number of false 
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form to ECG signal followed by threshold; with wavelet trans-
form, the SNR can be improved by selecting the coefficients with 
the largest amplitude (Alesanco et al., 2003).

Several techniques have been applied in the literature for 
QRS detection. Matched filters have been applied to ECG 
signal by Kaplan (1990). Another technique is the syntactic 
method, which has been applied by Trahanias and Skordalakis 
(1990) to detect QRS complex in ECG signal; however, the 
syntactic method is sensitive to noise (Trahanias & Skordala-
kis, 1990). In Liang-Yu et al. (2004), authors have applied 
wavelet transform to ECG signal followed by neural networks. 
It is important to note that neural networks are highly sensitive 
to noise (Clifford et al., 2006). Other technique is the Hidden 
Markov Model which has been used by Coast and Cano (1989), 
where authors applied a bandpass filter to the ECG signal fol-
lowed by the Hidden Markov Model. However, Hidden Markov 
Model is sensitive to heart rate variation, baseline wander, and 
noise (Cheng & Chan, 1998). Singularity method is also applied 
by researchers for QRS detection (Xing & Huang, 2008). Xing 
and Huang (2008) applied the EMD filtering to an ECG signal; 
after that, authors applied the singularity and threshold meth-
ods. However, the singularity method is sensitive to noise (Ayat 
et al., 2009). In addition, zero‑crossing technique has been 
applied in the literature for QRS complex detection. Köhler et 
al. (2003) firstly applied the bandpass filter to an ECG followed 
by a zero‑crossing; however, this method is also sensitive 
to noise.

According to related work, methods based on Hilbert trans-
form have the ability to discriminate the dominant peaks from 
other peaks. These methods have been capable to improve the 
results for R‑wave detection. However, they tend to fail in dis-
eases that cause low‑amplitude waves, and in ischemic cases 
(Köhler et al., 2003). Normally, a threshold is needed for the 
detection of the R‑wave in an electrocardiogram signal; a fixed 
threshold for detecting R‑waves can be efficient and simple for 
ECG signals with normal beat morphology (Elgendi et al., 
2014). However, several researchers have reported that ECG 
signal waveforms may vary drastically from each other, due to 
movement of patients, or severe baseline drifting. Accordingly 
to this, there is a high probability that QRS complexes may be 
missed. Otherwise, adaptive thresholding has been proven to 
reduce the probability of missing QRS complex detection (El-
gendi et al., 2014; Köhler et al., 2003; Madeiro et al., 2007; 
Rabbani et al., 2011).

Usually, adaptive thresholding makes empirical use of many 
thresholds. In Li et al. (1995), authors presented an algorithm 
based on wavelet transform for detecting QRS complex, as well 
as P and T waves; a constant threshold has been used, which 
was determined empirically. Kadambe et al. (1999) used a con-
stant threshold for QRS detection; the threshold has also been 
empirically determined. Their algorithm is based on wavelet 
transform too. In Burte and Ghongade (2012), and Xu and Liu 
(2005), authors have shown that adaptive thresholding provides 
interesting results for R wave peak detection. In their case, the 
thresholds have been detected automatically.

Moreover, according to specialized literature, Principal 
Component Analysis (PCA) has been used for extracting mo-

detections significantly increases in the presence of ECG signals 
from patients with pathologies or by using poor signal-to-noise 
ratios (SNR) (Burte & Ghongade, 2012; Köhler et al., 2003).

Several QRS detection researches have been developed dur-
ing decades; these researches have been mainly attained to 
three categories: time domain detection techniques, transform 
domain detection techniques, and other methods that include 
morphologic filtering techniques and template matching (Burte 
& Ghongade, 2012). These techniques have been utilized into 
different applications like heart rate variability analysis, ar-
rhythmia classification, heart rate calculation, feature extrac-
tion, ECG compression, R-R interval analysis, and P, S, and T 
wave detection (Burte & Ghongade, 2012).

QRS well-known algorithms are mainly focused on two im-
portant stages: QRS enhancement and QRS detection. The stage 
of QRS enhancement is applied to enlarge the QRS complex with 
respect to the other QRS features, such as P, T, and noise. In 
some researches, this stage is described as pre-processing or fea-
ture extraction. One of these techniques is the amplitude thresh-
old which has been used by Morizet-Mahoudeaux et al. (1981). 
With this technique, the signal noise is not properly removed and 
it is usually followed by the first derivative of the ECG signal 
(Morizet-Mahoudeaux et al., 1981). Other technique is the first 
derivative of the ECG signal followed by threshold (Okada, 
1979), this technique helps to reduce baseline drifts and motion 
artifacts (Zhang & Lian, 2007); however it does not remove high 
frequency noise. Some research work have applied first deriva-
tive combined with second derivative of an ECG signal, followed 
by threshold (Ahlstrom & Tompkins, 1983); although the signal 
noise is not removed properly. Digital filters have been applied 
by other authors for QRS enhancement. The applied digital filter 
can increase the SNR ratio; it depends on the order of the filter 
and its nature. In Pan and Tompkins (1985), authors applied a 
bandpass filter to an ECG signal followed by its first derivative, 
and threshold. In Yongli and Huilong (2005), authors applied 
mathematical morphology filtering to ECG signal for QRS en-
hancement followed by threshold. With the mathematical mor-
phology algorithms the signal noise is partially addressed. 
According to the literature, authors have also been approaching 
the QRS enhancement by applying Empirical Mode Decomposi-
tion (EMD) filtering (Tang et al., 2008). In Tang et al. (2008), the 
EMD is applied to ECG signal followed by threshold. In this 
sense, the first several Intrinsic Mode Functions can preserve the 
QRS content; they are able to filter out the noise, and improve the 
SNR. Other research work have applied the Hilbert transform for 
QRS enhancement (Arzeno et al., 2008), also, the first derivative 
can be used before applying the Hilbert transform, and then be 
followed by threshold. However, the Hilbert transform does not 
improve the SNR; hence it is common for investigators to filter 
the signal before applying the Hilbert transform. Other technique 
applied for QRS enhancement is the filter banks, which signifi-
cantly improve the SNR for Gaussian noise and for muscle noise 
in comparison with the median or mean averaging methods 
(Afonso et al., 1995). In Afonso et al. (1999), authors applied fil-
ter banks to ECG signal followed by threshold. Furthermore, the 
wavelet transform technique has also been used by other related 
work. I.e., in Dinh et al. (2001), authors applied wavelet trans-
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proposed method reported a sensitivity of 96.28% and a 99.71% 
of accuracy in QRS complex detection.

The rest of the paper is organized as follows: section 2 pres-
ents a brief description of the methodology used for QRS com-
plex detection from an ECG, including the band pass filter, the 
first derivative differentiation, the use of the Hilbert transform, 
and the adaptive threshold technique. Section 3 discusses PCA 
for extracting the feature vector. Section 4 shows the obtained 
results after applying the proposed methodology. Finally, sec-
tion 5 presents conclusions and future work.

2. Detection of the QRS complex

Electrocardiogram signal is one of the most important bio-
logical signals used to diagnose heart diseases. ECG signals 
allow the representation of the cyclical contraction and relax-
ation of human heart muscles. Heart muscle activity is con-
trolled by electrical pulses which are transmitted through a 
nerve network; such electrical pulses are strong enough to be 
sensed by electrodes placed on the human skin (Asirvadam et 
al., 2009; Kotas, 2007). In general, the ECG signal of a single 
cardiac cycle lies on the P, T, and QRS complex waves as de-
picted in Figure 1. Sometimes a U‑wave may also be present 
after the T‑wave (Elgendi et al., 2009).

The QRS complex represents the depolarization of heart 
ventricles which have greater muscle mass and hence its con-
sumption of electrical activity is higher. The detection of 
R waves is easier than in other ECG signal wave detection due 
to its high amplitude and its structural form. There are some 
difficulties in QRS complex detection. These difficulties can 
be summarized as follows: a) presence of non-stationarity, i.e., 
the ECG statistical properties change over the time; b) presence 
of low QRS amplitudes; c) ventricular ectopics could arise; 
d) low SNR, i.e., noisy ECG signals, and e) presence of negative 
QRS polarities. 

Figure 2 shows an R-peak with negative polarity. This can 
happen when some extrasystoles lead to a sudden polarity 

tion artifacts in ECG signals (Castells et al., 2007; Deshpande 
& Rajankar, 2013; Kher et al., 2014; Romero, 2010), signal com-
pression (Deshpande & Rajankar, 2013), data dimensionality 
reduction (Rajpoot et al., 2013), and for data classification (Ra-
jpoot et al., 2013) as well as for separating the respiratory and 
non‑respiratory changes in beat morphology beat-to-beat in 
ECG features (Langley et al., 2010), in all the above mentioned 
work, PCA has been applied effectively, however, work from 
Sharma et al. (2013), Sharma et al. (2012), and Sharmila et al. 
(2013) have shown better results when PCA is applied with 
other techniques.

This paper is focused on the analysis of ECG signals by ap-
plying the Hilbert transform and the adaptive threshold tech-
nique to detect the real R‑peaks from an ECG signal. In 
addition, the application of the PCA for feature extraction from 
electrocardiogram signals is presented as well. Feature extrac-
tion is applied to three types of heartbeats (normal heartbeats, 
premature ventricular contraction, and atrial premature con-
traction). Obtained results show that the performance of the 

Fig. 1. ECG for a single cardiac cycle; record 103 in MIT-BIH database (Gold-
berger et al., 2000).
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Fig. 2. QRS of R-peak with negative polarity in the MIT-BIH arrhythmia data 
base (Goldberger et al., 2000), record #228.
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Fig. 3. QRS of R-peak with low amplitude in the MIT-BIH arrhythmia data 
base (Goldberger et al., 2000), record #228.
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where  is the sampling frequency and  is the total number 
of samples. Initial conditions are set to minimize the error at 
the boundaries, i.e., initial condition is specified for , and 

. The derivative output of the filtered ECG signal al-
lows removing baseline drifts and motion artifacts.

2.3. Hilbert transform

For a discrete time series , the Hilbert transform is de-
fined as in Eq. (2).

	 � (2)

where the vector h is filled as shown in Eq. (3). The vector f 
stores the Fast Fourier Transform (FFT) of the  signal, and 
the  is the Inverse Fast Fourier Transform.

	

� (3)

Therefore, the analytic signal  is given in Eq. (4). It is also 
considered as the pre-envelope of the original signal .

	 � (4)

The envelope  of  is described in Eq. (5). It is also con-
sidered as the instantaneous magnitude of .

	 � (5)

and the instantaneous phase angle in the complex plane is 
defined in Eq. (6).

	
� (6)

2.4. Adaptive threshold for QRS detection

Adaptive threshold is a technique carried out for detecting 
the R wave peak. This technique is performed by using a pair of 
threshold limits called upper limited threshold ( ) and lower 
limited threshold ( ).

The upper threshold is defined by Eq. (7), where  is the 
maximum value attained  on the point .

	 � (7)

The lower threshold is defined by Eq. (8). 

	 � (8)

change. However, an algorithm for detecting QRS with R‑peaks 
of both positive and negative polarity is desired.

Figure 3 shows an R-peak with low amplitude. Therefore, 
ECG signals may vary drastically from one heartbeat to the 
next due to the movement of the patients and to severe baseline 
drifting, as depicted in Figure 4. Accordingly, it can also be 
noticed that a big fixed threshold can lead to missing detections. 
Moreover, a small fixed threshold can easily lead to inaccurate 
detections. The fixed threshold might also affect the detection 
of T and P waves. In another case, an adaptive threshold algo-
rithm mainly implements multiple thresholds empirically, de-
creasing the possibility of missing QRS complexes.

Our proposed method for QRS complex detection is based 
on combining both Hilbert transform and the adaptive thresh-
old technique. The steps of this method are explained next.

2.1. ECG filtering

The first stage of our proposed method is the ECG filtering. 
Firstly, the band pass filter is applied to maximize the QRS 
complex, and also for removing muscular noise from the ECG 
signal. A 6th order band-pass Butterworth filter has been ap-
plied. The band stop frequencies were set from 5 to 15 Hz. The 
5 Hz is the starting frequency and 15 is the stopping frequency. 
This allows removing high frequencies and baseline wander 
(Chen & Chen, 2003). It also suppresses the P and T waves, and 
maximizes the QRS complex.

2.2. Differentiation

The first derivative is applied to indicate the minimum slope 
of the ECG signal (i.e., the falling of signal from R to S). Also, 
the first derivative indicates the high slope points (i.e., the rising 
of signal from Q to R). The first derivative differentiation using 
2‑point central difference is calculated using Eq. (1).

	
� (1)

Fig. 4. ECG signal with wave forms that vary drastically from one heartbeat 
to the next; record 103 in MIT-BIH database (Goldberger et al., 2000).
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� (13)

2. Compute the mean adjusted data —see Eqs. (14) and 
(15)— as follows:

	 � (14)

	 � (15)

3. Compute the covariance matrix, as shown in Eq. (16).

	
� (16)

4. Calculate the eigenvectors and eigenvalues of the covari-
ance matrix. The eigenvalues  and eigenvectors , correspond 
to Eq. (17).

	 � (17)

5. Choosing components and forming a feature vector. The 
eigenvector with the highest value is the principal component. 
Then, the eigenvectors are ordered by eigenvalues from highest 
to lowest, which returns the components in order of significance. 
Subsecuently, the dimensionality is reduced by selecting K‑prin-
cipal components that retain the physiological information. 
Thus, the percentage of variance, , of each eigenvalue is ob-
tained by applying Eq. (18).

	

� (18)

Furthermore, we select the principal components whose per-
centage of variance is higher than the percentage threshold, , 
that is 0.9 or 0.95 as shown in Eq. (19).

	 � (19)

6. Deriving the new data set. The final dataset is obtained by 
Eq. (20).

	 � (20)

4. Results and discussion

The QRS automatic detection and extraction methods have 
been validated using the MIT-BIH arrhythmia database (Gold-
berger et al., 2000; Moody & Mark, 2001). The MIT-BIH ar-

The threshold values are updated in iteration time, where the 
number of detected peaks above the  threshold is obtained, 
and also, the number of detected peaks above  is calculated. 
Thus,  is the number of QRS complexes detected by , and 

 is the number of QRS complexes detected by . The 
thresholds are updated per iteration, meanwhile the number of 
detected peaks by the up and down limits is different. The value 
of  is updated using Eq. (9).

	 � (9)

where the error weight , and  is the differ-
ence between the defined two limits. The value of  is updated 
by using Eq. (10). We assume w and  as the same as defined in 
Eq. (9).

	 � (10)

Accordingly to the previous definitions, . Then 
the lower threshold limit is increased by  and the upper 
threshold limit is decreased by  as well. This process contin-
ues until the same QRS number (i.e., ) is obtained.

3. Feature extraction

3.1. Principal Component Analysis

The PCA is a technique for linear dimensionality reduction 
that provides projection of the data in the direction of the 
highest variance (Monasterio et al., 2009). This technique is 
carried out to extract relevant features from the ECG data set. 
The signal segment of a heartbeat is represented by , as in 
Eq. (11).

	

� (11)

where M is the number of samples of the heartbeat. Thus, the 
heartbeats  are N observations of heartbeats —as in 
Eq. (12). The entire ensemble of heartbeats is represented by the 

 matrix.

	 � (12)

The PCA consists of the following steps:

1. Calculate the mean vector. The mean vector of each heart-
beat is calculated as in Eq. (13).
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where TP (True Positive) is the number of heartbeats properly 
detected (i.e., QRS complexes properly detected), FN (False 
Negative) indicates the number of heartbeats that were not de-
tected by the method (i.e., QRS complexes that were not de-
tected), and FP (False Positive) indicates the false heartbeats 
detected (i.e., QRS complexes detected by the method when no 
QRS complexes are present). The sensitivity parameter (Se) in-
dicates the percentage of heartbeats that were correctly detected 
by the algorithm. The positive predictivity (+P) indicates the 
percentage of heartbeats detections which were real true heart-
beats.

A beat is considered as detected within a window of ±13 
samples around the true temporal beat detection. Table 1 pres-
ents the results of the adaptive threshold method applied to the 
nineteen records extracted from the MIT-BIH arrhythmia data-
base. The algorithm detects the R‑wave that is even very close to 
the end of the record, e.g., record 100. The method achieved 
fairly good results also for very noisy records, e.g., record 108 
(Fig. 5). In addition, the method detected precise results for re-
cord 117 which has a low amplitude R‑peaks and low SNR 
(Fig. 6).

The results of our method to detect QRS complexes are sig-
nificantly precise. Our method scored Se  =  96.28% and 
+P = 99.71 over 44,715 heartbeats, as shown in Table 1. It is 
necessary to mention that our method achieved not so good sen-
sitivity rate for record 228 which presents negative QRS polari-
ties and ventricular ectopics (Fig. 7); this could explain the high 
number of FN beats, as can be seen in Table 1. 

After the QRS detection, 90 samples were selected from the 
left side of R‑peak and 90 samples after the R‑peak point. Then, 
the PCA technique presented in section 3 has been applied to select 
useful features which can be used for further ECG recognition.

The heartbeats in , Eq. (12), are the normal beats, prema-
ture ventricular contraction, and atrial premature contraction. 
The total number of heartbeats is N = 36. Every heartbeat has 
been chosen with M = 180  samples. The linear dimensionality 
reduction of the input patterns  is obtained by the PCA tech-
nique. This technique provides projection of  in the direc-

rhythmia database contains records sampled at 360 Hz, with 
11‑bit resolution over 5 mV range. Each record contains a dura-
tion of 30 min with 5.556 s. For QRS detection, only the first 
channel of each record has been considered. A total of 19 re-
cords have been considered. These records contain inverted 
QRS polarity, low amplitude QRS, ventricular ectopic beats 
with low SNR, premature ventricular beats, and premature 
atrial beats. The performance of the proposed algorithm has 
been essentially evaluated by two parameters: Sensitivity (Se), 
and positive predictivity (+P), given them by Eqs. (21) and (22).

	
� (21)

	
� (22)

Table 1
Performance of QRS complex detection method on MIT-BIH arrhythmia 
database.

Record Beats, n TP FP FN Se +P

100 2273 2273 0 0 100.00 100.00
101 1865 1863 9 1 99.94 99.51
103 2084 2082 0 1 99.95 100.00
108 1774 1494 1 60 96.13 99.93
112 2539 2539 4 0 100.00 99.84
116 2412 2359 5 28 98.82 99.78
117 1535 1535 1 0 100.00 99.93
121 1863 1859 1 2 99.89 99.94
200 2601 2593 5 4 99.84 99.80
202 2136 2094 1 21 99.00 99.95
205 2656 2646 14 5 99.81 99.47
209 3005 3005 11 0 100.00 99.63
213 3251 3244 85 3 99.90 97.44
215 3363 3269 0 47 98.58 100.00
220 2048 2048 0 0 100.00 100.00
223 2605 2552 0 26 98.99 100.00
228 2053 428 2 672 38.90 99.53
231 1573 1569 1 2 99.87 99.93
233 3079 3066 2 7 99.77 99.93

Total 44,715 42,518 142 879 96.28 99.71

Fig. 5. Detection of QRS in noisy record 108; from MIT-BIH arrhythmia 
database (Goldberger et al., 2000).
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Fig. 6. Detection of the QRS with low amplitude and low SNR, record 117, in 
MIT-BIH arrhythmia database (Goldberger et al., 2000).
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is required, especially for improving the detection of negative 
QRS complexity. However, to compare the performance of pre-
viously published algorithms with the proposed algorithm is 
challenging. This is mainly because algorithms are not tested on 
the same conditions, nor using the same data or using the same 
heartbeats even. To illustrate this idea it can be noticed that the 
performance of any QRS complexity detection algorithm will 
score higher detection rate (e.g., sensitivity, and positive predic-
tivity) by excluding certain records or by excluding a number of 
heartbeats. Table 2 compares the performance of the proposed 
approach among other recent researches for the QRS detection 
over the MIT‑BIH arrhythmia database.

Several research works use resampling for the ECG signal to 
improve QRS detection. In our proposed method we do not con-
sider resampling of the ECG signal; however, Pan and Tompkins 
algorithm (1985) requires resampling for signals not sampled at 
200 Hz.

In this work, 5-15 passbands have been used to maximize the 
QRS energy. However, different researches use different pass-
bands. Pan and Tompkins (1985) achieved passband of about 
5‑11 Hz by cascaded low‑pass and high‑pass filters. 

In addition, this work uses a first derivation before applying 
the Hilbert transform which helps to reduce motion artifacts and 
baseline drifts. According to our results, combination of Hilbert 
transform and adaptive threshold has a significant effect in the 
detection of QRS complex (as can be seen in Tables 1 and 2). 
Also, in the literature, other authors have used threshold step as 
the last stage for QRS complex detection. This is the case of Pan 
Tompkins algorithm (Pan & Tompkins, 1985) as well. Also, El-
gendi et al. (2009) (Method I) applied adaptive quantized 
threshold.

Therefore, our proposed QRS complex detection method 
overcomes the use of fixed thresholds by adapting the upper and 
lower limited thresholds as presented in section 2.

5. Conclusions

This paper has presented a novel approach for QRS detection 
of electrocardiogram signals by applying the Hilbert transform 
and the adaptive threshold technique. In addition, PCA has 
been implemented for feature extraction of QRS complex.

Our approach for QRS complexes detection introduces an 
adaptive threshold technique to improve the accuracy of QRS 
complexes detection in records with ventricular ectopics, nega-
tive QRS polarities, low signal-to-noise ratio, and low ampli-
tude R‑peaks. Our experiments showed that our proposed 
approach achieves precise detection rates with an overall posi-

tion of highest variance. Figure 8 shows the fraction of total 
variance in the data as explained by each principal component. 
As it can be seen the first four principal components account for 
around 99% of the variance. 

Accordingly to the cumulative variance proportion, K = 4  
principal components of the input patterns were extracted, with 
M = 180 components corresponding to the dimensionality of the 
input pattern, as shown in Eq. (12). Therefore, the number of 
input patterns in  is K < N. The selected components 
contribute about 90% —th ≥ 0.90, as shown in Eq. (19)— of the 
total energy of the signal. These K  principal components are 
used in the next step of the classification as inputs to the neural 
network.

4.1. Discussion of QRS detection

After applying the QRS complex detector and obtaining its 
results from the MIT‑BIH arrhythmia database further research 

Table 2
QRS detection performance comparison on MIT-BIH arrhythmia database.

Work Beats, n Se (%) +P (%)

Proposed 44,715 96.28 99.71
Elgendi et al. (2009) (Method I) 44,677 87.90 97.60
Pan and Tompkins (1985) 109,985 90.95 99.56
Chouakri et al. (2011) 109,488 98.68 97.24

Fig. 7. Detection of the QRS with ventricular ectopics, record 228, in MIT-
BIH arrhythmia database (Goldberger et al., 2000).
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repolarization duration measurement. Comput. Methods Programs 
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Langley, P., Bowers, E.J., & Murray, A., 2010. Principal component analysis as 
a tool for analyzing beat-to-beat changes in ECG features: Application to 
ECG-derived respiration. IEEE Trans. Biomed. Eng., 57, 821-829.

Li, C., Zheng, C., & Tai, C. (1995). Detection of ECG characteristic points using 
wavelet transforms. IEEE Trans. Biomed. Eng., 42, 21-28.

Liang-Yu, S., Ying-Hsuan, W., & Hu, W. (2004). Using wavelet transform and 
fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. 
Biomed. Eng., 51, 1269-1273.

Madeiro, J.P., Cortez, P.C., Oliveira, F.I., & Siqueira, R.S. (2007). A new 
approach to QRS segmentation based on wavelet bases and threshold 
technique. Med. Eng. Phys., 29, 26-37.

Monasterio, V., Laguna, P., & Martínez, J.P. (2009). Multilead analysis of T-wave 
alternants in the ECG using principal component analysis. IEEE Trans. 
Biomed. Eng., 56, 1880-1890.

Moody, G.B., & Mark, R.G. (2001). The impact of the MIT-BIH Arrhythmia 
Database. IEEE Eng. Med. Biol. Mag., 20, 45-50.

Morizet-Mahoudeaux, P., Moreau, C., Moreau, D., & Quarante, J.J. (1981). 
Simple microprocessor-based system for on-line ECG arrhythmia analysis. 
Med. & Biol. Eng. & Comput., 19, 497-500.

Okada, M. (1979). A digital filter for the QRS complex detection. IEEE Trans. 
Biomed. Eng., 26, 700-703.

Palanivel, S., & Sukanesh, R. (2013). Experimental studies on intelligent, 
wearable and automated wireless mobile tele-alert system for continuous 
cardiac surveillance. Journal of Applied Research and Technology, 11, 
133-143.

Pan, J., & Tompkins, W. (1985). A real-time QRS detection algorithm. IEEE 
Trans. Biomed. Eng., 32, 230-236.

Rabbani, H., Mahjoob, M.P., Farahabadi, E., & Farahabadi, A. (2011). R peak 
detection in electrocardiogram signal based on an optimal combination of 
wavelet transform, Hilbert transform, and adaptive thresholding. J. Med. 
Signals Sens., 1, 91-98.

tive predictivity of 99.71 % and a sensitivity of 96.28% for the 
performed test case. 

As future work we propose to automate the classification of 
cardiac arrhythmias using multilayer perceptron neural net-
work with a backpropagation learning technique.
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