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Abstract

The maximum power point tracking is a very important scheme of many renewable energy. It can increase the power efficiency. However, many 
traditional methods has defects for the applications. This study proposed a novel fractional order incremental conductance algorithm (FOINC) for 
the maximum power point tracking design of small wind power systems. The proposed method is prompt in the transient of maximum power point 
tracking and has good steady-state response. Moreover, it can increase the maximum power tracking efficiency of system without changing the 
wind power system equipments. The comparison between the traditional incremental conductance method (INC) and Perturbation and Observation 
(P&O) proved the reliability and effectiveness of the proposed method.
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1. Introduction

The renewable energy source is being developed actively in 
various countries in recent years, among all the available re-
newable energy sources, the solar energy and wind power have 
attracted most attention. The wind power is very attractive, be-
cause it converts wind energy into kinetic energy, the vanes 
guide the generator to rotate, it is one of the cleanest energy 
sources. At present, the PMSG is one of the most frequently 
used wind turbines for compactness, high power density, low 
maintenance cost and easy control (Barakati et al., 2005; 
Jazaeri et al., 2012; Dumnic et al., 2012). The real environment 
has different wind speed conditions, the wind turbine will have 
different power characteristic curves, so the Maximum Power 
Point Tracking (MPPT) is required, so that the output of wind 
power system is kept at maximum power in different wind 
speed conditions.

Many MPPT technologies have been implemented in wind 
power systems in previous literatures, such as Incremental Con-
ductance method (INC) (Kish et al., 2012; Faraji et al., 2014; 
Sera et al., 2013), P&O (Sera et al., 2013; Mahdi et al., 2012; 

Femia et al., 2004), and Hill-Climbing Search Algorithm 
(HCS) (Raza Kazmi et al., 2011; Yamakura & Kesamaru, 
2012). However, most of wind power system control depends on 
wind speed sensing element, and this type of system needs ad-
ditional wind speed sensor, so that it is confined to the cost and 
complexity of sensor (Koutroulis & Kalaitzakis, 2006). The 
FOINC proposed in this paper only captures the voltage and 
current of PGMG after the full-bridge rectifier converts the AC 
generated by the generator into DC. The DC/DC converter as 
booster adjusts the duty ratio, and the switching pulse width 
duty cycle of booster is adjusted by algorithm, so as to maxi-
mize the output power.

As compared with INC and P&O, the FOINC maximum pow-
er tracking controller proposed in this paper is prompt in the tran-
sient of MPPT and has good steady-state response. In the real 
environment, the module life loss resulted from power waveform 
oscillation can be reduced, the output efficiency of wind turbine 
is increased and the lost cost is reduced. In other words, the pro-
posed method is practicable for small wind power systems.

2. Brief introduction to wind power systems 

In terms of the acquisition of wind energy, the air flow gen-
erates air pressure to rotate the vanes to capture the kinetic 
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the switch is off toff and on ton, the current through inductor 
can be expressed as:

Switch on ton : ΔIL
+ = Vi

L
ton  (3)

Switch off toff : ΔIL
– = Vi –Vo

L
toff  (4)

Duty ratio (D) of control switch is:

D = ton
ton + toff

= ton
Td  

(5)

As the one-cycle voltage variation of inductor is 0, i.e. IL
+ 

= IL
–.

The equation of output voltage Vo can be obtained:

Vo =Vi
ton + toff
ton

= Vi
1− D  

(6)

energy of wind. Then it is converted into useful kinetic energy 
or mechanical energy. The energy is contained in the wind, 
and the rotor blades rotate in wind. Under the effect of aero-
dynamic force, the vanes generate torque. The power Pm gen-
erated by wind turbine is expressed as equation (1) (Hau, 
2005):

Pωm =
1

2
πρC

p
R2Vω

3

 
(1)

where  is the air density, R is the blade radius, V is the wind 
speed, Cp is the coefficient of performance of wind turbine. Cp 
includes the blade tip speed ratio .  is defined as the relation-
ship between blade tip speed and wind speed, expressed as 
equation (2):

λ = Tωm

vω  
(2)

where m is the blade rotation speed. Figure 1 shows the power 
characteristic curves in different wind speed conditions (Naka-
mura et al., 2002).

2.1. Wind power system architecture

The wind power system architecture proposed in this pa-
per is shown in Figure 2, the wind turbine is coupled to the 
PMSG directly, connected to a set of rectifier, converting the 
AC of generator into DC. The DC voltage and current sig-
nals are obtained, and the signals are connected to the DC-
DC boost converter. The MPPT is used to control signals 
and adjust the duty cycle of switching pulse width modula-
tion (PWM). Finally, the DC-DC boost converter is connect-
ed to the load, and the system output power is measured. The 
basic structure of the converter is shown in Figure 3. When 
the switch is “on”, the wind power system charges the induc-
tor via the switch. When the switch is “off”, the wind power 
system releases the inductance energy to the load via diode. 
The output voltage and current can be changed by different 
input voltages and currents by adjusting the duty ratio. When 

Fig. 1. Power characteristic curves.

Fig. 2. Wind power system architecture.
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required parameters and being free from atmospheric influ-
ence. The terminal voltage and output power of wind turbine 
are changed by changing the duty cycle D, and whether the 
changed output power increases continuously or not is ob-
served. The power point on the left or right of curve is judged 
according to the input voltage. Finally, whether the duty cy-
cle D keeps changing in the same direction or not is deter-
mined. The maximum power point can be reached by such 
repeated perturbation, observation and comparison. However, 
this method uses periodic perturbation, so there is oscillation 
at maximum power point, resulting in unnecessary power loss 
of system.

3.3. Incremental Conductance method (INC)

The INC is based on power-voltage (P – V) curve of solar 
cell, equations (7) or (8) must be met at maximum power point:

dP

dV
= 0

 
(7)

dI

dV
≈ –

I – Io
V –Vo

= − ΔI
ΔV  

(8)

3. Design of algorithm and control method

This study used MATLAB R2010a Simulink to build the 
simulated small wind power system architecture and to design 
the control method. Figure 4 shows the simulation diagram of 
the wind power system. The module FOINC can be replaced by 
different MPPTs for duty cycle control of different switching 
pulse adjustment control methods.

3.1. Hill-Climbing Search (HCS)

The most frequently used algorithm in wind power systems 
at variable wind speed is the HCS. This algorithm looks for the 
optimum speed of wind turbines according to the perturbation 
of wind speed to complete MPPT. The improved HCS can be 
derived from this algorithm. The detailed algorithm flowchart 
and content can be seen in literature (Dalala et al., 2013).

3.2. Perturbation and Observation (P&O)

The P&O is one of the most extensively used methods in 
recent years. Its advantages include simple architecture, fewer 

Fig. 3. Boost-converter equivalent circuit diagram.

Fig. 4. Simulation diagram of PMSG wind power system.
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of power-voltage curve of wind turbine, and the variation of 
partial voltage and current of fractional-order differentiator ap-
proximates as d I = I – Io, dV  = (V – Vo)

.
The control flow of FOINC proposed in this paper is shown 

in Figure 6.

4. Simulation analysis results and comparison

This study used MATLAB R2010a Simulink to build the 
model and controller of small wind power systems, and pro-
posed the PMSG-based wind power system. The simulation 
compared the INC and P&O with FOINC proposed in this pa-
per at constant wind speed and variable wind speed.

The first simulated condition is constant wind speed of 
12.5 m/s, as shown in Figure 7. The INC and P&O and FOINC 
proposed in this paper are analyzed and compared in this wind 
speed condition.

As shown in Figure 8, in the constant wind speed, the 
MPPT speed of FOINC proposed in this paper is better than 
P&O and INC, and the steady-state response is smoother 
than P&O and INC, thus reducing unnecessary power loss, 
and increasing the efficiency, proving the practicability of the 
proposed method.

The second simulated condition is variable wind speed for 
test and comparison of algorithms. The wind speed conditions 
are 12.5 m/s and 10 m/s, as shown in Figure 9. The INC and 
P&O and FOINC proposed in this paper are analyzed and com-
pared in the wind speed condition.

As shown in Figure 10, the MPPT speed of FOINC pro-
posed in this paper is better than P&O and INC, and the am-
plitude in steady-state is steadier than P&O and INC. 
Therefore, a better response curve can be obtained in the vari-
able wind speed condition, proving the feasibility of the pro-
posed method.

where Io and Vo are the current and voltage captured at previous 
point in time, I and V are the variation of current and voltage 
in unit time. However, when the method processes MPPT, the 
offset V determines the speed of reaching the MPP and 
the perturbation after the MPP is reached. The decision must be 
made by the user.

3.4. Fractional order incremental conductance method

The fractional-order differentiator is often applied to signal 
processing, adaptive control, active control, linear and nonlin-
ear feedback control. At present, many computing applica-
tions of fractional-order derivative have been proposed, 
according to the definition of Riemann-Liouville and Grun-
wald-Letnikov (Igor, 1999; Ma & Hori, 2007; Kenneth & Ber-
tram, 1993). General fractional-order differentiator can be 
expressed as:

Dt
αtm ≈ γ m +1( )

γ m +1−α( )
tm−α

 
(9)

where ( ) represents the  function (gamma function),  is the 
order number of derivative, when its value is 0 <  < 1, repre-
senting the physical phenomenon of fractional order, its appli-
cation can refer to Tavakoli-Kakhki et al. (2013), Ma and Hori 
(2007), and Saha et al. (2010).

General fractional-order differentiator can be expressed as 
equation (9), when the INC is used, equation (8) can be ex-
pressed as:

dα I

dVα ≈ lim
ΔV→0

I V( )−α I V − ΔV( )
ΔVα

 
(10)

dα I

dVα ≈ I −α I0
V −V0( )α  

(11)

If  > 0 in V , the geometric interpretation of fractional 
order can be represented as Figure 5. The slope is a straight 
line when  = 1, i.e. general first derivative. Therefore, 0 <  
< 1 presents the form of fractional-order derivative, approxi-
mate to curve form, referring to literature (Shantanu, 2008). 
The result of using equation (9) in the right half of equation 
(8) is:

dα

dVα − Io
Vo

⎛
⎝⎜

⎞
⎠⎟
= − 1

Vo

⎛
⎝⎜

⎞
⎠⎟
dα Io
dVα + −Io( ) d

αVo
−1

dVα

= − 1

Vo

⎛
⎝⎜

⎞
⎠⎟

γ 2( )
γ 2−α( )

⎛
⎝⎜

⎞
⎠⎟
Io( )1−α + −Io( ) γ 0( )( )

γ −α( )
Vo

−1−α

 

(12)

where res γ ,−z( ) = −1( )z

z!
, z = 0, –1 ,–2 ,–3, …, and (0) = res 

 
(, 0), res represents the residue under complex plane.

The voltage V, current I and power P are used as calculated 
captured signals in this paper. The variance in voltage and 

 current V = V – Vo, and I = I – Io, the slope is the slope 
ΔP
ΔV

⎛
⎝⎜

⎞
⎠⎟   

Fig. 5. Geometric interpretation of V in fractional-order differentiator.
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Fig. 7. Step input constant wind speed 12.5 m/s.

Fig. 6. Algorithm flowchart of FOINC.
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5. Conclusions

The FOINC proposed in this paper can control the algorithm 
only by capturing the voltage and current generated by the wind 
power system without adjusting the parameter setting for differ-
ent systems. The transient tracking is prompt and the perturba-

tion after steady-state is better than existing methods. According 
to the simulation results, due to fewer required parameters, high 
speed and good stability, the small wind power system is free 
from excess sensing elements, so that the cost is reduced. The 
FOINC proposed in this paper can be applied and implemented 
to the MPPT of small wind power systems in the future.
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Fig. 8. Output dynamic response of P&O, INC and FOINC (constant wind speed).
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Fig. 9. Variance in input wind speed of 12.5 m/s and 10 m/s.
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Fig. 10. Output dynamic response of P&O, INC and FOINC (variable wind speed).
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