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Abstract: The stochastic approximation procedure with delayed groups of delayed customers is 

investigated. The Robbins-Monro stochastic approximation procedure is adjusted to be usable in the 

presence of delayed groups of delayed customers. Two loss systems are introduced to get an accurate 

description of the proposed procedure. Each customer comes after fixed time intervals with the stage 

of the following customer is accurate according to the outcome of the preceding one, where the serving 

time of a customer is assumed to be a discrete random variable. Some applications of the procedure 

are given where the analysis of their results is obtained. The most important result is that efficiencies 

of the procedure are increased by increasing the service-time distributions as well as service times of 

customers. This new situation can be applied to increase the number of served customers where the 

number of served groups will also be increased. The results obtained seem to be acceptable. In general, 

our proposal can be utilized for other stochastic approximation procedures to increase the production 

in many fields such as medicine, computer sciences, industry, and applied sciences. 
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1. Introduction 
 

The Robbins-Monro Stochastic approximation procedure 

Robbins and Monro (1951) is an iterative algorithm for finding 

the root of an equation, or the solution of a system of 

equations, where it cannot be computed directly, but only 

estimated with the estimation subject to random error.  

The Robbins-Monro stochastic approximation procedure 

with delayed observations already utilized for a geometrical 

delay distribution Dupač and Herkenrath (1985) by allocating 

experiments into  𝑲 parallel series, and constructing a global 

approximation by averaging the  𝑲 individual ones. The time 

loss caused by delayed observations, or its complement, the 

performance of the procedure was studied in the quoted 

paper. There is a large typecast and a lot of papers on the topic 

(Blum, 1954; Cheung & Elkind, 2010; Combes, 2013; 

Jonckheere & Leskelä, 2007; Joseph et al., 2007;  Leroux, 1992; 

Mahmoud, 1988; Nevel´son & Has′minskiĭ, 1972), we shall use 

the review papers (Mahmoud & Rasha, 2005; Mahmoud & 

Atwa, 2011; Mahmoud  et al., 2015; Mahmoud et al., 2017) as 

references. In stochastic procedures, customers follow each 

other after fixed time-intervals with the point of the next 

customer is corrected according to the result of the preceding 

one. In our previous work Mahmoud and Atwa, (2011), we 

applied the Robbins-Monro Stochastic approximation 

procedure in the existence of compound delayed 

observations, where the random time delay distribution of 

compound observations was estimated to get the 

approximated efficiency of the procedure. Recently, in the 

paper Mahmoud et al. (2017) we applied the Robbins-Monro 

procedure in the presence of groups of delayed observations 

by investigating two loss systems. A sever of one of the two loss 

systems cans serve a group of delayed observations, where the 

number of served observations could be increased.  

Here we modified the Robbins-Monro stochastic 

approximation procedure to be usable in existence of delayed 

groups of delayed multiservice customers and investigating 

two loss systems as a new application of the Robbins-Monro 

procedure. The two loss systems can be described as follows:  

A group of delayed customers arrives to the service system 

each time unit where the service time is an integer-valued 

random variable, servers are parallel, and there is no waiting 

places if all servers are busy. According to this new way, a 

server of the second loss system cans serve a group, where the 

first (𝑟 − 1) customers are served without delay and the 𝑟𝑡ℎ  

one is delayed or all the 𝑟 customers are served without delay. 

If the 𝑗𝑡ℎ customer is delayed, then all its preceding customers 

are served without delays, and all its next customers will be 

lost. As a result of applying the two loss systems to the 

proposed procedure, the number of served customers can be 

increased, if the number of served customers without delay is 

maximum and this lead to increase the performance 

(efficiency) of the procedure. This approach is not applied in 

the review paper Mahmoud et al. (2017), for in this paper the 

problem was examined by designing two specific loss systems 

where a server cannot receive more than one observation of 

the group while our approach is more general, for the server 

cans receive a group of customers where this will increase the 

number of served customers. In the papers (Mahmoud & Atwa, 

2011; Mahmoud et al., 2015; Mahmoud et al., 2017; Nevel´son 

& Has′minskiĭ, 1972), the problem was examined by applying 

some specific loss systems where servers cannot extradite 

(serve) any observation during the time between any two 

sequential arrivals.  

However, in the proposed procedure, we introduced a new 

situation by investigating two loss systems, where the server 

cans receive more than one customer during the time 

between any two consecutive groups. In fact, the investigation 

of the aforesaid two loss systems was made exactly by this 

application, where it will minimize the number of missing 

customers.  

Consequently, the performance (efficiency) of the 

procedure is increased and this ability used as an application 

in industry to increase the production of items of some 

industrial projects. The service time of a group equals the sum 

of service times of the customers where it is independent of 

the number of customers and this can be used in increasing 

the number of served customers during the same service time 

of the group.  

The probability service time of a group equals the sum of 

products of probabilities service time of customers without 

delay terminated by with or without delay. If the probabilities 

service time of customers are without delay and terminated 

with retard, then all following customers are lost. The 

investigated procedure is new and we foresee that it can be 

used to any stochastic approximation or recursive estimation 

procedure. 

 

2. Constructions of the first and second loss systems 

 

The first loss system is constructed as follows: 

Consider the service system 𝐺𝐼𝑔/𝐺𝐼𝑔/𝐾/0 where symbols 

have the following meaning respectively, arrivals and service 

times are positive integers; 𝐾 the number of servers that are 

parallel; no queues. Assume that the distribution of arrival 

times is deterministic, that is a group of customers arrives each 

time unit. Groups are lost if all servers are busy, in this case the 

service system is called a loss system with delayed groups of 

customers and is denoted by 𝐷𝑔/𝐺𝐼𝑔/𝐾/0 . The service time 𝑡 

of a group will be rounded down to 𝑤, 𝑤 = 0,1,2, …, if the 

service of the group who came at time 𝑛 is finished by the time 

𝑛 + 𝑤 + 1 but not before the time 𝑛 + 𝑤 where a service time 

not skipping one time is considered as a base, 𝑡 is the delay 

and equals excess over one time unit. Let 𝑃0; 𝑃1,; 𝑃2, … ; 𝑃𝑇  the 
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service time distribution of a group of customers and the state 

of the system at time 𝑛 − 0 can be characterized by a 𝐾- duple 

of integers where a standard argument of the queuing theory 

proofs that the system with these states clarifys a time-

homogeneous, finite or countable Markov chain. 

The second loss system is constructed as follows: 

Consider the service system 𝐺𝐼𝑠/𝐺𝐼𝑠/1/0 with a group of 𝑟 

customers, where a group arrives each time unit and the 

service time of the customers equals 𝑡 time units, while both 

the distributions of the arrivals and the service time of the 

customers are unspecified. The total number of servers equals 

1 only, where all the 𝑟 customers will be served by this server. 

That is we have 𝑟 service times for 𝑟 customers of the group 

are served by the same server. 0 means that there are no 

waiting places. Such a service system is a loss system with 𝑟 

multiservice customers and will be denoted by 𝐷𝑠/𝐺𝐼𝑠/1/0, 

where a customer arrives each time unit. The service time 𝑡 will 

be rounded down to 0, if the service of a customer, who came 

at time 𝑛, is finished at time 𝑛 + 1 − 0 (that is before time 𝑛 + 1); 

rounded down to 1, if the service is finished by at time 𝑛 + 2 − 0 

but not before 𝑛 + 1, etc.. In general, the service time 𝑡 will be 

rounded down to 𝑇, if the service of a customer (who came at 

time 𝑛) is finished at time 𝑛 + 1 + 𝑇 − 0, where the service time  

of a customer cannot exceed 𝑇 time units. 

 

3. Service time of a group of 𝑟 customers and its 

distribution 

 

To find the service time of a group of 𝑟 customers, we prove 

the following theorem. 

Theorem he service time of a group of 𝑟 customers equals 

the total service times of  𝑟 customers of the group. 

Proof The compound service times of 𝑟 customers will be 

rounded down to 𝑟 (with time delay equals 𝑟 − 1), the service 

of a customer who came at time 𝑛 + 𝑗 − 1  is finished by the 

time 𝑛 + 𝑗, where the 𝑗𝑡ℎ customer is served without delay; for 

all 𝑗 = 1,2, … , 𝑟. In this case, the service of a group of 𝑟 

customers who started at time 𝑛 is finished by the time 𝑛 + 𝑟, 

and the service time of the group will be rounded down to 𝑟 

where it equals to the compound service times of the 𝑟 

customers. The compound service times  of 𝑟 customers will 

be rounded down to 𝑟 + 1( i.e, the 𝑟 customers are delayed 𝑟 

time units), if  the 𝑗𝑡ℎ customer is served without delay by the 

time 𝑛 + 𝑗,  for all 𝑗 = 1,2, … , 𝑟 − 𝑖 ;  𝑖 = 1,2, … , 𝑟, and the 

(𝑟 − 𝑖 + 1)𝑡ℎ customer is served with time delay (equivalent a 

time unit) and finishes its service by the time 𝑛 + (𝑗 + 1) + 1. 

The customers coming during the service of the (𝑟 − 𝑖 + 1)𝑡ℎ 

delayed customer will be lost. Consequently, the service of a 

group of 𝑟 customers is finished by the time 𝑛 + 𝑟 + 1, and the 

service time of the group will be rounded down to 𝑟 + 1 where 

it equals the compound service times of at most 𝑟 customers. 

Here at most 𝑟 customers will be served for, the service with 

delay of the (𝑟 − 𝑖 + 1)𝑡ℎ  customer makes the next coming 

customers are lost, where the number of lost customers may 

be 1,2, … , 𝑟 − 1.  

In general, the compound service times of 𝑟 customers will 

be rounded down to 𝑡, where 𝑡 = 1,2,… , 𝑇, if  the 𝑗𝑡ℎ customer 

is served without delay by the time 𝑛 + 𝑗; for all 𝑗 =

1,2, … , 𝑟 − 𝑖 ;  𝑖 = 1,2, … , 𝑟, and the (𝑟 − 𝑖 + 1)𝑡ℎ  customer is 

served with time delay (equals 𝑡 time units) and finishes its 

service by the time 𝑛 + (𝑗 + 1) + 𝑡. Therefore, the service of a 

group of 𝑟 customers is finished by the time 𝑛 + 𝑟 + 𝑡, and the 

service time of the group will be rounded down 𝑟 + 𝑡 where it 

equals the compound service times of at most 𝑟 customers. 

This completes the proof. The compound service time 

distribution of the two loss systems is considered in the 

following way.  

Denote by  𝑝0; 𝑝1; 𝑝2; … ; 𝑝𝑇, the distribution of the service 

time of a customer.  Let 𝑐𝑖(𝑡) be the event that the 𝑗𝑡ℎ 

customer is served without delay with probability 𝑝0, for all 

𝑗 = 1,2, … , 𝑟 − 𝑖 ;  𝑖 = 1,2, … , 𝑟, and the (𝑟 − 𝑖 + 1)𝑡ℎ 

customer is is served with time delay 𝑡 = 1,2, …𝑇 time units, 

with probability 𝑝𝑡. Since the service times of the 𝑟 customers 

are independent random variables; it can be seen that the 

service time distribution of the  group eq    𝑃(∩𝑖=1
𝑟 𝑐𝑖(𝑡)) 

 

= 𝑝0
𝑟−𝑖𝑝𝑡 ,   𝑖 = 1,2, … , 𝑟 ;    𝑡 = 1,2, … , 𝑇  

= 𝑝0
𝑟          , 𝑖 = 1              ;     𝑡 = 0                                                  (1) 

 

4. Description of the working mechanism of the 

proposed systems 

 

Consider the service system with two servers 𝐾 = 2 in the case 

that a group of two customers 𝑟 = 2 arrives to the system each 

time unit 𝑖 = 1. Assume that each customer arrives to the 

server each time unit with service time distributions  𝑝0, 𝑝1 

where the customer is served without delay or with maximum 

time delay (𝑇 = 1). 

In this case, the service time distributions of the group is 

𝑃1, 𝑃2  where  𝑃1 can be expressed as follow: each customer is 

served without delay with probability 𝑝0  or the first is served 

after one time unit with probability 𝑝1 and the second is lost. 

On the other hand 𝑃2 can be expressed as the first customer is 

served without delay and the second is delayed one time 

unite. That is, 

 
𝑃1 = 𝑝0

2 + 𝑝1, 𝑃2 = 𝑝0𝑝1                                                                    (2) 

If 𝑟 = 3, we have 

𝑃1 = 𝑝1, 𝑃2 = 𝑝0
3 + 𝑝0𝑝1,  𝑃3 = 𝑝0

2𝑝1                                            (3) 

In case  𝑟 = 4, we have 

𝑃1 = 𝑝1,  𝑃2 = 𝑝0𝑝1,  𝑃3 = 𝑝0
4 + 𝑝0

2𝑝1,   

𝑃4 = 𝑝0
3𝑝1,                                                                                                (4) 

For all 𝑟 = 2,3, … .., the group of equations (2), (3), (4) , we 

can deduce 
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𝑃𝑟 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣+1,

𝑟−1
𝑣=0

𝑃𝑟−1 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣

𝑟−1
𝑣=0 ,

𝑃𝑟−2 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣−1

𝑟−1
𝑣=0 ,

}
 

 

                                                              (5) 

 

where the probability of the smallest service time of the group 

of 𝑟 customers will be 𝑃1 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣−𝑟+2,   

𝑟−1
𝑣=0 𝑝0 

𝑥𝑝𝑦 =

 𝑝0 
𝑥+1 = 0, 𝑥 < 𝑟 − 1,   𝑝𝑠 = 0   𝑓𝑜𝑟  𝑠 > 1,    𝑃0 = 0 
If  𝑇 = 2, in this cas the service time distribution of the 

customer is 𝑝0, 𝑝1, 𝑝2 and the service time distribution of the 

group can be derived as follows: 

For 𝑟 = 2, we have 

 

𝑃1 = 𝑝0
2 + 𝑝1, 𝑃2 = 𝑝0𝑝1 + 𝑝2,  𝑃3 = 𝑝0𝑝2                                 (6) 

 

For 𝑟 = 3, we have 

𝑃1 = 𝑝1,   𝑃2 = 𝑝0
3+𝑝0𝑝1 + 𝑝2,𝑃3 = 𝑝1 + 𝑝0𝑝2,   𝑃4 = 𝑝0

2𝑝2 

                                                                                                                             (7) 

For 𝑟 = 4, we have 

𝑃1 = 𝑝1,  𝑃2 = 𝑝0𝑝1 + 𝑝2,  𝑃3 = 𝑝0
4 + 𝑝0

2𝑝1 + 𝑝0𝑝2, 𝑃4 =

𝑝0
3𝑝1 + 𝑝0

2𝑝2,  𝑃5 = 𝑝0
3𝑝2                                                                    (8) 

 

we can deduce that the service time distribution of a group 

of 𝑟 customers , 𝑟 = 2,3, … . ., 

 

    

𝑃𝑟+1 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣+2

𝑟−1
𝑣=0 ,

𝑃𝑟 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣+1

𝑟−1
𝑣=0 ,

𝑃𝑟−1 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣

𝑟−1
𝑣=0 ,

𝑃𝑟−2 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣−1

𝑟−1
𝑣=0 ,

𝑃𝑟−3 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣−2

𝑟−1
𝑣=0 ,}

 
 

 
 

                                                    (9) 

 

𝑃1 = ∑

𝑟−1

𝑣=0

𝑝0
𝑟−1−𝑣𝑝𝑣−𝑟+2                𝑝0 

𝑥𝑝𝑦 = 𝑝0 
𝑥+1 = 0,

𝑥 < 𝑟 − 1,   𝑝𝑠 = 0   𝑓𝑜𝑟   
𝑠 > 2,    𝑃0 = 0 

 

If 𝑇 = 3, then the service time distribution of the customer 

is  𝑝0, 𝑝1, 𝑝2, 𝑝3 

For  𝑟 = 2, we get 
𝑃1 = 𝑝0

2 + 𝑝1, 𝑃2 = 𝑝2 + 𝑝0𝑝1,   
𝑃3 = 𝑝0𝑝2 + 𝑝3, 𝑃4 = 𝑝0𝑝3                                                             (10) 

For   𝑟 = 3, we get 
𝑃1 = 𝑝1,  𝑃2 = 𝑝0

3 + 𝑝0𝑝1 + 𝑝2,  
𝑃3 = 𝑝0

2𝑝1 + 𝑝0𝑝2 + 𝑝3,  𝑃4 = 𝑝0
2𝑝2𝑝0𝑝3,  

 𝑃5 = 𝑝0
2𝑝3                                                                                             (11) 

For   𝑟 = 4, we get 

𝑃1 = 𝑝1,  𝑃2 = 𝑝0𝑝1 + 𝑝2,  𝑃3 = 𝑝0
4 + 𝑝0

2𝑝1 + 𝑝0𝑝2 + 𝑝3,  
𝑃4 = 𝑝0

3𝑝1 + 𝑝0
2𝑝2 + 𝑝0𝑝3, 

𝑃5 = 𝑝0
3𝑝2 + 𝑝0

2𝑝3, 𝑃6 = 𝑝0
3𝑝3                                                     (12) 

 

The service time distributions of a group of 𝑟 customers, =

2, 3,…… , can be derived as 

𝑃𝑟+2 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣+3

𝑟−1
𝑣=0 ,

𝑃𝑟+1 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣+2

𝑟−1
𝑣=0 ,

𝑃𝑟 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣+1

𝑟−1
𝑣=0 ,

𝑃𝑟−1 = ∑ 𝑝0
𝑟−1−𝑣𝑝𝑣

𝑟−1
𝑣=0 , }

 
 

 
 

                                                           (13) 

𝑃1 =∑

𝑟−1

𝑣=0

𝑝0
𝑟−1−𝑣𝑝𝑣−𝑟+2           𝑝0 

𝑥𝑝𝑦 = 𝑝0 
𝑥+1 = 0,

𝑥 < 𝑟 − 1,        𝑝𝑠 = 0   𝑓𝑜𝑟  𝑠 > 3,
𝑃0 = 0 

 

In general, for all 𝑇 = 1,2, 3, …., and by the group of 

equations (5), (9) (13) , we deduce that the service time 

distribution of a group of 𝑟 customers,𝑟 = 2, 3, ….,can be 

obtained by the system 

 

𝑃𝑟+𝑇−𝑗 =∑𝑝0
𝑟−1−𝑣𝑝𝑇−𝑗+1+𝑣

𝑟−1

𝑣=0

 

𝑗 = 1, 2, … . , 𝑟 + 𝑇 − 1, 𝑟 = 2,3, … . .,                                            (14) 

 
𝑝0 
𝑥𝑝𝑦 = 𝑝0 

𝑥+1 = 0, 𝑥 < 𝑟 − 1,   𝑝𝑠 = 0   𝑓𝑜𝑟  𝑠 > 𝑇,

         𝑃0 = 0 
 

Now, we show that (14) is true.  

First, we show that (14) is true in case  𝑇 = 1, that is, we 

show that  

 
𝑃𝑟+1−𝑗 = ∑ 𝑝0

𝑟−1−𝑣𝑝𝑣−𝑗+2
𝑟−1
𝑣=0            

 𝑗 = 1, 2, … . , 𝑟                                                                                      (15) 

 

Since, for  𝑗 = 1, 2, … . , 𝑟 , (15) gives the group of equations 

(5). This shows that (15) is true  

Secondly, substitute 𝑇 = 2 in (14), we get 

 
𝑃𝑟+2−𝑗 = ∑ 𝑝0

𝑟−1−𝑣𝑝𝑣−𝑗+3
𝑟−1
𝑣=0                         

 𝑗 = 1, 2, … . , 𝑟 + 1                                                                              (16) 

 

For  𝑗 = 1, 2, … . , 𝑟 + 1,  (16) gives the group of equations 

(9). This shows that (16) is true  

Assume that (14) is true for  𝑇 = 𝑢, that is : 

 
𝑃𝑟+𝑢−𝑗 = ∑ 𝑝0

𝑟−1−𝑣𝑝𝑢−𝑗+1+𝑣
𝑟−1
𝑣=0   

𝑗 = 1, 2, … . , 𝑟 + 𝑢 − 1, 𝑟 = 2,3, … . .,   
𝑢 𝑖𝑠 𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑛𝑙𝑦,   𝑝𝑠 = 0   𝑓𝑜𝑟  

 𝑠 > 𝑢, 𝑝0 
𝑥𝑝𝑦 = 𝑝0 

𝑥+1 = 0, 𝑥 < 𝑟 − 1, 𝑃0 = 0 

                                                                                                                                 (17) 

is true by assumption. 

We prove that (14) is true for T=u+1, that is, we show that 

 
𝑃𝑟+𝑢+1−𝑗 = ∑ 𝑝0

𝑟−1−𝑣𝑝𝑢+1−𝑗+1+𝑣
𝑟−1
𝑣=0                  𝑗 = 1, 2, … . , 𝑟 +

𝑢, 𝑟 = 2,3, … . .,                                                                                     (18) 
𝑢 𝑖𝑠 𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑛𝑙𝑦, 𝑝𝑠 = 0   𝑓𝑜𝑟  𝑠 > 𝑢 + 1, 𝑝0 

𝑥𝑝𝑦 = 𝑝0 
𝑥+1 

= 0, 𝑥 < 𝑟 − 1, 𝑃0 = 0 , is true 



 
 

 

Mahmoud Ahmed et al. / Journal of Applied Research and Technology 575-583 

 

Vol. 19, No. 6, December 2021    579 

 

For  𝑗′ = 𝑗 − 1 = 1, 2, … . , 𝑟 + 𝑢 − 1, then, (18) becomes  
𝑃𝑟+𝑢−𝑗′ = ∑ 𝑝0

𝑟−1−𝑣𝑝𝑢−𝑗′+1+𝑣
𝑟−1
𝑣=0                

𝑗′ = 1, 2, … . , 𝑟 + 𝑢 − 1, 𝑟 = 2,3,… . .,                                           (19) 
𝑢 𝑖𝑠 𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑛𝑙𝑦,   𝑝𝑠 = 0   𝑓𝑜𝑟  𝑠 

> 𝑢, 𝑝0 
𝑥𝑝𝑦 = 𝑝0 

𝑥+1 = 0, 

  𝑥 < 𝑟 − 1, 𝑃0 = 0 
 

The group of equations (18) is true for it is the same as (or it 

is corresponds) the system (17). This display that the group of 

equations (18) is true for  𝑗 = 2,… . , 𝑟 + 𝑢. 

Now we show that the system of equations (18) is true for 

𝑗 = 1. That is we show (20) is true where: 

 

𝑃𝑟+𝑢 = 𝑝0
𝑟−1𝑝𝑢+1 + 𝑝0

𝑟−2𝑝𝑢+2 +⋯+ 𝑝𝑢+𝑟, 𝑟 =

2,3, … , 𝑝0 
𝑥𝑝𝑦 = 𝑝0 

𝑥+1 = 0, 𝑥 < 𝑟 − 1,                                         (20) 

 

The left hand side of the system (20) equals the probability 

that a group who arrives at time 𝑛 and served at time 𝑛 + 𝑟 +

𝑢 + 1 − 0, 𝑢 is the time delay of the customer. The probability 

𝑃𝑟+𝑢 can be expressed by different services of its 𝑟 customers, 

where each one arrives to the server each time unit, such as 

each one of the (𝑟 − 1) customers is served without delay 

with probability 𝑝0 and the 𝑟𝑡ℎ customer is served after time 

delay 𝑢 + 1 time units with probability 𝑝𝑢+1. The (𝑟 − 1)𝑡ℎ 

customer completes its service at time 𝑛 + 𝑟 − 1 − 0 and the 

𝑟𝑡ℎ customer starts its service at time  𝑛 + 𝑟 − 1 and 

completes its service at time (𝑛 + 𝑟 − 1) + (𝑢 + 1) + 1 −

0 = 𝑛 + 𝑟 + 𝑢 + 1 − 0. Therefore, the group who arrives at 

time 𝑛 completes its service at time 𝑛 + 𝑟 + 𝑢 + 1 − 0 with 

probability 𝑝0
𝑟−1𝑝𝑢+1. Note that the first (𝑟 − 1) customers 

complete their services at time 𝑛 + 𝑟 − 1 − 0, with probability 

𝑝0
𝑟−1 without delay. Another option for the expression of the 

probability 𝑃𝑟+𝑢  is that the first (𝑟 − 2) customers complete 

their services without delay at time 𝑛 + 𝑟 − 2 − 0 with 

probability 𝑝0
𝑟−2 and the (𝑟 − 1)𝑡ℎ customer is served with 

probability 𝑝𝑢+2 where it starts its service at time 𝑛 + 𝑟 − 2 

and complete its service at time (𝑛 + 𝑟 − 2) + (𝑢 + 2) + 1 −

0 = 𝑛 + 𝑟 + 𝑢 + 1 − 0. The  𝑟𝑡ℎ customer will be lost 

because there is no waiting place. Therefore, the group of 

𝑟 customers completes its service at time 𝑛 + 𝑟 + 𝑢 + 1 −

0 with probability 𝑝0
𝑟−2𝑝𝑢+2. In general, there exists 𝑔, 𝑔 =

1,2, …… , 𝑟, options for the expression of the probability  𝑃𝑟+𝑢 

is that the first (𝑟 − 𝑔) customers complete its service without 

delay at time 𝑛 + 𝑟 − 𝑔 − 0 with probability 𝑝0
𝑟−𝑔

 and the 
(𝑟 − 𝑔 + 1)𝑡ℎ customer is served with probability 𝑝𝑢+𝑔 where 

it starts its service at time 𝑛 + 𝑟 − 𝑔 and complete its service at 

time (𝑛 + 𝑟 − 𝑔) + (𝑢 + 𝑔) + 1 − 0 = 𝑛 + 𝑟 + 𝑢 + 1 − 0.  

The (𝑔 − 1) customers will be lost that is because there is 

no waiting place. Therefore, the group of 𝑟 customers 

completes its service at time 𝑛 + 𝑟 + 𝑢 + 1 − 0 with 

probability 𝑝0
𝑟−𝑔

𝑝𝑢+𝑔.  This proofs that the system of 

equations (20), is true. 

Note that, if a customer is delayed, then the next arriving 

customers will be lost.  

 

5. The service time distribution of a group of 𝑟 

customers 

 

The compound service time distributions of groups of r 

customers are obtained in the cases that the  𝑗𝑡ℎ customer is 

served without delay with probability 𝑝0 for all 𝑗 = 1,2, … , 𝑟 −

𝑖; 𝑖 = 1,2, … , 𝑟 ; 𝑟 = 2,3, … ; and the (𝑟 − 𝑖 + 1)𝑡ℎ customer is 

served with time delay 𝑡; 𝑡 = 1,2, … , 𝑇 time units, and with 

probability 𝑝𝑡. Assume that the compound service time of a group 

is to be found in the case that the first customer is delayed 𝑡 time 

units where 𝑡 = 1,2, … , 𝑇. Since server is busy, then the next 

coming 𝑥𝑡ℎ customer for 𝑥 = 2,3, … , 𝑟 will be lost.  

In this case, no custumers are served without delay, and 

𝑟 = 𝑖. Since the service times of the 𝑟 customers are 

independent random variables, it can be seen that the 

compound service time distribution of a group equals 𝑃; 𝑃 =

𝑝𝑡  for all 𝑡 = 1,2, … , 𝑇; 𝑟 = 2,3, ….In this case, the compound 

service time distribution of the delayed groups under the 

assumption that the first customer is the only served one and 

the remaining (𝑟 − 1) customers are lost, is equal to 𝑃,  where 

 

𝑃 = 𝑝𝑡 ,                 𝑡 = 1,2, … , 𝑇,                                                           

   = 0,                   𝑡 = 0.                                                                      (21) 
 

The (𝑟 − 1) lost customers are not allowed to be served by 

another one of the parallel servers of the same loss system 

even they were empty, for this will affect the number of served 

arrivals of different coming groups. Also the efficiency of the 

modified stochastic approximation procedure with delayed 

groups will be affected. As a result of this case, each group will 

become a group of one delayed customer and by the last 

theorem, the service time of each group equals the service 

time of its delayed customer. Therefore, the service time 

distribution 𝑃 of the group equals the service time distribution 

𝑝𝑡 of its delayed customer. We conclude that the number of 

served customers of a group will minimizes the number of 

waste customers of the group to become zero where this leads 

to raise the performance (efficiency) of the proposed 

procedure.  
 

6. Technical tools 
 

1. Studying mathematical models of two special service 

systems.  

2. As the considered systems can be viewed as compound 

Markov chains, the theory of finite or countable (discrete-time) 

compound Markov chains that were benefitted. 

3. The compound states of the chain ready from the 

elementary zero state was found. 
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4. The equations substantial for the stationary distribution 

were found.  

5. The set 𝑆 of compound states that can be arrived from 

the initial 00…0 under the assumption 

           𝑃𝑖 > 0, for all 0 ≤ 𝑖 ≤ 𝑇,  

 

jointly with the identical matrix of transition probabilities 𝑃 

wil be found. The set 𝑆 is called the basal compound Markov 

chain. 

6.  We can easily see that, still assuming 𝑃𝑖 > 0, for all 0 ≤

𝑖 ≤ 𝑇,  the basic compound Markov chain is irreducible, 

ergodic. Hence, there is a unique stationary distribution 𝜋 

determined by  

 

𝑃𝑇𝜋 = 𝜋,    𝑇 denotes transpose                                                   (22) 

 

7. Some matrix algebra and procedures of solving systems 

of linear equations were utilized.  

8. Asymptotic efficiencies of the investigated stochastic 

approximated procedure were calculated for different 

numbers of parallel servers. If 𝑇 < 𝐾, then each state 𝛼 

contains at least one 0 and in this case no group of customers 

will be lost. For 𝑇 ≥ 𝐾, the unknowns 𝜋𝛼    with 𝛼 containing 

no 0,s can be eliminated from the system (23), as successive 

transitions from these states to states containing 0,s occur 

deterministically, with probability 1. One of the resting 

equations can always be deleted as unnecessary; another one 

is to be joined, namely the equation  

 

∑ 𝜋𝛽
𝛽

= 1 

 

Solving the reduced system of equations using Matlab 

Program, and summing the coordinates of the solution, we get 

the loss probability 𝑙, where  

𝑙 = ∑ 𝜋𝛾𝛾 ;  𝛾 containing no 0, or complementarily, the 

efficiency 𝑒 of the two service systems, where 

 

𝑒 = ∑ 𝜋𝛼𝛼 ;    𝛼 contains at least one 0,                                    

              𝑙 + 𝑒 = 1.                                                                                 (23) 

 

9. Investigating the adjusted stochastic approximation 

procedure with delayed groups of delayed customers and with 

allocation of the groups into parallel series.  

10.The outcomes obtained for the above-mentioned 

service systems became main tool of the consideration.  

11.Outcomes on almost sure convergence and on 

asymptotic normality, known for the stochastic 

approximation procedure without delayed, benefitted. 

 

 

 

7. Applications 

 

Two applications will be given here to show that the investigated 

procedure can be utilized to other stochastic approximation 

procedure. 

 

Application 1 

 

Consider the case = 2; 𝑇 = 3; 𝑟 = 2 , and assume that 𝑝0 =

0.9 ,  𝑝1 = 𝑝2 = 𝑝3; where  

𝑝𝑖 =
(1 − 𝑝0))

3
= 0.033, 𝑖 = 1,2,3 

 

Consider the case = 2; 𝑇 = 3; 𝑟 = 2 , and assume that 

𝑝0 = 0.9 ,  𝑝1 = 𝑝2 = 𝑝3; where  
𝑝𝑖 = (1 − 𝑝0)) 3⁄ = 0.033, 𝑖 = 1,2,3 

Substitute the service time distribution of the customer 

(𝑝0, 𝑝1, 𝑝2, 𝑝3) into (10) we get the  service time distribution of 

the group of two customers as (𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4) , where 
𝑃0 = 0; 𝑃1 = 0.843; 𝑃2 = 𝑃3 = 0.063; 
𝑃4 = 0.03 

Substitute the service time distribution (𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4) into 

(22) and solve the resulting system of equations with respect to 𝜋; 

insert the stationary distribution 𝜋 into (23) to get the efficiency 𝑒 

of the investigated stochastic procedure as 𝑒 = 0.85 . 

 

Applications 2 

 

Consider the case = 2; 𝑇 = 1; 𝑟 = 4 , and assume that 𝑝0 =

0.3; where 𝑝1 = 1 − 𝑝0 . Substitute the service time 

distribution of the customer as (𝑝0, 𝑝1) into (4) we the service 

time distribution of the group of four customers as 

(𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4) , where 

 
𝑃0 = 0; 𝑃1 = 0.7; 𝑃2 = 0.21; 𝑃3 = 0.0711; 𝑃4 
= .0189;  𝐸(𝑡) = 1.4089.                                                                       (24) 

 

Substitute the service time distribution (𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃4) 

into (22) and solve the resulting system of equations with 

respect to 𝜋; insert the stationary distribution 𝜋 into (23) to get 

the efficiency 𝑒 of the investigated stochastic procedure as 

𝑒 = 0.7848. The results obtained here show that the modified 

Robbins-Monro stochastic approximation procedure can 

serve as a model of stochastic approximation with delayed 

groups of 𝑟 customers with efficiency 𝑒. That is, the new 

approach can be investigated by modifying the Robbins-

Monro stochastic approximation procedure to be applicable 

in the presence of the described two loss systems with groups 

of delayed multiservice 𝑟 customers. 
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8. Results and conclusion 

 

Table 1 gives the efficiency 𝑒 of the investigated stochastic 

approximation procedure with delayed groups of delayed 

multiservice 𝑟 (𝑟 = 2) customers, where the maximum delay 

𝑇 of a customer is assumed to be 3 the number of servers 𝐾 

equals 2. The efficiencies are calculated for different assumed 

values of service time distribution of the 2 customers. 

Table 2 gives the efficiency 𝑒 of the investigated stochastic 

approximation procedure with delayed groups of delayed 

multiservice 𝑟 (𝑟 = 4) customers, where the maximum delay 𝑇 

of a customer is assumed to be 1 and the number of servers 𝐾 

equals 2. The efficiencies are calculated for different assumed 

values of service time distribution of the 2 customers. 

The results obtained show that the modified Robbins-

Monro stochastic approximation procedure with delayed 

observations and with allocation of experiments into 𝐾 series,  

can serve as a model of stochastic approximation of delayed 

groups of 𝑟 customers, where: observations in the adjusted 

procedure are groups of delayed customers in the 

investigated procedure; the delay of an observation in the 

modified procedure is the service time of a group of 𝑟 

customers; the 𝐾 series of experiments are the 𝐾 servers of 

groups of delayed customers; and the non-existence of a 

waiting room is the impossibility to accept a group of delayed 

customers if all the 𝐾 series are occupied. 

Therefore, and as a new result, our approach can be 

investigated by modifying the Robbins-Monro stochastic 

approximation procedure to be usable in the existence of the 

described two loss systems with groups of delayed 

multiservice 𝑟 customers. 

Comparing the results in Tables 1 and 2, we have the 

maximum service time of a group ( = 𝑟 + 𝑇 − 1)  equals 4 

time units while the maximum service time of a customer is 3 

and 1, respectively. The efficiencies in Table 1 are less than 

those in correspondence in Table 2 for 𝑝0 = 0.1,… , 0.5, 

where, analytically, the reason is that the maximum service time 

of a customer in Table 1 is greater than those in correspondence 

in Table 2. The efficiencies in Table 1 are greater than those in 

correspondence in Table 2 for 𝑝0 = 0.6, … , 0.9, where 

analytically the reason is that the number of customers in Table 1 

is less than those in correspondence in Table 2.  

 

 

 

 

 

 

 

 

 

The efficiencies in Table 1 are increasing for all  𝑝0 =

0.1, … , 0.9, and this is expected for the service time 

distribution 𝑝0 of customers is increasing. In Table 2 the 

efficiencies are improved and increased for 𝑝0;  𝑝1 =

0.1, … , 0.9, where this is unexpected for the service time 

distribution of customers is increasing. 

Analytically, efficiencies are decreasing for all 

increasing service time distribution 𝑝0 of customers and 

are increasing for all increasing service time distribution 

𝑝1 of customers. Also, efficiencies are increased by 

decreasing the number of customers, or decreasing the 

service time of customers. 

New results are obtained through the presented applications 

where the efficiencies are improved and increased by 

increasing the service time distribution of customers as well as 

by increasing the service times of customers. This situation 

allows to serve a larger number of customers during the 

increased service time of customers. As a result of this 

situation, the efficiencies of the introduced procedure can be 

improved and increased by increasing the service time of 

customers where the number of served customers will be 

increased during their increased service time. According to 

this new situation, our investigated procedure can be applied 

into other experiments. Analysis of the two applications shows 

that the efficiency of the procedure depends on the maximum 

service time of the customer and on the number of customers 

during the increased service time of customers during the 

increased service time of customers. As a result of this 

situation, the efficiencies of the introduced procedure can be 

improved and increased by increasing the service time of 

customers where the number of served customers will be 

increased during their increased service time. According to 

this new situation, our investigated procedure can be applied 

into other experiments. Analysis of the two applications shows 

that the efficiency of the procedure depends on the maximum 

service time of the customer and on the number of customers 

of the group. The results of approximation of the procedures 

in Tables 1 and 2 seem to be acceptable.                                             

In general, our proposal can be applied to other stochastic 

approximation procedures to increase the production in many 

fields such as medicine, computer sciences, industry, and 

applied sciences. 

 

 

 

 

 

 

 

 

 

 



 
 

 

Mahmoud Ahmed et al. / Journal of Applied Research and Technology 575-583 

 

Vol. 19, No. 6, December 2021    582 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Exact percentage efficiency 𝑒 of the investigated procedure with delayed groups of 𝑟 customers 

(𝑟 = 2), maximum service time 𝑇(𝑇 = 3), and its application to the modified Robbins-Monro procedure. 

 
     𝐾 = 2 𝐾 = 3 

𝑝0 𝑃1 𝑃2 𝑃3 𝑃4 𝑒 
 

0.1 0.31 0.33 0.33 0.030 61.9 85.82 

0.2 0.307 0.32 0.32 0.053 61.2 84.91 

0.3 0.323 0.303 0.303 0.070 61.2 84.76 

0.4 0.36 0.28 0.28 0.080 61.9 85.35 

0.5 0.417 0.251 0.251 0.080 63.7 86.69 

0.6 0.493 0.213 0.213 0.080 66.2 88.8 

0.7 0.59 0.17 0.17 0.070 70.1 91.65 

0.8 0.707 0.121 0.121 0.054 76.3 95.03 

0.9 0.843 0. 063 0. 063 0.030 85.01 98.33 

Note that: 𝑝1 = 𝑝2 = 𝑝3 = (1 − 𝑝0)/3, 𝑃2 = 𝑃3,     𝑃4 = 1 − ∑ 𝑃𝑖
3
𝑖=1  

 

 

 

Table 2. Exact percentage efficiency 𝑒 of the investigated procedure with delayed group of customers 

 (𝑟 = 4), maximum service time 𝑇 (𝑇 = 1), and its application to the modified Robbins-Monro procedure. 

 

     𝐾 = 2 𝐾 = 3 

𝑝0 𝑃1 𝑃2 𝑃3 𝑃4 𝑒 
 

0.1 0.9 0.09 0.0091 0.0009 91.47 99.89 

0.2 0.8 0.16 0.0336 0.0064 84.6 99.14 

0.3 0.7 0.21 0.0711 0.0189 78.48 97.28 

0.4 0.6 0.24 0.1216 0.0384 72.8 94.20 

0.5 0.5 0.25 0.1875 0.0625 67.51 90.22 

0.6 0.4 0.24 0.2736 0.0864 62.65 85.82 

0.7 0.3 0.21 0.3871 0.1029 58.34 81.51 

0.8 0.2 0.16 0.5376 0.1024 54.69 77.83 

0.9 0.1 0. 09 0. 7371 0.0729 51.84 75.356 

Note that: 𝑝1 = 1 − 𝑝0,     𝑃4 = 1 − ∑ 𝑃𝑖
3
𝑖=1  
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